

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Big Data Analytics and Visualization to Monitor Sea Level Rise

Thomas Huang

Data Scientist | Principal Investigator | Technologist | Architect
thomas.huang@jpl.nasa.gov

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109-8099, U.S.A.

Data Scientist @NASA/JPL

- **Principal Investigator** for NASA AIST OceanWorks
- **Project Technologist** for the NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) –
<http://podaac.jpl.nasa.gov>
- **Co-Investigator and Architect** for the NASA Sea Level Change Portal – <https://sealevel.nasa.gov>
- **Architect** for Tactical Data Science Framework for Naval Research
- **Chair** for The Federation of Earth Science Information Partners (ESIP) Cloud Computing Cluster
- **Previously Principal Investigator / Co-Investigator** in several NASA-funded Big Data Analytic Projects
 - OceanXtremes: Oceanographic Data-Intensive Anomaly Detection and Analysis Portal –
<https://oceangoingxtrmes.jpl.nasa.gov>
 - Distributed Oceanographic Matchup Service (DOMS) –
<https://doms.jpl.nasa.gov>
 - Mining and Utilizing Dataset Relevancy from Oceanographic Datasets (MUDROD)
 - Enhanced Quality Screening for Earth Science Data –
<https://vqss.jpl.nasa.gov>
 - NEXUS - Big Data Analytic on the Cloud

NASA Sea Level Change Portal – <https://sealevel.nasa.gov>

Goal for the NASA Sea Level Change Team

- Determine how much will sea level rise by [2100]?
- What are the key sensitivities?
- Where are the key uncertainties? Observables? Model Improvements

Goals for the NASA Sea Level Change Portal

- Provide scientists and the general public with a “one-stop” source for current sea level change information and data
- Provide interactive tools for analyzing and viewing regional data
- Provide virtual dashboard for sea level indicators
- Provide latest news, quarterly report, and publications
- Provide ongoing updates through a suite of editorial products

Requires

- Interdisciplinary collaboration
- Connect disciplines and evaluate dependencies

Sea Level Change Portal facilitates

- Easy interdisciplinary data comparison
- Access to latest news and information
- Collaboration (data and information exchange)

Analyze User Interactions

- Guide website layout
- Determine effectiveness of articles and contents
- Identify popular media outlines
- New and returning users

New vs. Returning

Referrer (Media Outlets)

Time to Click

Web, Social Media, and Headliners

- 373K monthly page views
- 172K sessions
- 143K users

Social Media

Twitter: @NASASeaLevel has over 23K followers

Facebook: over 31K followers

TECH HEADLINES

“NASA Sea Level Change Website Offers Everything You Need to Know About Climate Change”

<http://www.techtimes.com/articles/147210/20160405/nasa-sea-level-change-website-offers-everything-need-know-climate.htm>

“NASA’s New Sea Level Site Puts Climate Change Papers, Data, and Tools Online”

<http://techcrunch.com/2016/04/04/nasas-new-sea-level-site-puts-climate-change-papers-data-and-tools-online/>

Analyze Sea Level On-The-Fly <https://sealevel.nasa.gov>

Sea Level Change - Data Analysis Tool

Visualizations | Hydrological Basins | Time Series | Deseason | Data Comparison | Scatter Plot |
Latitude/Time Hovmöller | Etc.

Big Data and Data Centers

- **Increasing “big data” era is driving needs to**
 - Scale computational and data infrastructures
 - Support new methods for deriving scientific inferences
 - Shift towards integrated data analytics
 - Apply computation and data science across the lifecycle
- **For NASA Data Centers, with large amount of observational and modeling data, downloading to local machine is becoming inefficient**
- **Reality with large amount of observational and modeling data**
 - Downloading to local machine is becoming inefficient
 - Search has gotten a lot faster. Too many matches
 - Finding the relevant measurement has becoming a very time consuming process *“Which SST dataset I should use?”*
 - Analyze decades of regional measurement is labor-intensive and costly
- **Limitations**
 - Little to no interoperability between tools and services: metadata standard, keyword, spatial coverage (0-360 or -180..180), temporal representation, etc.
 - Making sure the most relevant measurements return first
 - Visualization is nice, but it doesn’t provide enough information about the event/phenomenon captured in the image.
 - With large amount of observational data, data centers need to do more than just storing bits

NASA's Upcoming Big Data Mission: Surface Water and Ocean Topography (SWOT)

Oceanography: Characterize the ocean mesoscale and sub-mesoscale circulation at spatial resolutions of 10 km and greater.

