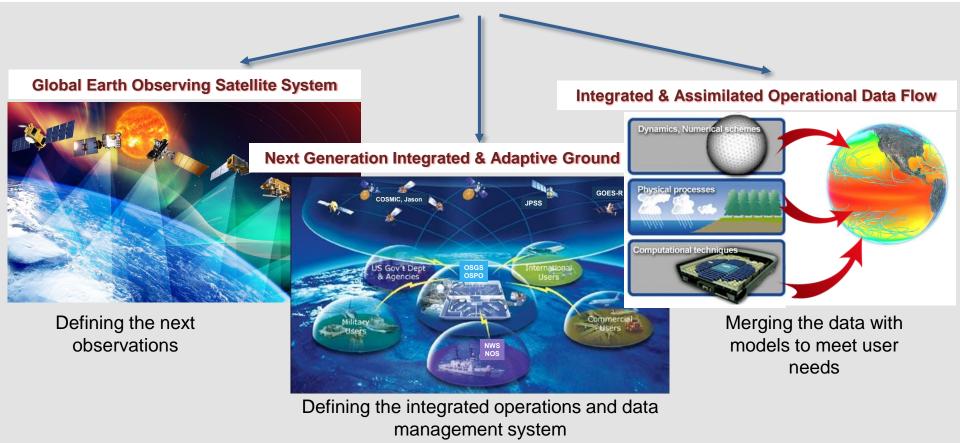

NOAA Satellite Observing System Architecture (NSOSA) Study Update

Dr. Karen St. Germain Director NOAA/NESDIS Office of System Architecture and Advanced Planning (OSAAP)

Spring 2017 Meeting of the Committee on Earth Science and Applications from Space 29 March 2017

- OSAAP Overview
 - Background to the NSOSA study
 - NSOSA Value Model (requirements) Process
 - NSOSA Study Follow-ons


OSAAP Overview & Responsibilities

Strategy, Prioritization, Consistency, and Communication

Architecting the Future

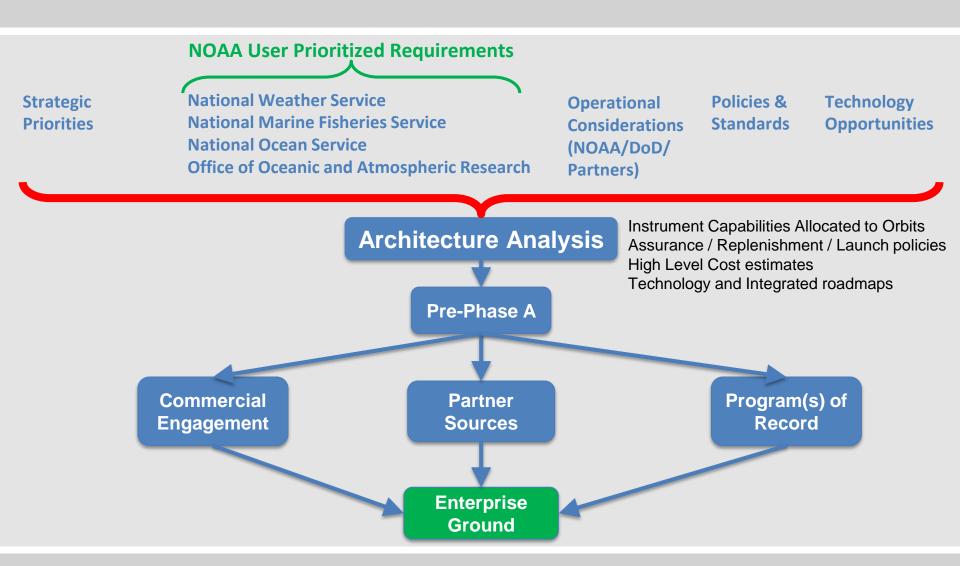
Develop a space-based observing enterprise that is flexible, responsive to evolving technologies, and economically sustainable. --FY15 NOAA Annual Guidance

How is NESDIS Approaching This?

