

# Water, Habitability, and Detectability

A photograph of ocean waves from an aerial perspective, showing the white foam and deep blue-green water. The waves are slightly curved, creating a sense of motion. The background is a clear blue sky.

**Steve Desch**

PI, “Exoplanetary Ecosystems” NExSS team

School of Earth and Space Exploration, Arizona State University

with

Ariel Anbar, Tessa Fisher, Steven Glaser, Hilairy Hartnett, Stephen Kane,  
Susanne Neuer, Cayman Unterborn, Sara Walker, Misha Zolotov

Astrobiology Science Strategy NAS Committee,  
Beckmann Center, Irvine, CA (remotely), January 17, 2018

# How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres



How Earth-like must  
an exoplanet be for  
this to work?

Seager et al. (2013)

## How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres

Oxygen on Earth overwhelmingly produced by photosynthesizing life, which taps Sun's energy and yields large disequilibrium signature.

### Caveats:

Earth had life for billions of years without O<sub>2</sub> in its atmosphere.

First photosynthesis to evolve on Earth was anoxygenic.

Many 'false positives' recognized because O<sub>2</sub> has abiotic sources, esp. photolysis (Luger & Barnes 2014; Harman et al. 2015; Meadows 2017).

These caveats seem like exceptions to the 'rule' that 'oxygen = life'.

How non-Earth-like can an exoplanet be (especially with respect to water content) before oxygen is no longer a biosignature?

**Part 1: How much water can terrestrial planets form with?**

**Part 2: Are Aqua Planets or Water Worlds habitable?  
Can we detect life on them?**

**Part 3: How should we look for life on exoplanets?**

## **Part 1: How much water can terrestrial planets form with?**

Theory says: up to hundreds of oceans' worth of water

Trappist-1 system suggests hundreds of oceans, especially around M stars

**Many (most?) planets may be Aqua Planets or Water Worlds**

# How much water can terrestrial planets form with?

Standard models of accretion suggest abundant water.



# How much water can terrestrial planets form with?

“Aqua Planets” (6 - 35 oceans, enough to submerge continents) and “Water Worlds” (> 35 oceans, enough for high-pressure ice layer) might be most likely.



# How much water can terrestrial planets form with?

Newer theories of ‘fossil snow lines’ (Morbidelli et al. 2016) suggest Jupiter’s formation deprived the inner solar system of  $\text{H}_2\text{O}$  ice.

Systems without Jupiters would still have water-rich inner planets.



# How much water did the Trappist-1 planets form with?

## TRAPPIST-1 System



Gillon et al. (2016, 2017)

# How much water did the Trappist-1 planets form with?

|   | Period    | Semi-major axis | Mass (TTVs)           | Radius (transit)      |
|---|-----------|-----------------|-----------------------|-----------------------|
| b | 1.5109 d  | 0.01111 AU      | 0.79 +/- 0.27 $M_E$   | 1.086 +/- 0.035 $R_E$ |
| c | 2.4218 d  | 0.01522 AU      | 1.63 +/- 0.63 $M_E$   | 1.056 +/- 0.035 $R_E$ |
| d | 4.0498 d  | 0.02145 AU      | 0.33 +/- 0.15 $M_E$   | 0.772 +/- 0.030 $R_E$ |
| e | 6.0996 d  | 0.02818 AU      | 0.24 +/- 0.56 $M_E$   | 0.918 +/- 0.039 $R_E$ |
| f | 9.2065 d  | 0.0371 AU       | 0.36 +/- 0.12 $M_E$   | 1.045 +/- 0.038 $R_E$ |
| g | 12.3528 d | 0.0451 AU       | 0.566 +/- 0.038 $M_E$ | 1.127 +/- 0.041 $R_E$ |
| h | 18.7663 d | 0.0596 AU       | 0.086 +/- 0.084 $M_E$ | 0.715 +/- 0.047 $R_E$ |

Wang et al. (2017)

