

Mars 2020 Mission

Ken Farley

Project Scientist (Caltech)

July 13, 2017

- 1. Mission Objectives and Requirements
- 2. Mission Overview
- 3. Key Challenges
- 4. Landing Sites

Mars 2020 Mission Objectives

Mars 2020 Project

Conduct Rigorous In Situ Science

- **Geologic Context and History** Characterize the processes that formed and modified the geologic record within a field exploration area on Mars selected for evidence of an astrobiologically-relevant ancient environment and geologic diversity
- **In Situ Astrobiology** Perform the following astrobiologically relevant investigations on the geologic materials at the landing site:
 - Determine the habitability of an ancient environment. 1.
 - 2. For ancient environments interpreted to have been habitable, search for materials with high biosignature preservation potential.
 - Search for potential evidence of past life using the observations regarding habitability 3. and preservation as a guide.

Enable the Future: Sample Return

- Assemble rigorously documented and returnable cached samples for possible future return to Earth.
 - 1. Obtain samples that are scientifically selected, for which the field context is documented, that contain the most promising samples identified in Objective B and that represent the geologic diversity of the field site.
 - Ensure compliance with future needs in the areas of planetary protection and 2. engineering so that the cached samples could be returned in the future if NASA chooses to do so.

Mars 2020 Mission Objectives

Mars 2020 Project

• Enable the Future: Human Exploration

- Contribute to the preparation for human exploration of Mars by making significant progress towards filling at least one major Strategic Knowledge Gap (SKG). The highest priority SKG measurements that are synergistic with Mars 2020 science objectives and compatible with the mission concept are:
 - 1. Demonstration of In-Situ Resource Utilization (ISRU) technologies to enable propellant and consumable oxygen production from the Martian atmosphere for future exploration missions.
 - 2. Characterization of atmospheric dust size and morphology to understands its effects on the operation of surface systems and human health.
 - 3. Surface weather measurements to validate global atmospheric models.
 - 4. A set of engineering sensors embedded in the Mars 2020 heat shield and backshell to gather data on the aerothermal conditions, thermal protection system, and aerodynamic performance characteristics of the Mars 2020 entry vehicle during its entry and descent to the Mars surface.

Key Level 1 Project Requirements

- Prime Mission of at least 1 Mars year (669 sols, 689 Earth days)
- Develop, integrate, test the science payload
- Capability of acquiring at least 31 samples of rock or regolith (with blanks) and caching them on the surface. Size 8 cm³ (~15 g) each.
- Meet stringent requirements for organic and biologic contamination of samples
- <u>During the prime mission</u>, must be capable of performing the following in a minimum of two scientifically diverse Regions of Interest:

 a) conduct the investigations required to achieve objectives A and B, and
 b) acquire/cache on the surface of Mars a minimum of 20 samples of rock, regolith, and/or procedural "blank" samples

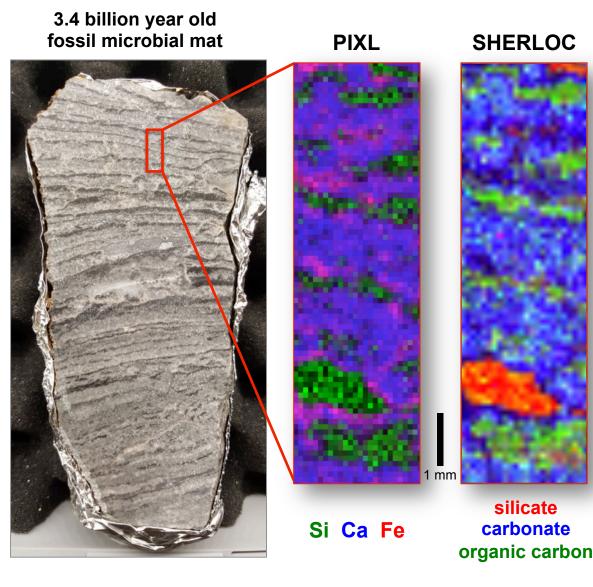
Mars 2020 vs Decadal Recommendation

Mars 2020 Project

Rover	Decadal Recommendation Solar-Powered MER-Class (350 kg)	<u>Mars 2020</u> RTG-Curisoity Class (~1000 kg)
Lifetime (sols)	500	>669
Sample Caching System (kg)	35	120
Science Instruments (kg)	25	40
Cache	2 (primary, contingency)	Adaptive Caching
Samples	10 grams each	15 grams each
	20 primary samples 20 contingency samples	43 sample tubes (6 are witness blanks)
	prevent cross-contamination prevent exposure to Mars atmosphere	<1% cross contamination hermetic seal
	keep samples within temperature experienced prior to collection	<20 C (landing site dependent)
sample survival time (y)	10	30-50

6

Mars 2020 Project


MSL exploration + *Mars Sample Return with the same rover and a lower budget

Example – seeking signs of ancient life with in-situ instruments

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

Strelley Pool stromatolites are among the oldest evidence for life on Earth, *equivalent in age to rocks at candidate Mars 2020 landing sites*. Coordinated PIXL and SHERLOC laboratory observations reveal:

- sub-mm scale chemistry following visible rock textures
- alternating silicate and carbonate layers with variable Fe
- organic carbon associated with silicate layers

When observed *in a geologic context indicating habitability*, this type of morphologically correlated chemical and mineralogic variation is a **powerful potential biosignature**.