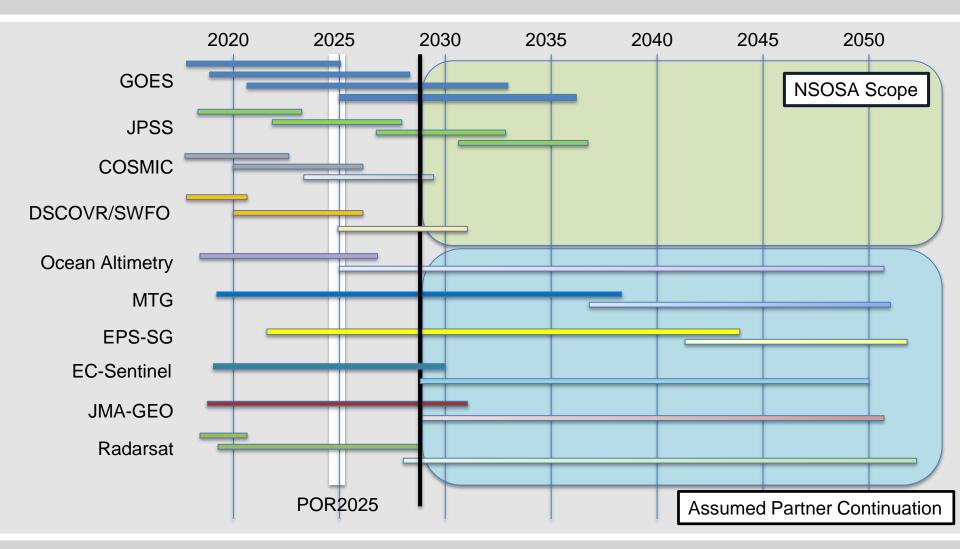
- How to Find Balance: Capabilities vs Cost, New Technology vs Continuity?
 - NOAA Satellite Observing System Architecture (NSOSA) Study
- How to Fuse More Sources?
 - Enterprise Systems Engineering
 - Enterprise Ground Architecture
 - Transparency
- How to Effectively Engage with New Entrants?
 - Commercial Space Activities

- OSAAP Overview
- Background to the NSOSA study
- NSOSA Value Model (requirements) Process
- NSOSA Study Follow-ons