Hydrology: To provide a global inventory of all terrestrial water bodies whose surface area exceeds $(250\text{m})^2$ (lakes, reservoirs, wetlands) and rivers whose width exceeds 100 m (requirement) (50 m goal) (rivers).

- To measure the global storage change in fresh water bodies at sub-monthly, seasonal, and annual time scales.
- To estimate the global change in river discharge at sub-monthly, seasonal, and annual time scales.

SWOT changes how PO.DAAC operates

- Infrastructure
- Cloud storage selection (Object store, AWS Glacier)
- Interface with science data system
- On-the-fly generation vs long-term store
- Distribution and analysis services

- **Data Volume:**
 - 17PB of original data
 - 6 PB of reprocessed data
- **Total of about 23PB for a nominal 3-year mission**
- **Add roughly 450TB/month for any mission extension**

Launches April of 2021
<https://swot.jpl.nasa.gov>

Traditional Method for Analyze Satellite Measurements

- Depending on the data volume (size and number of files)
- It could take many hours of download – (e.g. 10yr of observational data could yield thousands of files)
- It could take many hours of computation
- It requires expensive local computing resource (CPU + RAM + Storage)
- After result is produced, purge downloaded files

Observation

- Traditional methods for data analysis (time-series, distribution, climatology generation) can't scale to handle large volume, high-resolution data. They perform poorly
- Performance suffers when involve large files and/or large collection of files
- A high-performance data analysis solution must be free from file I/O bottleneck

NEXUS: Scalable Data Analytic Solution

- NEXUS is a data-intensive analysis solution using a new approach for handling science data to enable large-scale data analysis
- Streaming architecture for horizontal scale data ingestion
- Scales horizontally to handle massive amount of data in parallel
- Provides high-performance geospatial and indexed search solution
- Provides tiled data storage architecture to eliminate file I/O overhead
- A growing collection of science analysis webservices using Apache Spark: parallel compute, in-memory map-reduce framework
- Pre-Chunk and Summarize Key Variables
 - Easy statistics instantly (milliseconds)
 - Harder statistics on-demand using Spark (in seconds)
 - Visualize original data (layers) on a map quickly (Cassandra store)
- **Algorithms** – Time Series | Latitude/Time Hovmöller| Longitude/Time Hovmöller| Latitude/Longitude Time Average | Area Averaged Time Series | Time Averaged Map | Climatological Map | Correlation Map | Daily Difference Average

Open Source: Apache License 2

<https://github.com/dataplumber/nexus>

Two-Database Architecture

NEXUS Performance: Custom Spark vs. AWS EMR

Dataset: MODIS AQUA Daily

Name: Aerosol Optical Depth 550 nm (Dark Target) (MYD08_D3v6)

File Count: 5106

Volume: 2.6GB

Time Coverage: July 4, 2002 – July 3, 2016

Giovanni: A web-based application for visualize, analyze, and access vast amounts of Earth science remote sensing data without having to download the data.

- Represents current state of data analysis technology, by processing one file at a time
- Backed by the popular NCO library. Highly optimized C/C++ library

AWS EMR: Amazon's provisioned MapReduce cluster

Area Averaged Time Series on AWS - Boulder

July 4, 2002 - July 3, 2016
NEXUS Performance

Area Averaged Time Series on AWS - Colorado

July 4, 2002 - July 3, 2016
NEXUS Performance

Area Averaged Time Series on AWS - Global

July 4, 2002 - July 3, 2016
NEXUS Performance

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

CHANGE TENDS TO BE REVOLUTIONARY NOT EVOLUTIONARY

Eric Schmidt
Google

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

IF I'D LISTENED TO CUSTOMERS, I'D HAD GIVEN THEM A FASTER HORSE

Henry Ford

Analyze Ocean Anomaly – “The Blob”

- **Visualize** parameter
- **Compute** daily differences against climatology
- **Analyze** time series area averaged differences
- **Replay** the anomaly and visualize with other measurements
- **Document** the anomaly
- **Publish** the anomaly

Figure from Cavole, L. M., et al. (2016). "Biological Impacts of the 2013–2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future." Oceanography 29.