Mission Overview

Mars 2020 Project

LAUNCH

- Atlas V 541 vehicle
- Launch Readiness
 Date: July 2020
- Launch window: July/August 2020

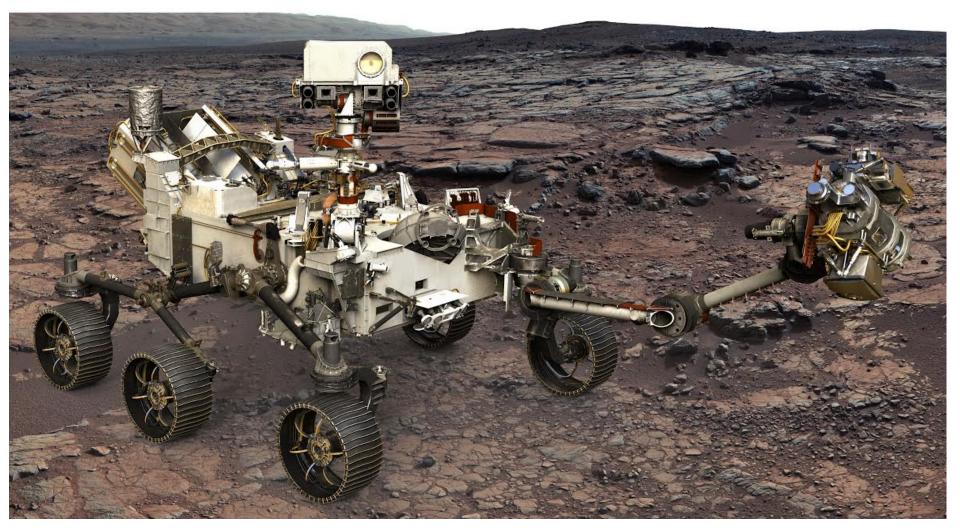
CRUISE/APPROACH

- ~7 month cruise
- Arrive Feb 2021

ENTRY, DESCENT & LANDING

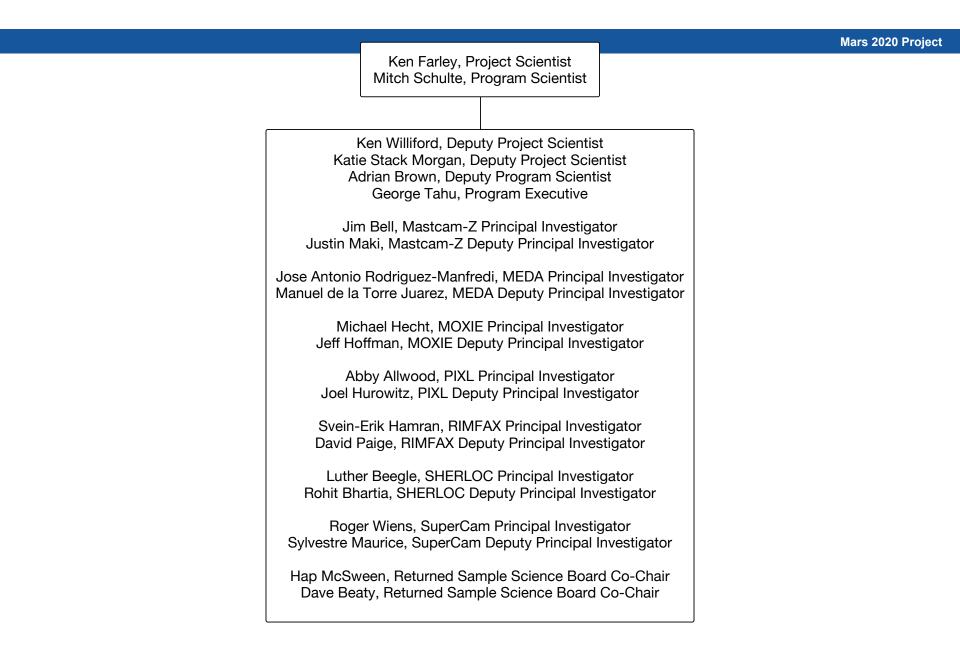
- MSL EDL system (+ Range Trigger and Terrain Relative Navigation): guided entry and powered descent/Sky Crane
- 16 x 14 km landing ellipse (range trigger baselined)
- Access to landing sites ±30° latitude, ≤ -0.5 km elevation
- Curiosity-class Rover

SURFACE MISSION


- 20 km traverse distance capability
- Enhanced surface productivity
- Qualified to 1.5 Martian year lifetime
- · Seeking signs of past life
- Returnable cache of samples
- Prepare for human exploration of Mars

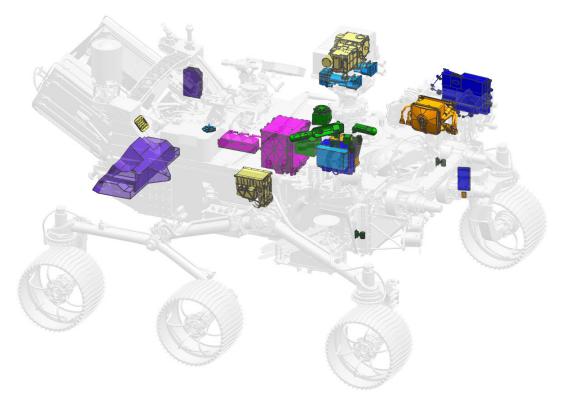
Mars 2020 Looks like Curiosity

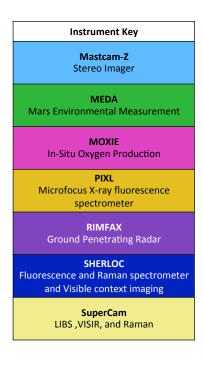
Jet Propulsion Laboratory California Institute of Technology


