Venus Science & Exploration: Decadal Mid-Term Status

The Venus Exploration Analysis Group (VEXAG)

May 4, 2017

The Venus Exploration Analysis Group (VEXAG)

- Established in 2005 to provide scientific input and technology development plans and prioritization for the exploration of Venus.
- Current Steering Committee
 - Robert Grimm (Southwest Research Institute), Chair
 - Martha Gilmore (Wesleyan University),
 Deputy Chair
 - Giada Arney (NASA GSFC), Early-Career Scholars, Exoplanets Lead
 - Lynn Carter (Univ. Arizona)
 - James Cutts (JPL), Roadmap, Aerial
 Platforms, Venus Bridge Lead
 - Lori Glaze (NASA GSFC), Past Chair

- Gary Hunter (NASA GRC), Technology Lead
- Noam Izenberg (APL)
- Kevin McGouldrick (Univ. Colorado)
- Paul Steffes (Georgia Tech. University)
- Allan Treiman (Lunar & Planetary Institute)
- Constantine Tsang (Southwest Research Institute)
- Tommy Thompson (JPL) Executive Secretary
- Adriana Ocampo (NASA HQ) ex officio

VEXAG Activities

- Focus Groups
 - Standing
 - Goals, Objectives & Investigations
 - Technology
 - Roadmap
 - Ad Hoc
 - Venus Bridge (smallsats)
 - TBD Exoplanets
- Annual meetings
 - Usually in November @ HQ
 - Typically ~80 participants, most are in-person.

- Topical Meetings Since 2011
 - Exploring the Planetary Science Achievable from a Balloon-Based Observatory
 - Comparative Climatology of Terrestrial Planets
 - Venus Upper Atmosphere Investigations, Science, and Technical Interchange Meeting
 - Comparative Climatology Symposium
 - Venus Exploration Targets
 - Venus Science Priorities for Laboratory Measurements and Instrument Definition
 - Comparative Tectonics and Geodynamics of Venus, Earth, and Exoplanets
 - 2nd Comparative Climatology of Terrestrial Planets
 - Venus Modeling Workshop (May 2017)

Website Revision

- Cleaner look consistent with OPAG, LEAG, SBAG
- Clearer access to guidance documents, meeting summaries, and resources.
- Social media

• More cohesive engagement of Venus community and extended outreach to broader planetary community.

Venus in the 2013 Planetary Science Decadal Survey

• Science Themes

- Building New Worlds: Accretion, water, chemistry, differentiation, atmosphere.
 - Elemental and isotopic species in atmosphere, esp. noble gases and CHNS
- *Planetary Habitats:* Ancient aqueous environment?
 - Prior habitability, mechanisms of volatile loss, atm. circulation and chemistry, solar-cycle variations.
- Workings of Solar Systems: focus on comparative climatology, plus "myriad processes."
 - Runaway greenhouse history and implications for Earth, original atmosphere states and coupled interior-atmosphere evolution.
- New Frontiers: Venus In Situ Explorer (VISE)
 - Carryover from 2003 Decadal Survey, but simpler mission profile.
 - Examine physics and chemistry of Venus' atmosphere and crust. Emphasis on characterization that cannot be done from orbit, including detailed composition of lower atm. and elemental & mineralogical composition of surface materials.
- Flagship: Venus Climate Mission (VCM)
 - New mission study introduced in 2013, at lowest priority among flagships.
 - Investigate atm. origin, CO₂ greenhouse, atmosphere dynamics & variability, surface-atmosphere exchange.
 VEXAG @ 2017 Decadal Mid-Term

1a. Significant Discoveries:

- Frequency of Potential Venus Analogs from Kepler Data (Kane et al., Ap. J., 2014)
- Compares "Venus zone" to classical habitable zone.
- 43 candidates w/ occurrence rates 0.32 for M-dwarf stars and 0.45 for GK dwarfs.
- Occurrence rate of exoVenuses is comparable to exoEarths.
 - Uncertainties are smaller for exoVenuses because Kepler is biased toward planets in VZ