Hurricane Katrina Study

Powered by NEXUS

A study of a Hurricane Katrina-induced phytoplankton bloom using satellite observations and model simulations
Xiaoming Liu, Menghua Wang, and Wei Shi
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, C03023, doi:10.1029/2008JC004934, 2009

Hurricane Katrina passed to the southwest of Florida on Aug 27, 2005. The ocean response in a 1 x 1 deg region is captured by a number of satellites. The initial ocean response was an immediate cooling of the surface waters by 2 °C that lingers for several days. Following this was a short intense ocean chlorophyll bloom a few days later. The ocean may have been “preconditioned” by a cool core eddy and low sea surface height.

The SST drop is correlated to both wind and precipitation data. The Chl-A data is lagged by about 3 days to the other observations like SST, wind and precipitation.

Hurricane Katrina TRMM overlay SST Anomaly

Enable Science without File Download


```
# Request NEXUS to compute SST Time Series 2008/9/1 - 2015/10/1
# for the "blob" warming off Western Canada and plot the means
...
ds='AVHRR_OI_L4_GHRSST_NCEI'

url = ... # construct the webservice URL request

# make request to NEXUS using URL request
# save JSON response in local variable
ts = json.loads(str(requests.get(url).text))

# extract dates and means from the response
means = []
dates = []
for data in ts['data']:
    means.append(data[0]['mean'])
    d = datetime.datetime.fromtimestamp((data[0]['time']))
    dates.append(d)

# plot the result
...

# plot the computed means
plt.figure(figsize=(10,5), dpi=100)
lines = plt.plot(dates, means)
plt.xlabel('Time', color='r', linewidth=1.5, linestyle='--')
plt.ylabel('Temperature (K)', color='r', markersize=0.5, markerfacecolor='r', markeredgecolor='r')
plt.grid(True, which='major', color='k', linestyle='--')
plt.xlim(min(dates), max(dates))
plt.ylim(min(means), max(means))
plt.xlabel('Time')
plt.show()
```

https://oceangoing.jpl.nasa.gov/timeSeriesSpark?spark=mesos,16,32&ds=AVHRR_OI_L4_GHRSST_NCEI&minLat=45&minLon=-150&maxLat=60&maxLon=-120&startTime=1220227200&endTime=1443657600

It took: 2.9428272247314453 sec

Developing Information Discovery Solutions

Search and Discovery

- **Search** – look for something you expect to exist
 - Information tagging
 - Indexed search technologies like Apache Solr or ElasticSearch
 - The solution is pretty straightforward
- **Discovery** – find something new, or in a new way
 - This is non-trivial
 - Traditional ontological method doesn't quite add up
 - The strength of semantic web is in inference
 - What happen when we have a lot of **subClassOf**, **equivalentClassOf**, **sameAs**?
 - How wide and deep should we go?
- **Relevancy**
 - It is domain-specific
 - It is personal
 - It is temporal
 - It is dynamic

MUDROD Ocean wind

Related searches

- surface wind (1)
- wind (0.99)
- wind speed (0.92)
- quikscat (0.88)
- vector (0.76)
- wind data (0.75)
- topex poseidon wind (0.74)
- quikscat wind (0.73)
- ocean wind vector (0.72)
- ocean wind data (0.71)

Search Ranking
Based on a machine learning model (RankSVM) which takes a number of features, such as vector space model, version, processing level, release date, all-time popularity, monthly-popularity, and user popularity.