# How much water did the Trappist-1 planets form with?



Wang et al. (2017), using their data and Gillon et al. (2017) data and Zeng et al. (2016) mass-radius relationships

# How much water did the Trappist-1 planets form with?

We **assume** no  $\text{H}_2/\text{He}$  atmospheres in mass-radius relationships

Even a small ( $\sim 10^{-6} M_{\text{E}}$ )  $\text{H}_2/\text{He}$  atmosphere would inflate planet, and is hard to rule out, but thick  $\text{H}_2/\text{He}$  atmospheres don't seem to inflate planets with  $R < 1.6 R_{\text{E}}$  (Weiss & Marcy 2014; Rogers 2015).

Unlikely to accrete more than  $\sim 10^{-4} M_{\text{E}}$  of  $\text{H}_2/\text{He}$  gas (Stolk et al. 2015).

Trappist-1 planets easily lose  $0.003 - 0.03 M_{\text{E}}$  of  $\text{H}_2/\text{He}$  gas (following Wheatley et al. 2017: updated XMM X-ray fluxes, 10% efficient energy-limited mass loss).

Bolmont et al. (2017) also concluded b and c cannot retain atmospheres

|   | $\Delta M / 5 \text{ Gyr}$ |
|---|----------------------------|
| b | $0.031 M_{\text{E}}$       |
| c | $0.008 M_{\text{E}}$       |
| d | $0.014 M_{\text{E}}$       |
| e | $0.013 M_{\text{E}}$       |
| f | $0.006 M_{\text{E}}$       |
| g | $0.003 M_{\text{E}}$       |
| h | $0.007 M_{\text{E}}$       |

# How much water did the Trappist-1 planets form with?

Fe/Mg ratio constrained  
using metallicity

$[\text{Fe}/\text{H}] = +0.04 \pm 0.08$   
(Gillon et al. 2017)

From Hypatia catalog  
(Hinkel et al. 2014):  
stars with this  $[\text{Fe}/\text{H}]$   
have  $\text{Fe}/\text{Mg} = 0.5 - 1.3$   
 $1\sigma = 0.55 - 0.95$



Unterborn et al. (in revision)

# How much water did the Trappist-1 planets form with?

**ExoPlex** code written by my group (Lorenzo et al., in prep: Alejandro Lorenzo, Cayman Unterborn, Byeongkwan Ko, Steve Desch)

Computes internal structure and mass-radius relationships of rock/ice planets (no atmospheres)

Iteratively calculates both hydrostatic equilibrium and equilibrium mineralogy, using **PerpleX** Gibbs free energy minimization routine (Connolly 2009) that uses mineral thermodynamic data (Stixrude & Lithgow-Bertelloni 2011).

Similar to code of Dorn et al. (2015).

We can include impurities in core.

We added EOS for ice I, VI, VII.

# How much water did the Trappist-1 planets form with?

ExoPlex algorithm:

Stoichiometry, mass set in each zone.

$\rho, r(M)$  initialized.

$$g(r) = -G M(r) / r^2$$

$\alpha, C_p$  found

$$\begin{aligned} dP/dr &= -\rho(r) g(r) \\ dT/dr &= T(r) \alpha g(r) / C_p \end{aligned}$$

$\rho(P,T)$  found in each zone using PerpleX

Updated  $\rho =$  updated  $r(M)$



# How much water did the Trappist-1 planets form with?

Now possible to measure H<sub>2</sub>O on terrestrial planets to ~ 10 wt%



- 1b > 7-15wt% H<sub>2</sub>O,
- 1c < 5-12wt% H<sub>2</sub>O
- Probably both 7-12wt%
  
- 1f > 52wt% H<sub>2</sub>O
- 1g > 54wt% H<sub>2</sub>O

Unterborn, Desch, Hinkel &  
Lorenzo, in revision at  
*Nature Astronomy*

How much water did  
the Trappist-1 planets  
form with?