Mars 2020 Project

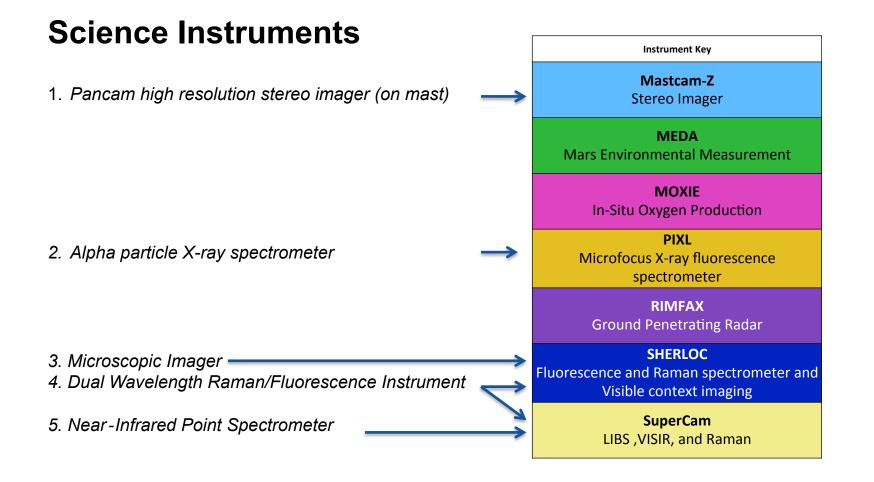
Similar, but different...

Mars 2020 Project Science Group (PSG)



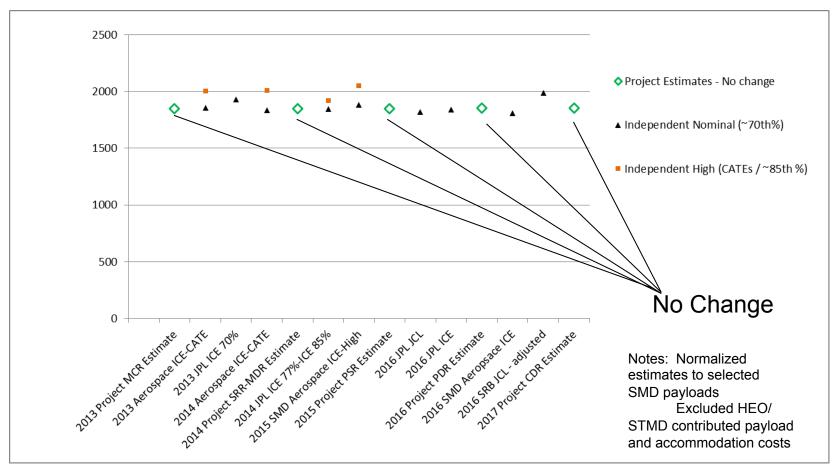

Mars 2020 Project

New science and technology instruments

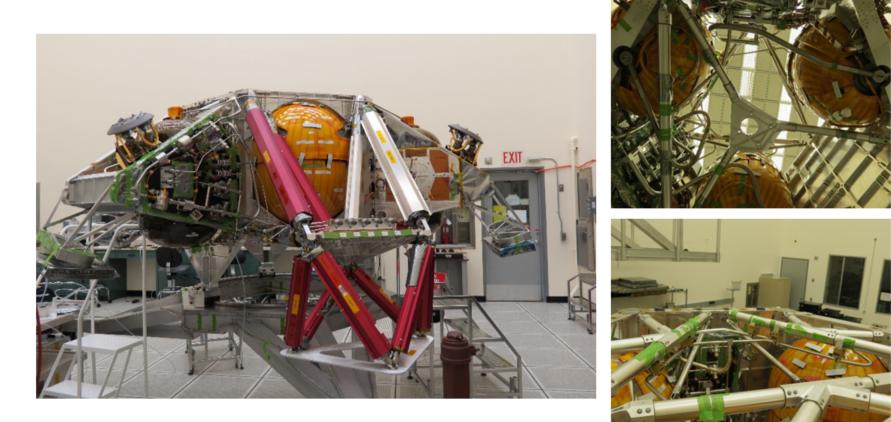

ALSO:

- new wheels
- Terrain Relative Navigation and Range Trigger for EDL
- new engineering cameras
- enhanced autonomy capabilities
- 5 hour ops timeline
- enhanced EDL cameras, and microphone. Strengthened parachute.
- helicopter (still being assessed)