MUDROD ocean wind

Related datasets

- RSCAT_LEVEL_2B_OWW_CLIM_12_V1.3
- RSCAT_LEVEL_2B_OWW_CLIM_12_V1.1
- RSCAT_LEVEL_2B_OWW_CLIM_12
- RSCAT_LEVEL_2B_COMP_12
- SEAWIND_LEVEL_2B_CLIM_12
- RSCAT_L2A_12MKM_V1.2
- RSCAT_L2A_V1.2
- OSE_RSCAT_LEVEL_2B_OWW_CLIM_12
- RSCAT_L2A_J2Km_V1.2
- RSCAT_LEVEL_2B_V2

Related searches

- surface wind (1)
- wind (0.99)
- wind speed (0.92)
- quikscat (0.88)
- vector (0.76)
- wind data (0.75)
- topex poseidon wind (0.74)
- quikscat wind (0.73)

Search Recommendation
Based on dataset metadata content and web session co-occurrence

In Situ to Satellite Matchup

- Distributed Oceanographic Matchup Service
- Typically data matching is done using one-off programs developed at multiple institutions
- A primary advantage of DOMS is the reduction in duplicate development and man hours required to match satellite/in situ data
 - Removes the need for satellite and in situ data to be collocated on a single server
 - Systematically recreate matchups if either in situ or satellite products are re-processed (new versions), i.e., matchup archives are always up-to-date.
- In situ data nodes at JPL, NCAR, and FSU operational.
- Provides data querying, subset creation, match-up services, and file delivery operational.
- Prototype graphical user interface (UI) and APIs accessible for external users.
- Plugin architecture for in situ data source using EDGE
 - Extensible Data Gateway Environment is an Apache License 2 open source technology
 - <https://github.com/dataplumber/edge>
- Defined specification for packaging matchup results. Working with Unidata and ESDSWG's data interoperability and standard groups

AIST OceanWorks

- OceanWorks is to establish an **Integrated Data Analytic Center** at the NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) for Big Ocean Science
- Focuses on technology integration, advancement and maturity
- Collaboration between JPL, FSU, NCAR, and GMU
- Bringing together PO.DAAC-related big data technologies
 - **OceanXtremes** – Anomaly detection and ocean science
 - **NEXUS** – Big data analytic platform
 - **Data Container Studies**
 - **DOMS** – Distributed in-situ to satellite matchup
 - **MUDROD** – Search relevancy and discovery – linking datasets, services, and anomalies through recommendations
 - **VQSS** – Virtualized Quality Screening Service

Open Source

- Technology sharing through Free and Open Source Software (FOSS)
- Further technology evolution that is restricted by projects / missions
- **Science Data Analytic Platform (SDAP)**, the implementation of **OceanWorks**, in **Apache Incubator**
 - Cloud platform
 - Analyzing satellite and model data
 - In situ data analysis and coordination with satellite measurements
 - Fast data subsetting
 - Mining of user interactions and data to enable discovery and recommendations
 - Streamline deployment through container technology

<http://sdap.incubator.apache.org>

Community Engagement and Support

- Develop in the open
- Working with Apache Incubator
- Target Apache top-level project by 2019.
- Public hands-on workshops
- Organize technical sessions at conferences
- Invited speaker and panelist
- Lead Editor: 2018 Wiley Book on **Big Earth Data Analytics in Earth, Atmospheric and Ocean Sciences**

Analyze Hurricane Katrina by comparing SST and TRMM time series

Generate daily difference average
"The Blob" is an oceanographic anomaly

Each participant deployed 3 computing clusters, a total of 24 containers on EC2

In Summary

- Traditional method for scientific research (search, download, local number crunching) is unable to keep up
- Think beyond the archive
- Connected information enables discovery
- Community developed solution through open sourcing
- Thanks to the NASA ESTO/AIST and Sea Level Rise programs, and the NASA ESDIS project
- Investment in data and computational sciences
- Data Centers need to be in the business of Enabling Science!
- OceanWorks infusion 2018 – 2019
 - Watch for changes to the Sea Level Change Portal
 - Even faster analysis capabilities
 - More variety of measurements – satellites, in situ, and models
 - Event more relevant recommendations
 - NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)

Transforming Data to Knowledge

**National Aeronautics and
Space Administration**

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Thomas Huang
Jet Propulsion Laboratory
California Institute of Technology

“Without counsel plans fail, but with many advisers they succeed.” – Proverbs 15:22