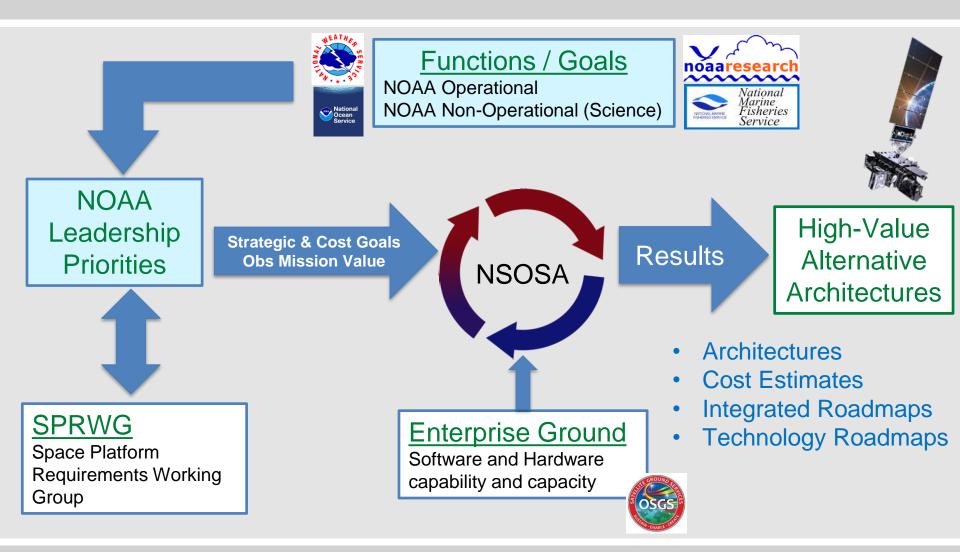
NSOSA Study Background

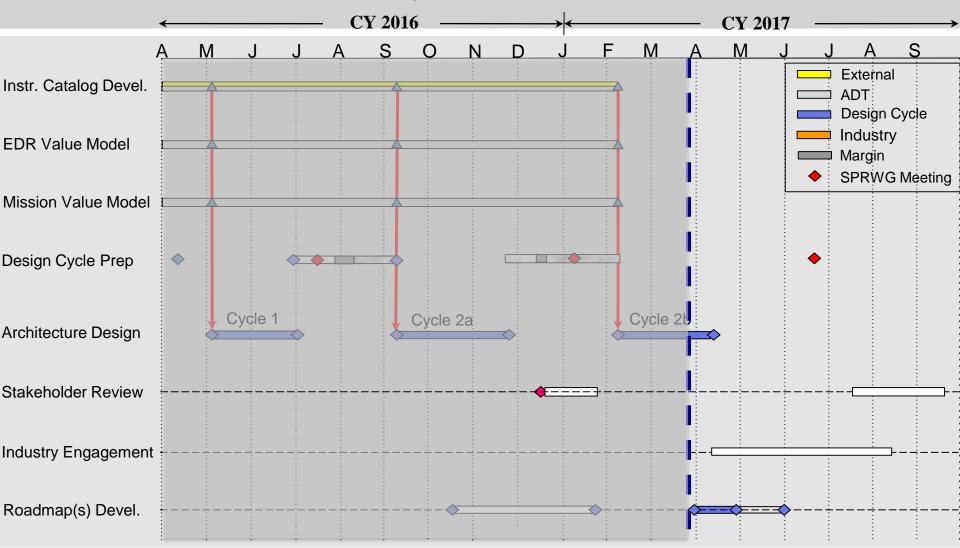

- The NSOSA study is examining the space segment architecture decisions for space systems post GOES-R/S/T/U and JPSS-1/2/3/4
 - ≻Which observation functions should be allocated to which orbits?
 - Should we retain the legacy architecture or seek major change?
 - >Which observation functions should be improved?

Primarily addressing NOAA operational needs


➤ Observations that result in warnings, watches, baseline weather and space weather forecasts, and ocean or fisheries actions

- Scoped to NOAA systems, with a backdrop of partner contributions and relationships
- Intended to result in Pre-Phase-A program activities


Planning for the Future


Baseline and Timing

Study Methodology

Study Schedule

- OSAAP Overview
- Background to the NSOSA study
- NSOSA Value Model (requirements) Process
- NSOSA Study Follow-ons

Linking NOAA Requirements to the NESDIS Architecture Study

•NSOSA team selected a value model (Environmental Data Record [EDR] Value Model) based on classes of environmental observations

•This value model expresses *relative mission value* of performance choices and drives the analysis

•Satellite Platform Requirements Working Group (SPRWG) established to support NOAA leadership in developing this model

EDR Value Model Objectives Overview

Core Capability Objectives

- Regional Real-Time Imaging of CONUS
- Two out of three of: Global IR Sounding, Global MW Sounding, and GNSS-RO

Weather and Ocean Objectives (19 Objectives)

- 3-D and Ocean Surface Winds
- Imagery and Soundings
- Ocean Color
- Lightning
- Chemical Concentration
- SW/LW Radiation

Space Weather Objectives (18 Objectives)

- Coronographs and other Imagery
- In situ space measurements

Strategic Objectives (6 Objectives)

- Assurance of core capabilities
- Compatibility with fixed budgets
- Assurance of all (remaining) capabilities
- Programmatic responsiveness and adaptability
- Develop and maintain international partnerships
- Low Risk at Constellation Level

EDR Value Model Objectives

Terrestrial / Ocean Objectives

3-D winds Real Time (RT) regional Weather imagery Global GNSS-RO soundings **Global RT imagery** Global Near RT microwave (MW) soundings Global Near RT IR soundings Global ocean surface vector winds Non-RT global Weather imagery Global ocean color/phytoplankton composition Microwave imagery Lightning Radar-based global precipitation rates **Regional MW soundings** Regional infrared (IR) soundings Global sea surface height Global chemical concentration Ozone **Outgoing Long Wave Radiation - NASA Mission** Incoming solar radiation - NASA Mission