Mars 2020 vs Decadal Recommendation



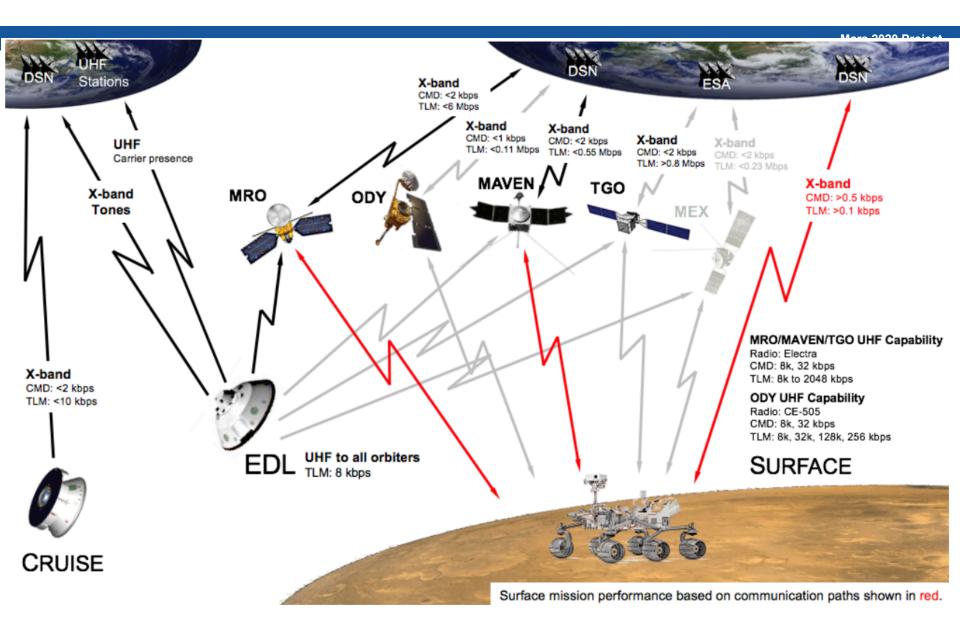
Very Steady Cost Estimate



- Within cost, greatly aided by MSL heritage design and fabrication procedures
- Responsive to the Decadal Survey's admonition to get the cost \leq \$2.5B

Just past CDR: Hardware already well along

Flight Descent Stage

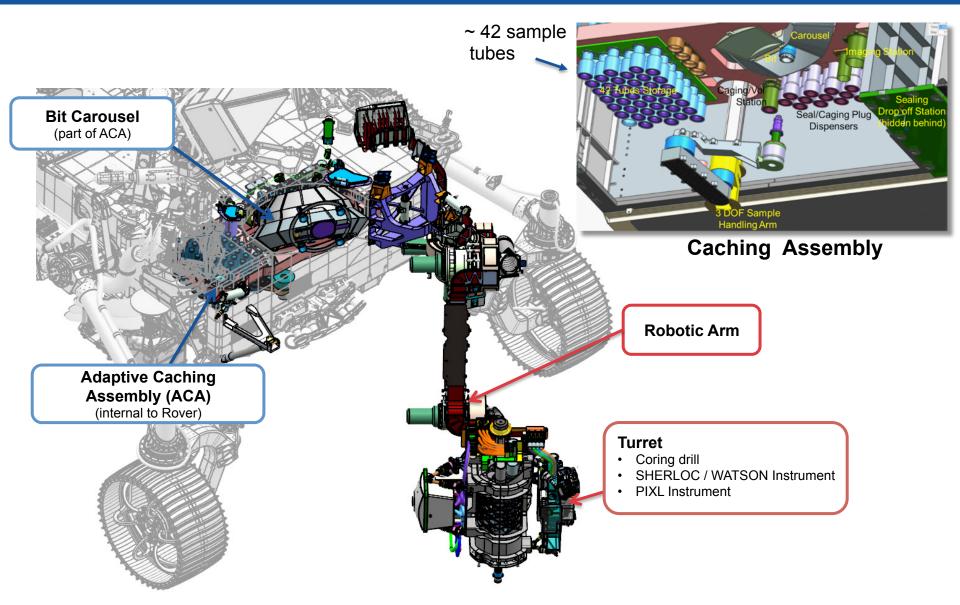

- New Science Instruments: Key to both in-situ exploration and sample selection/documentation (especially SHERLOC and PIXL, with high spatial resolution co-registered imagery and spectroscopy).
- High Science Data Volume: multiple new imaging instruments with high data downlink demands. MRO-MAVEN-TGO availability.
- Efficiency of Operation: Need to meet both in-situ science and sample collection requirements in prime mission.
- Sampling System: core, verify, hermetically seal, and cache rock and regolith samples.
- Sample Cleanliness: extraordinarily low biological and organic contamination limits on cached samples.

- 1. Enhanced autonomy navigation and driving, sample approach and targeting, on-board science observation scheduling
- 2. Five-hour daily timeline greatly reduces sols partially or completely lost due to communications relay over-flight schedule
- 3. Modified operations model greater focus on higher level "strategic" and "campaign" science and science planning, de-emphasis on tactical level