Venus-like exoplanets

Atmospheric Circulation

- Aphrodite Terra launches large gravity waves (Bertaux et al., JGR, 2016; Fukuhara et al., Nat. Geosci., 2017)
- Polar vortex is a continuously evolving structure at least 20 km high, extending through a quasi-convective turbulent region (*Garate-Lopez et al.*, 2013)
- GCM explains cloud-top warm pole and cold collar by residual mean meridional circulation enhanced by thermal tide. (*Ando et al., Nat. Comm., 2015*)
- Cloud-tracked winds show acceleration of zonal flow 2006 to 2012, with superposed periodicities and waves (Khatuntsev et al., Icarus, 2013; Kouyama et al., JGR, 2013; McGouldrick & Tsang, 2016).

Atmospheric Chemistry

- SO₂ above clouds has decreased 5x 2007 to 2012 (*Marcq et al., Nat. Geosci.,* 2012)
 - Secular atmospheric overturn or volcanic pulse?
- OSSO (disulfur dioxide) suggested as ultraviolet absorber (*Frandsen et al., GRL, 2016*).
 - Forms from SO, peak (but not average) mixing ratio comparable to SO.
 - Removed by photolysis
- Ground-based observations can track several atmospheric constituents (*Arney et al., JGR, 2014*).

An Early Ocean Could Persist Until the Recent Past

Way et al., GRL, 2016

- Slow rotation produces dayside clouds that keep the surface cool and maintain the ocean – positive feedback loop.
 - Assumes Earth-like atmosphere, current Venus rotation
 - Assumes 310 m GEL ocean set by assuming all elevation < mean is water-filled
 ROCKE-3D/ModelE2-R GCM
 - Current rotation, insolation at 2.9 and 0.7 Ga tested (yields 11°C vs 15° C, respectively).
 - Some dependence on topography (modern Earth 23°C, modern Venus 15°C)

Magnetosphere and Ionosphere

- Magnetic Reconnection in the Venus Magnetotail (*Zhang et al., Science, 2012*)
 - Venus Express (VEX)-observed changes in plasma & magnetic field
 - Energetics of Venus magnetotail resemble terrestrial tail in which energy is stored and later released from magnetic field to the plasma
 - Surprising for nonmagnetized body.
- The "electric wind" of Venus (Collinson et al., GRL, 2015)
 - Strong ambipolar electric field formed by electron-ion separation along draped magnetic field.
 - can accelerate heavy ions (e.g., O⁺)
 - Analogous to Earth's "polar wind"
 - Can cause strong atmospheric (and ocean) losses even without solar-wind stripping

Surface Composition

- Tesserae Consistent with Felsic Compositions (Basilevsky et al., Icarus, 2012; Gilmore et al., Icarus, 2015).
 - VIRTIS and VMC 1-μm emissivity is lower than the plains and deformed plains.
 - Tesserae may be true granites formed via plate recycling of (ancient) surface water OR via preservation of copious differentiated basaltic melt from the pre-plains era.
- Origin of Radar Brightness in Highlands (Treiman et al., 2016)
 - Ovda Regio SAR backscatter increases above 2 km elevation then drops sharply above 4.5 km
 - Ferroelectric behavior transitions to paraelectric
 - Consistent with chlorapatite Ca₅(PO₄)₃Cl formed by reaction of phosphate in basalts with HCl in atmosphere.
 - Different pattern in Maxwell Montes remains unexplained.

Recent or Active Volcanism

- Radar-dark materials in tessera point to "lost" crater (Whitten and Campbell, 2016)
 - Suggests resurfacing < 80 Ma
- Transient targets in Venus Monitoring Camera (VMC) thermal emission interpreted as still-hot lava flows (*Shalygin et al., GRL*, 2015).
- Recall: High emissivity in Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) interpreted as rough, unweathered lava flows (*Smrekar et al., Science, 2010*)
 - Ages likely < 1 Ma if they are the youngest surfaces on the planet.