Internal structure  
of Trappist-1b  
( $R_p=6918$  km), with:  
Fe-Mg-Si-O only  
 $Fe/Mg=0.8$   
 $Mg/Si=1.0$   
**10** wt% water  
(400 oceans)



How much water did  
the Trappist-1 planets  
form with?

A LOT.

Internal structure  
of Trappist-1f  
( $R_p=6658\text{ km}$ ), with:  
Fe-Mg-Si-O only  
 $\text{Fe/Mg}=0.8$   
 $\text{Mg/Si}=1.0$   
**50** wt% water  
(2000 oceans)



# How much water can terrestrial planets form with?

## Our solar system (planets around a G star):

Kuiper Belt Objects, icy moons  $\sim 50$  wt%  $\text{H}_2\text{O}$

Earth  $\sim 0.025$  wt%  $\text{H}_2\text{O}$

Dryness of inner solar system planets attributed to Jupiter trapping  
icy grains in pressure maximum beyond it (Morbidelli et al. 2016).

## Trappist-1 system (planets around an M star):

Trappist-1f,-1g  $\sim 50$  wt%  $\text{H}_2\text{O}$

Trappist-1b,-1c  $\sim 7\text{-}12$  wt%  $\text{H}_2\text{O}$

Trapping of ice in pressure maxima may not work in M dwarf disks  
(Desch, Kalyaan, White, in preparation)

Perhaps all planets around M stars have at least several wt%  $\text{H}_2\text{O}$ .

## **Part 2: Are Aqua Planets or Water Worlds habitable? Can we detect life on them?**

Water-rich planets can be perfectly habitable.

**Water-rich planets generally are not good places to look for life  
(at least using O<sub>2</sub>)**

# Should *Habitability* be our Main Guiding Principle?

## habitable



Are water-rich planets habitable?

Why is a “habitable world” one with liquid water on the surface?

Why do we try so hard to define “habitability”?

What we really want to do is measure something about an exoplanet that tells us there is life on it.



# Should *Habitability* be our Main Guiding Principle?

Habitability is not restrictive enough to prioritize observations.  
There are already more habitable planets than JWST can characterize.

Low mass ( $< 4 M_E$ ) transiting exoplanets in their stars' habitable zones

| <u>Exoplanet</u> | <u>Host Sp Type</u> | <u>Host [Fe/H]</u> | <u><math>M_p / M_E</math></u> | <u><math>R_p / R_E</math></u> | <u>Teq (K)</u> |
|------------------|---------------------|--------------------|-------------------------------|-------------------------------|----------------|
| Kepler 62f       | K2                  | -0.37              | $2.8_{-1.6}^{+7.4}$           | $1.41_{-0.07}^{+0.07}$        | 244            |
| Kepler 442b      | K5                  | -0.37              | $2.3_{-1.3}^{+5.9}$           | $1.34_{-0.18}^{+0.11}$        | 233            |
| Kepler 186f      | M1                  | -0.26              | $1.5_{-0.9}^{+3.2}$           | 1.17                          | 188            |
| TRAPPIST-1e      | M8                  | +0.04              | $\sim 0.6$                    | $\sim 0.6$                    | 230            |
| TRAPPIST-1f      | M8                  | +0.04              | $\sim 0.7$                    | $\sim 0.7$                    | 200            |
| TRAPPIST-1g      | M8                  | +0.04              | $\sim 1.3$                    | $\sim 1.3$                    | 182            |
| Kepler 1229b     | M?                  | -0.06              | $> 3.8$                       | $> 3.8$                       | 213            |



TESS (2018) and PLATO (2026) will soon *greatly* expand this list



# Should *Habitability* be our Main Guiding Principle?

**POP QUIZ:** You have just enough JWST time for IR transmission spectroscopy to measure the abundance of oxygen [ $O_3$  or  $O_2-O_2$ ] in the atmosphere of **one** exoplanet.

On which exoplanet is the discovery of oxygen most *diagnostic* of life?