Space Weather Objectives

Coronograph imagery: Off Sun-Earth line					
Coronograph imagery: Sun-Earth line					
Photospheric magnetogram imagery: Off Sun-Earth line					
Heliospheric images					
Auroral imaging					
Thermospheric O/N2 ratio (height integrated)					
Upper thermospheric density					
Ionospheric electron density profiles					
Interplanetary Solar wind: Off Sun-Earth line					
Photospheric magnetogram imagery-Sun-Earth line					
Solar X-ray irradiance					
Solar EUV imaging					
Solar EUV irradiance					
Interplanetary Solar wind: Sun-Earth Line					
Interplanetary Energetic particles					
Geospace Energetic particles					
Geomagnetic field					
Interplanetary Magnetic Field					

EDR Value Model Objectives

Strategic Objectives

Assurance of Core Capabilities

Compatibility with stable budgets

Assurance of all capabilities

Programmatic Responsiveness and Adaptability

Develop and Maintain International Partnerships

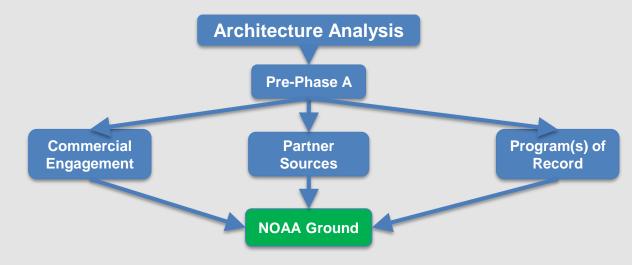
Low Risk at Constellation Level

NSOSA Value Model Case Study

Assess (and trade) building a sustained off-Earth-Sun-Axis observation platform into the next generation architecture

- •EVM has 5 off-axis-observations, mostly associated with CME warning
- •Supplying these observations requires a continuous presence off the Earth-Sun-Axis (sustained flights)
- •A dollar spent on this is a dollar not spent on terrestrial weather function improvement (e.g., spectral and spatial resolution enhancement for Real-Time Regional Weather Imagery)
- •If cost is equal, which is preferred?
- •EVM can answer that question

Space Weather Objectives


FK	Coronograph imagery: Off Sun-Earth line
	Coronograph imagery: Sun-Earth line
	Photospheric magnetogram imagery: Off Sun-Earth line
	Heliospheric images
	Auroral imaging
	Thermospheric O/N2 ratio (height integrated)
	Upper thermospheric density
	Ionospheric electron density profiles
	Interplanetary Solar wind: Off Sun-Earth line
	Photospheric magnetogram imagery-Sun-Earth line
	Solar X-ray irradiance
	Solar EUV imaging
	Solar EUV irradiance
	Interplanetary Solar wind: Sun-Earth Line
	Interplanetary Energetic particles
	Geospace Energetic particles
	Geomagnetic field
	Interplanetary Magnetic Field

- OSAAP Overview
- Background to the NSOSA study
- NSOSA Value Model (requirements) Process
- NSOSA Study Follow-ons

After the Study

NSOSA will inform NOAA's selection of a future architecture

- NSOSA will recommend an allocation of functions to orbits in high value, cost-effective configuration(s), along with roadmaps
- NSOSA will identify key cost and value driving instruments and associated technologies
- ► NSOSA will not recommend any particular instrument vendor or data service provider.

Pre-Formulation

- Pre-Formulation bridges the gap between tech development (typically NASA, National Labs, FFRDCs) & operational system acquisition
- Reduces costs thru design concept studies and tech demos
- Detailed activities will be based on Architecture Study results

Architecture Element	Pre-Formulation Activity	Acquisition Activity	Potential Examples
Commercial Service	 Sample Data Buy for System Engineering and Quality Evaluation 	 Operational Mission Data Buy 	 Radio Occultation Data Communication Services
New Technology insertion (e.g. Lab-developed)	 Technology transition, producibility & manufacturability Concept competition 	 System Procurement 	EON to mature Small Microwave Sounder to TRL 7 for operational system following NASA-funded MIRADA
Heritage Instrument	 Obsolescence Mitigation 	 System Procurement 	 EO Focal Planes
Use-driven Data Product	 Algorithm transition/development 	 Operational Data Exploitation Algorithm, End-to-End Validation 	 Urgent data products (e.g. volcanic eruptions, oil spills)