M2020 Communication Links

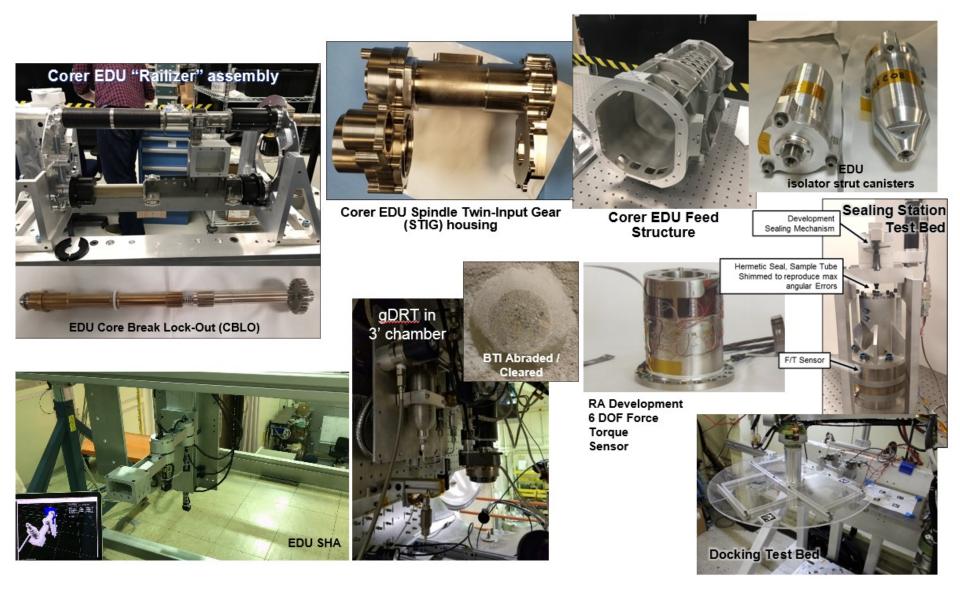
Key Mars 2020 PP and Sample Cleanliness Requirements at L1

Mars 2020 Project


#	Торіс	Text	Maps to
L1-14	NPR 8020.12D	The Mars 2020 Project shall comply with requirements for the outbound portion of a Planetary Protection Category V Restricted Earth Return mission as defined in NPR 8020.12D and as clarified in Section 6.8 of this PLRA.	PP L2 requirements
L1-15	Organic Carbon (OC)	 The Mars 2020 landed system shall be capable of encapsulating samples for return such that the organic contamination levels in each sample in the returned sample set are less than*: Any Tier 1 compound (organic compounds deemed as essential analytes for mission success): 1 ppb Any Tier 2 compound (organic compounds not categorized as Tier 1): 10 ppb Total Organic Carbon: 10 ppb Baseline, 40 ppb Threshold 	Sample Science L2 requirements
L1-17	Viable Organisms (VO)	The Mars 2020 landed system shall be capable of encapsulating samples for return such that each sample in the returned sample set has less than 1 viable Earth- sourced organism.	Sample Science L2 requirements

* based on Summons et al., 2014 (Organic Contamination Panel report)

Sampling & Caching Subsystem (SCS)



Jet Propulsion Laboratory California Institute of Technology

SCS

Coring and Sample Tube

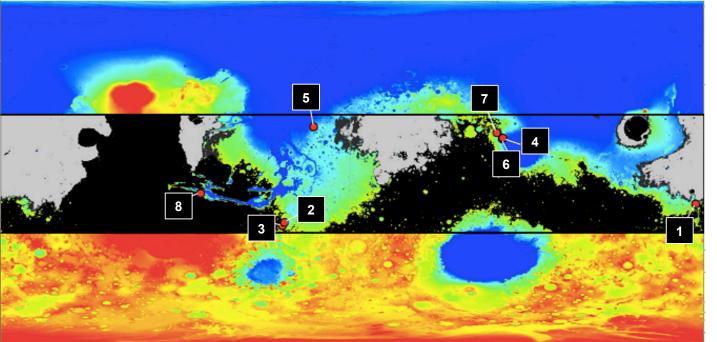
Puncture Coring Mechanism Hermetically sealed sample tube Bit TiN Surfaces Main Structure 60 Knife Edge 50 Sealed Materials Assembly 40 . Magnetic Anchoring Witness System ______30 <u>Core</u> 20 Witness tube assembly for round trip ~ 5 cm long x contamination characterization ~ 1 cm diamete ~ 15 grams

Depot Caching

JOURNEY TO MARS

Mars 2020 Project

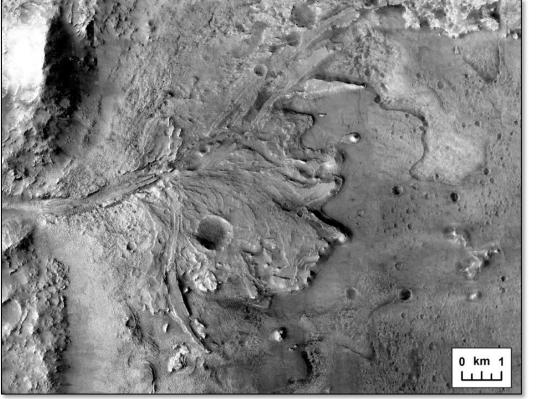
MARS 2020 ROVER Depot Caching Strategy

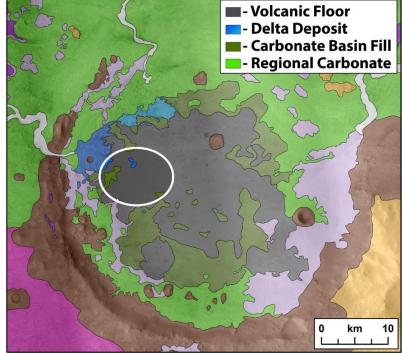

Landing Site
 Region of Interest
 Sample Tube

Primary Mission
 Extended Mission

Where is Mars 2020 Landing?