Geological Models and Inference: Venus may not behave the way we think

• Craters can be eliminated in equilibrium resurfacing without leaving excess of non-pristine states (*Bjonnes et al.,* 2012; *O'Rourke et al.,* 2014).

• Decoupling of crust from underlying mantle convection can maintain Venus in thermal steadystate without episodic global resurfacing (*Ghail*, *PSS*, 2015).

1b. Technical Advances

- Thermal protection systems
 - Ames HEEET
- Venus environmental testing facilities
 - Glenn Extreme Environments Rig (GEER)
 - 28 ft³ steel vessel can accommodate multiple gases to 1400 PSI and 500°C
 - Goddard VICI
- High-temperature electronics (NASA GRC)
 - 21-day IC demo at Venus conditions
 - Demo of chemical species (multiple), wind, temp, and pressure sensors for targeted 60 day operation
 - No thermal control required for Venus surface
- Deep-space optical communications
- Smallsats and cubesats

Advances in SAR

- Stereo
 - Topography; converts radar to optical geometry (MGN: *Herrick et al., EOS, 2012*).
- Interferometry
 - Topography; change detection
- Polarimetry
 - Texture/composition discriminator
- SAR can unravel the stratigraphic history of Venus and answer whether or not there was a decline in geological activity

1c. Relevant Programmatic Changes

- Dissolution of the Planetary Science Subcommittee
 - Reformed as Planetary Science Advisory Council, FACA-compliant
 - Analysis Group chairs no longer members.
 - Intended to screen AGs from burdensome FACA requirements?
 - Functionally reduces AG influence in its findings to NASA.
- Addition of Ocean Worlds to New Frontiers 4 target list
 - Ocean Worlds are outside the NF scope prescribed by the 2013 Decadal Survey.
 - Congressional direction should not be masked in competed programs.
 - Decadal Mid-Term can add Ocean Worlds, but this does not change the fact that the NF-4 competition was scoped by NASA/Congress w/o NRC/community input.
- Discovery Decision

Discovery Selection Outcome

- SMD AA Zurbuchen reached out to VEXAG a few days after the selection announcement. He stated that the results were not due to lack of interest about Venus and he offered a meeting.
- Chair Grimm met in person with AA Zurbuchen and Director Green in mid-Feb, with Deputy Chair Gilmore participating remotely.
- AA Zurbuchen explained his selection rationale.
 - We were instructed not to repeat it he will promulgate.
 - After his top selection, the remainder followed his programmatic choices.
 - All missions were selectable.
 - There was no bias against Venus or for asteroids.
- Chair/Deputy Chair: This decision rationale should be fully explained to the planetary-science community, as it affects everybody.

VEXAG Programmatics: New Guidance Documents

- Over 20 Venus missions have been submitted throughout the history of the New Frontiers and Discovery Programs
 - Venus In Situ Explorer was specified in 2003 and 2013 Decadal Surveys as one of the prescribed New Frontiers missions.
 - Seven Venus proposals were submitted to Discovery 2010. The Venus community was criticized as not having a consistent message. We interpreted the record number of proposals as evidence of sustained interest in Venus even decades after the last US mission.
- In response, VEXAG developed **3 guidance documents** published in 2014 (Goals, Objectives, and Investigations; Technology; Roadmap) with the express purpose of providing clear mission relevance.
 - Links to 2013 Decadal Survey are clear, but new directions are undertaken too.
- We believe these efforts helped propel 2 Venus proposals into Step 2 in the 2015 Discovery competition.

VEXAG Goals, Objectives, and Investigations

Atmosphere

Surface & Interior

System Interactions & Water

- How did the atmosphere form and evolve?
- What controls the atmospheric superrotation and greenhouse?
- What is the impact of clouds on climate and habitability?

VEXAG @ 2017 Decadal Mid-Term

- How is heat released from the interior and has the global geodynamic style changed with time?
- What are the contemporary rates of volcanism and tectonism?
- How did Venus differentiate and evolve over time?

- Was surface water ever present?
- What role has the greenhouse had on climate history?
- How have the interior, surface, and atmosphere interacted as a coupled system over time?