Your choices:

**A.**  $1 M_E$  planet in the Habitable Zone of a G star, with  $\sim 1\% H_2O$

**B.**  $1 M_E$  planet in the Habitable Zone of a G star, with “no” ( $< 0.1\%$ )  $H_2O$

**C.**  $1 M_E$  planet in the Habitable Zone of an M star, with  $\sim 1\% H_2O$

**D.**  $1 M_E$  planet in the Habitable Zone of an M star, with “no” ( $< 0.1\%$ )  $H_2O$

# *Detectability* of Life as a Guiding Principle

We must move beyond defining habitability, and start figuring out on which exoplanets is life ***detectable***.

“Detectability” means if life exists, it *can* be identified, because it dominates the geochemical cycle over abiotic processes.

Excess water changes the geochemical cycles of a planet:  
6 oceans will submerge the continents....  
35 oceans will create a high-pressure ice layer...  
100 oceans suppress silicate melting....

Planets with more water than Earth can be habitable ---  
even have measureable biogenic oxygen in their atmospheres ---  
but are lousy places to be sure you've seen the signs of life.

# “Earth-like”

$$1 \text{ Ocean} = 1.5 \times 10^{21} \text{ kg} = 0.025\% M_E$$

Average depth = 3-4 km  
(Earth radius = 6371 km)



Seafloor to top of Mauna Loa = 9 km.



# Carbon Cycle on Earth

Sleep & Zahnle (2001), Fig. 1;  
Wallmann & Aloisi (2012)

outgassing  
+4 Tmol/yr

$pCO_2 = 0.27 \text{ mbar}^*$

\* = pre-industrial



# Organic Burial



Organisms remove C from the ocean when they sink to seafloor and are buried.

Most organisms have C:N:P = 106:16:1 (*Redfield ratio*). P needed in DNA and ATP.

1 P atom buried for every 106 – 170 C atoms buried (Colman & Holland 2000)



Coccolithophores



$\text{CaCO}_3$

burial

# Oxygen Cycle on Earth

Catling (2014)

outgassed

$\text{H}_2$ ,  $\text{CO}$ ,  $\text{H}_2\text{S}$ ,  $\text{CH}_4$

- 5 Tmol/yr  $\text{O}_2$

consumed

photolysis, H escape  
+0.02-0.2 Tmol/yr

+18 Tmol/yr



photosynthesis  
& respiration  
10<sup>4</sup> Tmol/yr

$\text{C}$ ,  $\text{FeS}_2$ ,  $\text{FeO}$

continental weathering

-17 Tmol/yr

burial of biological C

18 Tmol/yr



# Phosphorus Cycle on Earth

The seafloor is a net sink for phosphorus.



# “Aqua Planet”

6 Oceans = 0.15%  $M_E$

Average depth = 18 km



Higher pressure changes  
speciation of outgassed volatiles

Ocean rather than rain water changes  
weathering/dissolution rates

# Carbon Cycle on an Aqua Planet

Sleep & Zahnle (2001), Fig. 4;  
Wallmann & Aloisi (2012)



# Oxygen Cycle on an Aqua Planet



# Oxygen Cycle on an Aqua Planet

outgassed  
 $\text{H}_2, \text{CO}, \text{H}_2\text{S}, \text{CH}_4$   
-3 Tmol/yr ?  
-30 Tmol/yr ?



As ocean depths increase, outgassed species more reducing ( $\text{H}_2\text{S} / \text{SO}_2$  increases). Reductant flux sensitive to pressure and redox of mantle.

# Phosphorus Cycle on an Aqua Planet

Phosphate dissolution sensitive to ~8x slower weathering, and higher pH: ~80 times slower at pH = 8.0 than at pH = 5.7 (Adcock et al. 2013)

Dissolved phosphate is *the* limiting nutrient.