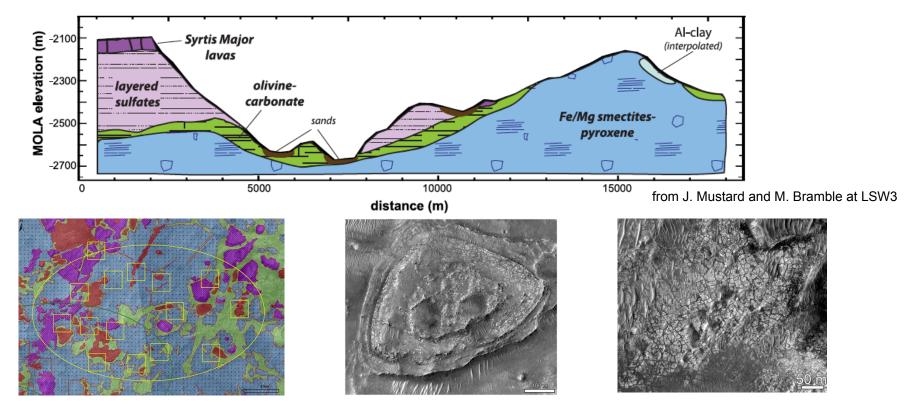
Mars 2020 Project


Candidate landing sites


in alphabetical order

- 1. Columbia Hills⁺
- 2. Eberswalde*
- 3. Holden⁺
- 4. Jezero*
- 5. Mawrth⁺
- 6. NE Syrtis*
- 7. Nili Fossae⁺
- 8. SW Melas*
- * TRN enables access
- ⁺ TRN improves science
- The selected site must provide clear opportunities to safely and efficiently explore and sample geologically diverse regions with high potential to preserve signs of ancient life and planetary evolution.
- With no mission objective or capability to investigate extant life, "special regions" are not under consideration for exploration.

Landing Site Candidates 1. Jezero Crater



from T. Goudge presentation at LSW3

Possible habitable environment - An ancient crater lake

Landing Site Candidates 2. Northeast Syrtis

Possible habitable environment - groundwater circulating through warm or hot rock

Landing Site Candidates 3. Columbia Hills (Gusev)

from presentations by S. Ruff and R. Arvidson at LSW3

Possible habitable environment - An ancient hot spring

Backup Material

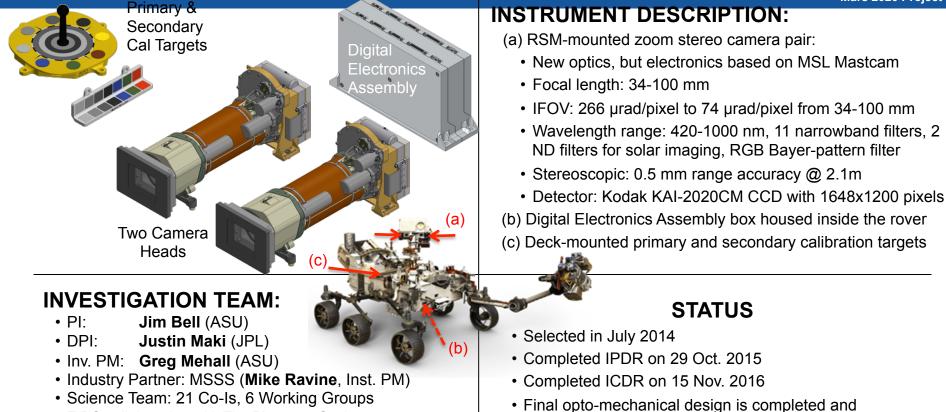
Project Top-Level Schedule

Mars 2020 Surface Mission

Top Level Schedule

2014 J F M A M J J A S O N D J				7	FY18	FY19	FY20	FY21
JFMAMJJASONDJ	2015	2016		2017	2018	2019	2020	2021
PHASE A		SE B	PHASE			PHASE D		PHASE I
roject Milestones		DR ▼2/3	CDR V2/2	8 ATLORRA			PSR∆ FRR-LV_∕∆LR	
EDL Review	Arch #2	-	IBR 🔺	SIR∆				
SRR/MDR	KDP-B 🔺	KDP-C		KDP-D∆			KDP-E 🏂 La	aunch 7/17 to 8/5
5 Payload	A Payload System Re	eview						
05.05 PIXL	PDI	₹▲	▲ CDI	R DE	LTVA	FM PIXL		
05.06 SHERLOC		PDR		<u>ADEL E</u>	QM	FM SHERLOC		
05.07 MOXIE	PE	R EU SO				FM MOXIE		
05.08 Mastcam-Z	PDRA			DELEM		Mastcam-Z		
05.09 MEDA	PDRA		CDR 🛓	DEL EM		FM MEDA		
05.10 RIMFAX	PDR	Cl	DR≜	ADEL EM	FM RIN			
05.11 SuperCam	PDR		ĊDR▲			FM SuperCam		
6 Flight System								
06.04 Power						RBAU OMARI	G -Go	
06.05 Avionics	FSW PDR			FSW CDR		- ⇔ R5 ⇒FSW R€		
06.06 Telecom					WaveguidesX	-Band		
	Mech PDR	CEDL M				RVR DTM		
06.07 Mech/RVR/CEDL		CDR				 RSM RSM	hute	
06.08 Thermal	PDR			(IPAS ⊘⊘RIPAS			
06.09 Prop	PDR		CEDL CS HV	\sim	Mech DS	s		
06.10 GNC				DIMU	RIMUŞun			
				Dimit		ar Scanner		
06.15 TDS			DPDU iHRCR	I		TDS		
06.14 MCS	▲BTP IRCR			\∕_SH	A Actuator DMQ/			
06.16 SCS			CDR			M ACA Turret/AFM	SFM ACA	
06.17 EECAM		r		DR	⇒EE C			
) Integration, Test, and L	aunch Operations				SCS ATLO Conting	ency		
40.471.0							olete	
10 ATLO						Launch Si	te Support	aunch 7/16 to 8/4
07/09/12 MOS/GDS/MDNav		MS PDR			GDS → Parts/RVR			
		WIS FOR		S Cruise CDR	[✓] Parts/RVR			
▲ Milestone		AMilestone	V₽	roject PDR	$\overline{\nabla}$	Project CDR Milesto	nes Professional Trial Version (htt	p://www.kidasa.com).

