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The Evolving Data-Rich Astronomy

An example of a “Big Data” science driven by the
advances in computing/information technology
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Machine Learning Al

Key challenges: data heterogeneity and complexity



2000: The Virtual Observatory Concept

e A complete, dynamical, distributed, open research
environment for the new astronomy with massive and

complex data sets
— Provide and federate
content (data, metadata)
services, standards, and
analysis/compute services

— A grassroots response to
the exponential data flood

— Astro 2000: top “small
projects” recommendation

— Successful interagency
(NSF, NASA) cooperation

— Implementation: NVO, VAO,
IVOA

Djorgovski

VO: Conceptual Architecture




2010: Astrolnformatics

One of the emerging X-informatics: domain-specific
amalgam fields (domain science + CS + ICT)

A mechanism for a broader community inclusion (both as
contributors and as consumers)

A mechanism for the multi/interdisciplinary data science
methodology sharing

Founding conference: 2010; Astroinformatics 2016 was an
|AU Symposium

Working groups within AAS, IAU




Systematic Exploration of the Observable
Parameter Spaces (OPS) Every observation, surveys

Its axes are defined by the
observable quantities

included, carves out a
hypervolume in the OPS
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Measurements
Parameter Space

Colors of stars and quasars
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Machine Learning Is the Key Methodology

Syrveys = Catalogs = Feature spaces = Phenomenology

Clustering, classification, correlation and outlier searches, ...

| Challenges:

Algorithm and data model
choices

Data incompleteness

Feature selection and
dimensionality reduction

Uncertainty estimation
Scalability

Visualization } _ Especially
with the data

.. etc. dimensionality

Involving CS professionals is essential



Quasar Selectionin a
Combined Parameter ;
Space of Variability and

WISE Colors
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Supermassive Black Hole Binaries

* Discovery of periodically variable quasars: a signature of
binary supermassive black holes en route to a merger
— Periodic signal superposed on a correlated (CAR1) noise, novel

periodicity search algorithms, extensive Monte-Carlo modeling
of false positives

(M. Graham et al.)

\\% a]

e \\ 2

’ .

Garcia et al. 1999 |- :

MLS
ASAS ‘
LINEAR

CRTS
Eggers et al. 2000

I
e

|
H-

[
w
=
et b e | et ]

1 1 L 1 L 1 |
0 1000 2000 3000 4000 5000 6000 7000
MJD - 49100




Automated Classification of Transient Events

In digital sky surveys: real-time mining of massive data streams

Flare star Dwarf Nova Blazar
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Vastly different physical phenomena, yet they look the same!
Which ones are the most interesting and worthy of follow-up?

Rapid, automated transient classification is a critical need!



Automated Classification of Transients

Phenomenology

Bayesian Networks

— Canincorporate heterogeneous and/
or missing data

— Canincorporate contextual data, e.g.,
distance to the nearest star or galaxy O

Incidental Colors Other observed
parameters parameters

Probabilistic Structure Functions
— Based on 2D [At,, Am] distributions
Random Forests

A magnitude

— Ensembles of Decision Trees
Feature Selection Strategies
— Optimizing classifiers

Machine-Assisted Discovery

etc., etc.



From Light Curves to Feature Vectors

* We compute ~ 70 parameters and statistical measures for
each light curve: amplitudes, moments, periodicity, etc.

* This turns heterogeneous light curves into homogeneous
feature vectors in the parameter space

* Apply a variety of automated classification methods
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Optimizing Feature Selection

Rank features in the
order of
classification quality
for a given
classification
problem, e.g., RR
Lyrae vs. WUMa

Feature Rank
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Metaclassification: An optimal combining of classifiers

Lightcurves
Features

External Archival Data Data Model
Ensemble of Ensembles of CEWVESEL Neural “Supervised” pu
kNNs Decision Trees Network Network SOM

|

Combiner (e.g., “Sleeping Expert” framework)

Final Classification

Exploring a variety of techniques for an optimal classification fusion:

Markov Logic Networks, Diffusion Maps, Multi-Arm Bandit,
Sleeping Expert...



Automating an Optimal Follow-Up

For the potentially most interesting events, what type of
follow-up observations has the greatest potential to
discriminate among the competing event classes, given the
available assets, and the potential scientific value?

Follow-up measurements
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Machine Discovery Using Eureqa

Lipman et al., http://creativemachines.cornell.edu/eureqa

Employs symbolic regression to determine best-fitting
functional form to data and its parameters simultaneously

Specify the building blocks to be used: algebraic operators,
analytical functions, constants
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The Uses of Machine Intelligence:

Science on the Carbon- S|I|con Interface

* Data processing:

— Automated object [ event classification,
pattern recognition

— Automated data quality control
(anomaly/fault detection and repair)

* Data mining, analysis, and understandmg
— Clustering, classification, outlier [ anomaly detection
— Pattern recognition, hidden correlation search
— Assisted dimensionality reduction for visualization
— Workflow control in Grid- or Cloud-based apps

* Data farming and data discovery: semantic web, etc.
* Code design and implementation: from art to science?

Djorgovski



Innova

1

Using the emerging technologies of virtual
reality and haptic interfaces, commodity
hardware and software, for an immersive,
interactive, collaborative visual data
analytics and exploration

ive Data Visualization

C. Donalek, SGD (CD?)
S. Davidoff (JPL)




Methodology Transfer in Action

With JPL's Center for Data
Science and Technology (D.
Crichton, R. Doyle, et al.)

Genome Biology

& !
6} i f;;: science resources

APACHE
COMMENT

OO D I Astrogenomics: big data, old problems,
old solutions?

m National Cancer Institute

@’Q Early Detection Research Network

Biomarkers: the key to early detection

From genomics to
cancer research, to
geosciences, climate
change, etc. etc.

Transforming Geosciences Research



Real Time Classification and Response
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Some Takeaway Points:

* Astronomy remains at the forefront of data
science (VO, Astroinformatics, ... )

* Machine learning and associated technologies
are essential for the exploration of vast data
spaces and knowledge discovery

—They are critical for the Time Domain Astronomy

—They have to become parts of a standard toolkit
for the researchers in the 215t century — but our
educational efforts are lagging

* Data science methodology transfer is possible,
and there are some early success stories