VEXAG Technology Plan

- Near-Term, in priority order
 - ✓ New thermal protection systems (TPS).
 - High-temperature subsystems and components for long-duration (months) surface operations.
 - Aerial platforms for similar long-duration operations in the atmosphere
 Deep-space optical communications
- Mid- and Far-Term, in priority order
 - Advanced power and cooling technology for long-duration surface operations.
 - Advanced descent and landing.
- Impact of smallsats and cubesats will be assessed in technology & roadmap updates.

VEXAG Roadmap

- Near-term (2014-2019, now targeting 2023-2030)
 - Orbital remote sensing
 - Radar imaging, infrared emissivity, gravity, topography
 - VERITAS, EnVISION (all); Venus Design Reference Mission (VDRM: radar, grav, topo); Venera-D (no radar)
 - Sustained aerial platform
 - VDRM, Venus Climate Mission (VCM), Venera-D
 - Deep probe
 - DAVINCI, VCM
 - Short-duration lander
 - VDRM, **VISE**, Venera-D
 - Multiple probes/dropsondes
 - VCM
 - Fly-by opportunities
 - VeGASO

- Mid-term (2020-2024, now targeting 2030-2040)
 - Multiple deep probes
 - Short-duration tessera lander
 - Long-lived geophysical lander
- Far-term (>2025, now targeting >2040)
 - Surface or near-surface platform with regional mobility
 - Long-lived seismic network
 - Sample return

Earliest US mission will be 35 years after Magellan

Venera-D Joint Science Definition Team

- Orbiter
 - Atmospheric superrotation, radiative balance, composition.
- Lander
 - Chemistry and mineralogy of surface materials, atmospheric composition during descent.
- Subsatellite or Aerial Platform?
- Launches in 2026-2029 studied
- See Announcement for Moscow Workshop, 5-7 Oct 2017.
- JSDT active for 2 more years

Venus Gravity Assist Science Opportunity (VeGASO)

- Study aeronomy and atmosphere from fly-bys
 - Atmospheric structure and loss, induced magnetic fields
- Up to 15 gravity assists 2017 2028.
 - BepiColombo (ESA) 2
 - Instruments will be active
 - Solar Probe Plus (NASA) 7
 - Negotiations ongoing with Heliophysics
 - Solar Orbiter (ESA) 6
 - TBD
- HQ must develop Participating Scientist program and Proposal Information Package. BepiColombo splinter meeting May 2017.

VEXAG @ 2017 Decadal Mid-Term

Medium Class Missions

- EnVision
 - R. Ghail, Lead Proposer
 - SAR, Subsurface sounder, IR mapper
 - Submitted to ESA M5 Call: passed initial technical review, in science review
 - Phase A selections this fall
 - New Frontiers 4
 - Venus In Situ Explorer (VISE) specified by 2013 Decadal Survey
 - Step 1 proposals due April 28
 - Step 2 selections by end of CY. VISAGE Concept (L. Esposito) \rightarrow

Venus Bridge

- Outcome of AA inquiry "what can you do for \$200M?"
- New VEXAG Focus Group to determine if one or more small missions can accomplish useful science or tech demo within nominal cost cap.
 - Gap-filling with broadest impacts; launches in early to mid 2020s
 - Launch, transfer, and comm requirements.
 - Develop alternative mission sequences.
- Community responses include orbiters for IR, aeronomy, airglow, gravity; atm entry probes, landers
 - PSDS3 "Phase A" selections: Cupid's Arrow (C. Sotin), Cubesat UV Experiment (V. Cottini).
 - Focus group may consider these and other concepts.
- Schedule: preliminary concept reviews spring 2017; NASA center mission design summer, report to VEXAG in Fall, final report to NASA early 2018.

