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The similar evolution of human population and the atmospheric concentrations of the greenhouse gases strongly suggests that population is
the driver. Note the abrupt acceleration around mid-20th century, especially with the Green Revolution and the massive use of fossil fuels.
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Earth ﬁ};rgy Budget: Oberva_tons & Models
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NASA/GEWEX SRB
ohmura & Zhang & Release 3.0/2.5*
Gilgen (1993) Rossow (2004) (NASA LaRC)
Parameter GEBA Surf. 21-Year Mean 24-Year Mean
Obs. (1984-2004) (July 1983 - June 2007)
SW, LW SW, LW QC
Flux | % F, Flux | % F, | Flux | %F, | Flux % F,

SW Down | 169.0 | 494
SW Net 142.0 | 41.6
LW Down 345 | 100.9

189.2 | 554 | 188.7 | 55.2 | 182.2 53.3
165.9 | 485 | 166.6 | 48.7 | 159.7 46.7
343.8 | 100.6 | 343.2 | 1004 | 3475 101.7

LW Net | -40.0 | -11.7 -49.6 | -145 | -528 | -154 | -51.2 -15.0
Total Net | 102.0 | 29.8 116.3 | 34.0 | 1138 | 33.3 | 108.5 31.7
SW CRF — - -53.0 | -155 | -58.8 | -17.2 | -60.9 -17.8
LW CRF - == 29.5 8.6 35.3 10.3 34.3 10.0

Total CRF - -- -235 | 6.9 | -23.5 -6.9 -26.6 -7.8

S, = 1365 Wm-2 for Trenberth et al. and 1367 Wm-2for all others
*GEWEX LW values are Rel.-2.5 and 23-year averages (Jul1983-Jun2006)



Enabling Technologies
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Earth Science Information Systems of the future will
leverage three ongoing technology revolutions:

Geospatial Computing

Communications

...10 enable seamless, timely, and affordable
delivery of Earth science data and
Information to users.



. Informatlon Synthe5|s Dlstrlbuted Reconflgurable Autonomous

e Information Infrastructure: Standards, Formats, Protocols
 Access to Knowledge: On-orbit Processing, High Speed Networks

* Intelligent Distributed Systems using
optical communication, on-board
reprogrammable processors,

storage, automated data dlstrlbutlon grid
computing and virtual organizations

 Information Knowledge Capture through
3-D Visualization, holographic memory,
seamlessly linked models, science tools,
multi-panel visualization walls
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Surface-Based Networks
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Information Systems

Data management, data
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& synthesis



Downlink Speed

Petabytes 10"®

Multi-platform,
multiparameter, high spatial
and temporal resolution,
remote & in-situ sensing

Advanced Sensors

Terabytes 10 2

Calibration, Transformation
To Characterized Geo-
physical Parameters

Gigabytes 10°

Interaction Between
Modeling/Forecasting
and Observation Systems

Megabuytes 10°

Interactive Dissemination
and Predictions




Beamless Prediction of Earth System
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Week 1: Forecast skill

NH winter 500Z anomaly correlation NH & SH 500Z ACC through the years

. Northern Hemisphere (DJF) anomaly correlation 500 hPa
skill

Anomaly correlation % of 500 hPa height forecasts
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North Atlantic Oscillotion
. Standardized 3—month running mean Index {through APR 2011)
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http://www.cpc.ncep.noaa.gov/data/teledoc/nao.timeseries.gif
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Beamless Prediction of Earth System
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Forecast lead-time
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N Water Quantlty, Quallty and Dlstrlbutlon
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Emissions

Il Terrestrial Sink

~ 9.8 Gt Ci

Data for 2005-2014. Global Carbon Project

Source: Enhancing the Global Carbon Sink. Presented at the Big Ideas Summit April 2;




The land
component of
carbon sink has
doubled in the last
decades!

Data from the Global Carbon Project 2015

Source: Enhancing the Global Carbon Sink. Presented at
the Big Ideas Summit April 22 2016
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ITége & Opportunity: Paris Agreement

Baseline emissions
~600GtCO,

Nationally Determined
Contributions ( ) reduce
emissions ~41GtCO, (~7%)

In an |dealized case focused
on limiting global mean
surface temperature change
to 2°C, emissions should
decline ~87GtCO, by 2030

—|dealized

—Paris ==—=Baseline
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management

25% increase in sink reduces the

8,000 —
marginal abatement cost by

® 7,000 . . 18%, relative to total mitigation
2 Residentia ts of ~$5008 (2012 doll
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Williams et al., Pathways for Deep Decarbonization for the U.S., 2014

Historic land sink for AFOLU (Agriculture, Forestry, Other Land Use, Wetlands): US EPA Inventory of U.S. GHG Emissions and Sinks: 1990 — 2011

Slide: Enhancing the Global Carbon Sink. Presented at the Big Ideas Summit April 22 2
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Scientific exploration and discovery: Observing, understanding &
predicting the modes of variability of Earth system to enable
predictability across time and space scales (i.e. seamless prediction).

Maturity and readiness of enabling technologies: Evolving strategically
the current Earth observing and information technologies, and
required Earth system modeling capabilities.

Societal befits and impact: Information resulting from seamless
prediction of Earth system will enable a wide range of new applications
and services to the nation, and the world.

Capacity development: Education and training of next generation of
scientists, engineers and technology experts who maintain US
leadership in Earth science, engineering and technology.

Potential partnerships: Forging the potential domestic and
international partnerships to enable mission innovation,
Implementation and maximum use of resulting data.



Thank you.
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e According to internal NASA reports, for 786 small satellite proposals
submitted to NASA over about 15 years, 253 (32%) judged not to
have major risks for implementation with respect to technical,
management and cost criteria.

130 proposals had one major weakness, 94 had two and 182 had five
or more major weaknesses.

A general increasing trend of increasing number of major weaknesses
for the small missions during this period!

Even small missions could have high risk, cost and major
delays!
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