Lower P flux = lower C burial flux

dissolution of continental phosphate

$\text{PO}_4^{3-}$  ~ 0.00011 Tmol/yr

pH = 8.0

-0.03 Tmol/yr

$\text{PO}_4^{3-}$

organic burial  
~ -0.00011 Tmol/yr

subduction & uplift

rock-water reactions  
hydrothermal vents

in  $\sqrt{0.015 \text{ Tmol/yr}}$  C  
organic burial

# Oxygen Cycle on an Aqua Planet



# “Water World”

Kuchner (2003); Leger et al. (2004); Fu et al. (2010)

50 Oceans = 1.0%  $M_E$

Average depth of water+ice  $\sim 150$  km

$P > 1$  GPa, depth  $> 100$  km

Ice VI



Noack et al. 2016

# Carbon Cycle on a Water World

$p\text{CO}_2 = 20 \text{ bars?}$

Sleep & Zahnle (2001)

outgassing

+0 Tmol/yr ?

+5 Tmol/yr?

$\text{CO}_2$

$\text{pH} = 5.0$

Ice VI



# Phosphorus Cycle on a Water World

inputs of  $\text{PO}_4^{3-}$  into ocean severely limited or even totally shut off



# Oxygen Cycle on a Water World



# More Water Just Makes Things Worse

100 Oceans = 2.0%  $M_E$

Average depth of water+ice  $\sim 300$  km

**Pressures in rock layer too high for rock to melt. Continents don't form. No geochemical cycling between mantle and ocean.**



# Detectability of Life on Aqua Planets, Water Worlds

Earths, Aqua Planets, Water Worlds: All may be habitable.

All may have life producing measureable oxygen.

**But Ocean + Land needed to be sure the oxygen signifies life.**

On Earth,  $O_2$  is overwhelmingly biotic and is a biosignature.

$$DI = \log_{10}(20 \text{ Tmol/yr} / 0.02 \text{ Tmol/yr}) = +3$$

**Aqua Planets:** Low P input = low C burial = low  $O_2$  production.

$O_2$  supplied by biology and photolysis at comparable rates.

We can't be sure  $O_2$  is biotic.

$$DI = \log_{10}(0.015 \text{ Tmol/yr} / 0.02 \text{ Tmol/yr}) \approx 0$$

**Water Worlds:** Oceans may have no P inputs: no ability to export C, so no  $O_2$  buildup.

$$DI = \log_{10}(0.0 \text{ Tmol/yr} / 0.02 \text{ Tmol/yr}) = -\infty$$

# Detectability Guides Observations

**POP QUIZ:** On which exoplanet is the detection of oxygen most *diagnostic* of life?

**A.**  $1 M_E$  planet in the Habitable Zone of a G star, with  $\sim 1\% H_2O$

$DI = -\infty$

**C.**  $1 M_E$  planet in the Habitable Zone of an M star, with  $\sim 1\% H_2O$

$DI = -\infty$

**B.**  $1 M_E$  planet in the Habitable Zone of a G star, with “no” ( $< 0.1\%$ )  $H_2O$

$DI = 0$  (Aqua Planet) to  
 $DI = +3$  (Earth-like)

**D.**  $1 M_E$  planet in the Habitable Zone of an M star, with “no” ( $< 0.1\%$ )  $H_2O$

$DI = -1$  (Aqua Planet) to  
 $DI = +2$  (Earth-like)

## **Part 3: How should we look for life on exoplanets?**

Oxygen is a biosignature on exoplanets with water AND land.

**We must prioritize those rocky exoplanets with less than measureable water content.**





## Part 1: How much water can terrestrial planets form with?

Theory says: up to hundreds of oceans' worth of water

Trappist-1 suggests hundreds of oceans, especially around M stars

**Many (most?) planets may be Aqua Planets or Water Worlds**

## Part 2: Are Aqua Planets or Water Worlds habitable?

Can we detect life on them?

Water-rich planets can be perfectly habitable.

Water-rich planets generally are not good places to look for life  
(at least using O<sub>2</sub>)

## Part 3: How should we look for life on exoplanets?

Oxygen is a biosignature on exoplanets with water AND land.

We must prioritize those rocky exoplanets with *less than measureable* water content.