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Key points

» It's important to be cognizant of both forced and unforced changes, and about
the interaction between physical and socio-economic uncertainty.

» Simple, probabilistic climate models provide a useful complement to large-scale
Earth system models, which represent modeling groups’ best estimates.

 An increasing number of socio-economic impacts can be quantified using state-
of-the-art econometric and process models.

« We need tools and frameworks for translating probabilistic information into
actionable information. But these involve decision-specific values such as time
horizon and risk tolerance — they can’t be decided by scientists acting in
isolation.

- Many potential impacts - such as ‘tipping points’ — remain (and will likely
continue for a long while to remain) unquantified.

« Although ‘tipping point’ probability may be hard to assess, and the ‘tipping
points’ concept itself has promoted confusion, it is important to be cognizant
of (deeply uncertain) thresholds in both physical and social systems.

» More value issues: In physical systems, many of the consequences of ‘tipping
points’ may play out on timescales well beyond those of conventional decision-
making, but with important effects on our civilizational legacy.
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Working with our collaborators at Berkeley, UChicago, and Rhodium Group, we are

working to leverage ‘big data’ and the recent explosion of empirical research to
assess the associated climate risks.

Statistically downscaled, probabilistic
physical climate projections Impact estimates based on meta-
analysis of econometric research

Temperature Precipitation
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complemented by detailed
sectoral models

Targeting sectors where an adequate empirical basis for analysis exists:

e Agricultural production e Coastal buildings and infrastructure
e Health e Crime and conflict
e Labor productivity e Migration

e Energysupply and energy demand Bold: included in US analysis



Key sources of uncertainty considered

e Emissions (via RCPs)

e Global temperature response (from probabilistic simple
climate model), conditional upon emissions

e Forced regional climate response, conditional upon global
temperature response (derived from GCM)

e Unforced regional climate variability (derived from GCM)

e Socio-economic response, conditional upon local, daily
weather (and socio-economic baseline)

o Structural uncertainty/omitted factors (tipping points, etc.)

www.climateprospectus.org



Goal is to get distribution of local changes consistent with global
mean temperature projection
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Contributors to annual temperature variance

(solid = CMIP5, dashed=SMME, dotted=MCPR)

note that ratio of unforced/(forced + scenario) decreases over longer averaging intervals

Rasmussen et al. (in rev.)
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Econometric impact analyses based on identifying historical
responses to short-/medium-run climatic variability/change.

Outcome Location A

o ° Location B

Temperature
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Econometric impact analyses based on identifying historical
responses to short-/medium-run climatic variability/change.
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Econometric impact analyses based on identifying historical
responses to short-/medium-run climatic variability/change.

Location A

Outcome

Temperature
&
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Econometric analysis of historical data allows us to relate
historical climate ‘doses’ to economically-relevant responses.
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We've developing an open platform (the Distributed Meta-Analysis

System) for aggregating and meta-analyzing climate impact functions

DMA System v . .
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Climate change will have unevenly distributed economic impacts.
RCP 8.5, 2080-2099 average impact, median projections
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Climate change will make socio-economic extremes more common.

Expected number of extremely fatal hot years nationally  Both Bayesian
uncertainty about

future states of the
world and response
functions, and also
frequentist
uncertainty about
climate variability,
come into play
here.
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Translating uncertain projections to inform
decision-making: An example of sea-level rise

For more, see: m{m
Kopp et al. (2014), Earth’s Future, doi:10.1002/2014EF000239 Sea
. . NJ Sea Grant Consortium
Buchanan et al. (in rev.), arxiv:1510.08550.




Sea-level rise projections based on bottom-up, probabilistic
assessment
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Projected GMSL rise and sources of uncertainty
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Local sea-level rise projections show significant spatial variability

Median projection: RCP 8.5
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Users of our sea-level rise projection framework (in part or whole)

e NOAA nuisance flooding analysis

e California Energy Commission

e Southeast Florida Water Management District
e City of Boston

e New Jersey Climate Adaptation Alliance

e State of Delaware

e Structures of Coastal Resilience

e similar approach (which inspired ours) adopted by
New York City Panel on Climate Change

20



How do we translate probabilistic projections into actionable information?

The sea-level rise allowance framework provides one illustrative approach.

User's SLR
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Buchanan et al., in rev.
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Extreme value statistics
Expected number of floods per year at the Battery, New York City (1920-2013)

based on maximum-likelihood Generalized Pareto Distribution fit to observed extremes
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Expected number of flood events changes significantly with SLR
Expected number of floods per year at the Battery, New York City
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Expected number of flood events changes significantly
Expected number of floods per year at the Battery, New York City
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Under uncertainty, expectation heavily skews toward high end -
even if SLR projection is symmetric
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Allowances provide a framework for thinking about the
interaction of extremes and changes in the mean
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We can’t forget about those risks we don’t have good ways to assess
probabilities of right now — they may in the end prove to be the most
important.