Mastcam-Z Overview


https://mars.nasa.gov/mars2020/mission/instruments/mastcam-z/

Jet Propulsion Laboratory California Institute of Technology

Mars 2020 Project

· E/PO collaboration with The Planetary Society

SCIENCE DISCRIPTIONS:

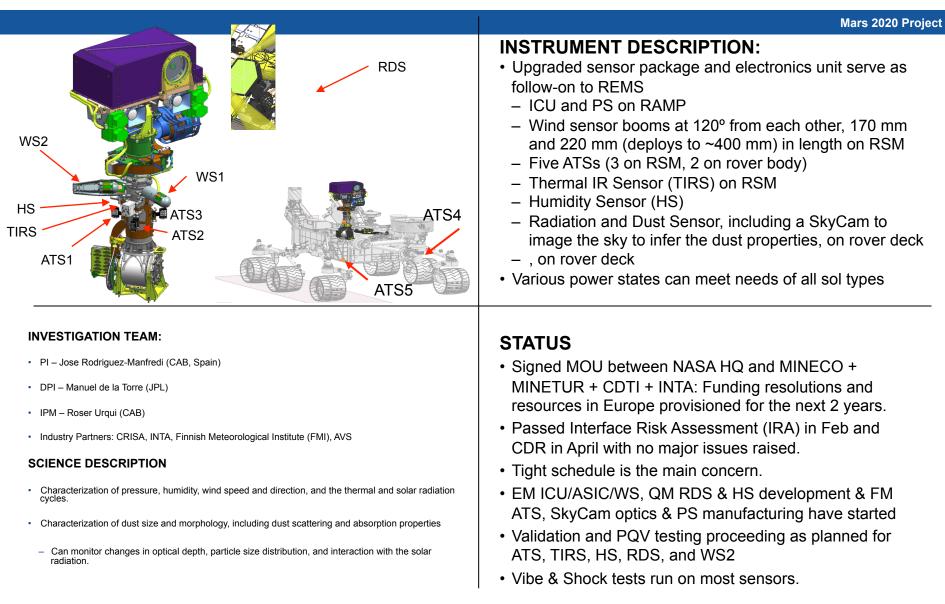
- 1. Characterize geomorphology and processes
- 2. Assess current atmospheric and astronomical conditions & events
- 3. Provide operational support and scientific context

30

Short motor procurement delay due to gear issues

EQM build underway; testing will begin in Aug. 2017

Testbed Units delivered to JPL: mid-April 2017


Science calibration scheduled for mid-2018

FM delivery to JPL scheduled for July 2018

fabrication is now under way!

MEDA Overview

MOXIE Overview

	INSTRUMENT DESCRIPTION: Mars 2020 Project
<image/>	 Solid Oxide Electrolysis (SOXE) Stack CO₂ decomposed to CO and O⁼ in cathode O⁼ ions transported through solid electrolyte Operates at 800°C SOXE Assembly SOXE Packaging, thermal control, compression CO₂ Acquisition and Compression (CAC) Scroll Compressor – Mars atmosphere @ 1 bar Mechanical & Flow Control Filters, lines, fittings, pressure regulation Process Monitor and Control Sensors for experiment analysis and process control Electronics – Power, Command, Control & Telemetry
INVESTIGATION TEAM:	STATUS
PI – Michael Hecht (MIT)	 Increased mass allocation (17.8 kg), due to scope transfer
DPI – Jeffrey Hoffman (MIT)	 Excellent SOXE performance, throughput and reliability
■ IPM – Jeff Mellstrom (JPL)	Scroll Compressor prototype in test & meeting requirements
Industry Partners:	 COTS Sensor suite selected & in qualification process.
 Ceramatec (SOXE) Air Squared (Compressor) 	 Technical Resource margins meet Design Principles Key technical issues: Electronics development underestimated and significantly
 SCIENCE DESCRIPTION: Demonstration of In-Situ Resource Utilization (ISRU) technologies to enable propellant and consumable oxygen production from the Martian atmosphere for future exploration missions. 	 SOXE Assembly – Insulation & heater mechanical, making good progress, initial tests with flight-like packaging has commenced. Programmatics: Additional funds required [\$5–7M]