Venus Aerial Platforms

- Only near-term VEXAG technology priority (among 4) that has seen little recent progress.
- Study Goals
 - Identify science goals for aerial vehicles for studies of the atmosphere, surface, and interior, and for access and return of surface and atmospheric samples.
 - Compare and contrast the capabilities of different vehicle types to address the scientific goals.
- Schedule: Two 4-day study team meetings (May and Oct 2017), Final Report by Jan 2018.
- Feed-forward to Venera D, US Flagship, Discovery

2. Degree to Which NASA's Current Planetary Science Program Addresses the Decadal Survey

• Pretty well given the PSD Director is self-professed "Decadal Zealot"

3. NASA Progress Toward Realizing the Decadal Survey

Strategies, goals, priorities, and effectiveness in maintaining programmatic balance.

• Technology: called for stable technology investment program

 \rightarrow Good

- High temperature survivability called for Venus and Mercury
 - → Very Good: NASA-center investments, HOTTech awards
- Abandonment of ASRG
 - \rightarrow Poor

- New scientific instruments and sampling systems
 - → Fair: Reorganization into Matisse & Picasso has clarified technicalreadiness path, but these programs have some of the lowest award rates in ROSES.

• R&A

→ Good (overall &Venus proportion)

Programmatic balance is questionable.

4. Recommendations to Optimize the Program

How to take account of emergent discoveries since decadal in context of current and forecasted resources available.

- Detection of H₂ in Enceladus plume and discovery of intermittent plume on Europa demonstrate that close inspection or direct sampling is possible of material from potentially habitable subsurface liquid water.
 - Enceladus Orbiter and Europa Lander now high priority.
- Get New Frontiers back on 5-year cadence by releasing next AO in 2020.
- Clarify criteria for mission selection, esp. Discovery.
- Expand smallsat and cubesat opportunities (PSDS3, Venus Bridge)
 - Test new technologies at Venus
- Develop tighter connection between planetary-science and exoplanet communities.
- Increase R&A.

VEXAG @ 2017 Decadal Mid-Term

5. Implementation of Decadal-Recommended Mission Portfolio

- Flagship cadence pretty good considering there were way too many for one decade anyway.
 - \rightarrow Very Good
- Discovery mission cadence ~3 yr, longer than desired 2 yr.
 → Good
- Gap between New Frontiers 3 and 4 is 7 years → Fair
- It is disappointing that no Venus missions have yet been selected, but this is not inconsistent with the portfolio as framed and prioritized.

6. Recommendations to Prepare for Next Decadal Survey (Venus)

- Review VEXAG Goals, Objectives, and Initiatives
 - Priorities rooted in, but are distinct from, 2013 Decadal Survey
 - Then: emphasis on atmospheric composition, ancient ocean, and runaway greenhouse
 - Now: balance between atmosphere, geology, and their interactions, esp. role of water.
 - Maintain separation for mission science traceability? "Worked" for Disco 13-14 Step 1.
- Technology: exploit new capabilities to improve TRL and enable new science opportunities
- Roadmap
 - Assess results of Venus Bridge and Venus Aerial Platforms studies.
 - Request new Flagship study from NASA prior to next Decadal Survey
 - VCM did not optimize instrument maturity, new concepts in aerial platforms, or innovations in geophysical methods.
 - All Flagships except VCM have seen new start, new study, or new impetus.
- Programmatic balance is needed.

The Fading Evening Star

- Venus is the key to understanding where Earth-sized means Earth-like elsewhere in the Universe. Venus is the cornerstone of comparative planetology.
 - It is our sister planet, closest and nearly equal mass, yet has massive, super-rotating CO₂ atmosphere, complex geology not organized into plates, and no surface water.
 - Was Venus always this way or did it experience one or more transitions in climate, geology, or both? Is there evidence for past oceans?
- With no NASA mission since Magellan in 1989, the Venus science workforce and technical heritage in the US has steadily declined.
 - The grad students and post-docs of Magellan will be mid- to late-career by the time of the earliest possible mission in the mid-2020s.
 - There is little incentive for young scientists, and fewer are participating.
 - Feedback loop: Planetary scientists are attracted to active missions and subsequently generate communities and advocacy for further missions to the same or similar targets.
- The Venus science community is poised now with mature mission concepts, intellectual capital, and experience. Venus exploration needs active recognition by planetary scientists at large and programmatic balance by NASA.