Example:
‘Tipping elements’, ‘tipping points’, and ‘economic catastrophes’

[inden

Research supported by: [ 4 Gustfor

Conservation

Working paper: arxiv:1603.00850




A tipping point in “tipping points”
Google N-Gram Frequency

———tipping point ’\
E =——=tip point .
5
> economic catastrophe
%
o
3
-
o :
. . SO . _ I
1900 1920 1940 1960 1980

Gladwellian tipping points are: (1) contagious and
involve a large change that (2) results from small
changes and (3) occurs quickly.

Many climatic ‘tipping elements’ don’t fit the third criterion.
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Tipping elements in the Earth’s climate system

Timothy M. Lenton**, Hermann Held*, ElImar Kriegler*s, Jim W. Hall", Wolfgang Lucht*, Stefan Rahmstorf*,
and Hans Joachim Schellnhuber*/**
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Committed vs. realized changes

Many ‘tipping elements’ exhibit a long lag between commitment and realization
— and thus may be more important for the long-term future of the Earth system
than typical economic/adaptation timescales.

Small lags are most likely for tipping elements involving what are conventionally
called ‘fast feedbacks’ — atmosphere, surface ocean, sea ice. Other elements (ice
sheets, permafrost, large-scale ecosystems) likely exhibit long lags.

Year
b 100,
30 _ — Realized
- : --- Committed
X 60
~ I Example: Amazon forest
O L
S 40 cover per Jones et al.
=~ Z (2009), SRES A2
20 ¢ simulation, 1900-2100
0 :_ .......... N e e
"o 1 2 3 4 5

Global temperature above pre-industrial (K)
30



[llustrative candidate climatic tipping elements

Candidate Main impact pathways Potentially
Gladwellian

Regional North Atlantic convection

Atlantic Meridional Overturning
Circulation

El Nino-Southern Oscillation
Arctic sea ice

West African Monsoon
Coral reefs

Atmospheric superrotation
Greenland ice sheet
Antarctic ice sheet
Permafrost carbon

Methane hydrates

Amazon rainforest

Boreal forest

Kopp et al. (in rev.)

regional temperature, precipitation
regional temperature, precipitation; global mean
temperature; regional sea level
regional temperature, precipitation
regional temperature, precipitation
regional temperature, precipitation
ecosystem services

climate sensitivity (cloudiness)
sea level

sea level

greenhouse gas emissions
greenhouse gas emissions

ecosystem services; greenhouse gas emissions

ecosystem services; greenhouse gas emissions; albedo

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no
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[llustrative potentially climate-related social tipping points

Candidate

Environmental policy change (‘punctuated equilibrium’ model)
Technology learning curves (mitigation or adaptation)
Technology diffusion (mitigation or adaptation)

Migration

Contlict-development trap

Kopp et al. (in rev.)
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[llustrative potentially climate-related economic catastrophes

Economic catastrophes are often confused with physical tipping points in
the integrated assessment literature — but there is no necessary relationship

between the two.

Economic catastrophe [lustrative effect

Environmental disaster

Civil war

Temperature-induced growth rate
effects

Twin currency/banking crises

International war on country's
own soil

Large-scale political and
economic restructuring

Kopp et al. (in rev.)

~15% output reduction for >20 years due to 1-in-100 country-year
cyclone

~15% output reduction for >10 years if combined with strengthened
executive power

Potential stalling of growth in warm countries with low productivity
growth

~10% output reduction for >10 years

Transient per-capita output drop of > 50% in Europe during World
War 11

45% drop in GDP/capita in Russia from 1989 to 1996
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Some paths forward

For climatic tipping elements:
- What is the probability of occurrence? (Role for expert elicitation, combined
with models of physical processes?)
- What are the consequences of crossing a critical thresholds? (Use physical
models to determine magnitude, timescale of resulting physical changes? Use
empirical models and sectoral process models to assess how those physical
changes translation into economic costs?)

For social tipping points:
- What is the landscape like? What are the relevant social mechanisms driving
positive feedbacks? How can they be characterized?

For economic catastrophes:
- What causes economic catastrophes, and how might they be influenced by
climate change? (Clearest links for environmental catastrophes, civil conflict,
temperature effects on growth)

Kopp et al. (in rev.)
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Key points

» It's important to be cognizant of both forced and unforced changes, and about
the interaction between physical and socio-economic uncertainty.

» Simple, probabilistic climate models provide a useful complement to large-scale
Earth system models, which represent modeling groups’ best estimates.

 An increasing number of socio-economic impacts can be quantified using state-
of-the-art econometric and process models.

« We need tools and frameworks for translating probabilistic information into
actionable information. But these involve decision-specific values such as time
horizon and risk tolerance — they can’t be decided by scientists acting in
isolation.

- Many potential impacts - such as ‘tipping points’ — remain (and will likely
continue for a long while to remain) unquantified.

« Although ‘tipping point’ probability may be hard to assess, and the ‘tipping
points’ concept itself has promoted confusion, it is important to be cognizant
of (deeply uncertain) thresholds in both physical and social systems.

» More value issues: In physical systems, many of the consequences of ‘tipping
points’ may play out on timescales well beyond those of conventional decision-
making, but with important effects on our civilizational legacy.
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