RIMFAX Overview

<image/>	 INSTRUMENT DESCRIPTION: Ground-penetrating gated FMCW radar, operating from 150 MHz to 1.2 GHz Bow-Tie Slot Antenna underneath MMRTG Electronics box in aft tower, above ElectraLites (UHF radio) 3 modes collected simultaneously every 10 cm: Surface Mode (700 MHz center frequency) Shallow Mode (700 MHz center frequency) Deep Mode (400 MHz center frequency) 			
INVESTIGATION TEAM:	STATUS			
 PI – Svein-Erik Hamran (FFI, Norway) 	 Completed CDR and majority of RFAs completed 			
 DPI – David Paige (UCLA) IPM – Leif Damsgård (FFI) 	Mechanical, electrical, FSW interfaces agreed to with Flight System			
				Science Team: 7 CO-Is and 3 Collaborators
Major Partners: Norspace (Norway), Comrod (Norway)	 Completed one PQV tests successfully of Antenna Matching Network PCB and is working on E. Box Board to Board Connectors 			
 SCIENCE DESCRIPTION: Transmits radar signal and determines layering in subsurface from the echo. 				
	• EM successfully tested on Svalbard April 2017			
Can distinguish layers to at least 10 m deep with 30 cm resolution in Mars analog soil				
33				

THE REPORT OF THE PARTY OF

SHERLOC Overview

	INSTRUMENT DESCRIPTION: Mars 2020 Project
SHERLOC Body Assembly (STA) SHERLOC Calibration Target (SCT) SHERLOC Body Assembly (SBA) (Inside Rover Chassis)	 On Turret: Laser Raman and Fluorescence spectrometer Deep UV 248.6 nm laser Asphere-Sphere Spectrometer (252-373 nm range) e2v CCD with 512 x 2048 pixels Internal Fast Steering Mirror Autofocus and Context Imager Monochromatic imager Kodak KAI 2020 1200x1600 pixel CCD Phase Change Material Heat Sink for CCD Microscopic Color imager Full MAHLI heritage In WEB and on Rover Body: C&DH (WEB) Calibration target (Rover Body)
INVESTIGATION TEAM:	STATUS
■ PI – Luther Beegle (JPL)	Flight like laser has been tested and demonstrated.
 DPI – Rohit Bhartia (JPL) IPM – Ed Miller (JPL) 	 Expecting first flight lasers middle of July. Testing of LANL designed and built C&DH has occurred Demonstrated interface between the Rover computer and the MSSS built DEA.
Industry Partners: Malian Space Science (Imaging and ACI), LANL (C&DH), Photon Systems (Laser) and Left Hand Design (Scanner mirror)	Key technical issues: – Development of the Laser Power Supply has lagged system
SCIENCE DESCRIPTION:	development and is now the critical path. – Getting the scanning mirror on contract has been an issue. – Continue vigilance of contamination control issues.
<u>Detects</u> and <u>classifies</u> organics and astrobiologically relevant minerals on the surface and near subsurface of Mars.	Continue vigilance of contamination control issues. Uncertain calibration target dimensions due to addition of drillable blank.
Microscopic scientific imaging for textures, color and context for the other measurements.	

SuperCam Overview

	Mars 2020 Project
Mast Unit	 INSTRUMENT DESCRIPTION: Mast-mounted telescope, laser, IR spec., micro. and color imager. Body-mounted Raman and visible/NIR band spectrometers LIBS (1.5 m - 7 m range) < 550 µm spot size, 15 mJ max on target, 1064 nm, 3 Hz laser 245 - 853 nm band, 0.15 - 0.65 nm resolution, >100 SNR @ 7 m Raman - Fluorescence (1.5 m - 12 m range) 532 nm, 3-11 mJ on target, 1k shot burst @ 10 Hz laser 150 - 4400 cm⁻¹ band, < 12 cm⁻¹ resolution >64 SNR on olivine VISIR Reflectance Spectrometry (1.4 m - 10 km range) 400 - 853 nm band, 0.6 nm resolution, ~10 ms / acq, > 60 SNR @ 800 nm 1.3 - 2.6 µm band, 30 cm⁻¹ resolution, ~80 sec / acq, > 60 SNR @ 2.6 µm Color Imaging (> 1.4 m) 19 mrad FOV, standard RGB color filtering Microphone 100 Hz - 10 kHz. Standalone (3.5 min rec. max) and LIBS modes
INVESTIGATION TEAM:	STATUS:
PI: Roger Wiens (LANL)	• EDU end-to-end tests from May 2016 to May 2017
 DPI: Sylvestre Maurice (IRAP) Inv. PM: Scott Robinson (LANL); Philippe Caïs (IRAP) 	 Demonstrated microphone audio signal by testing in a Martian- environment chamber (Jan 2017)
 INV. FWI. Scott Robinson (LANL), Finippe Cars (INAF) Science Team Co-Is: 9 US, 8 French, 2 Spanish 	• EQM : Design, layout completed. Parts ordered and most received. Full integration by Nov. 2017
 SCIENCE INVESTIGATION: Rapid, synergistic, fine-scale mineralogy, chemistry, and color imaging at 	• Cal. targets fabricated. Being chemically characterized. Passed vibe and shocks.
 remote distances after removing obscuring surface dust. Co-aligned Raman-fluorescence, visible/infrared reflectance, laser-induced breakdown spectroscopy (LIBS), and microphone, with color imaging for context. 	• FM : some hardware already manufactured and received. EEE ordered, should arrive in June 2017.