
Olive: Sustaining Executable Content Over Decades

Mahadev Satyanarayanan†, Gloriana St. Clair‡,
Benjamin Gilbert†, Jan Harkes†, Dan Ryan‡, Erika Linke‡, Keith Webster‡

†School of Computer Science and ‡University Libraries
Carnegie Mellon University

ABSTRACT
We describe a system called Olive that freezes and precisely repro-
duces the environment necessary to execute software long after its
creation. It uses virtual machine (VM) technology to encapsulate
legacy software, complete with all its software dependencies. This
legacy world can be completely closed-source: there is no require-
ment for availability of source code, nor a requirement for recompila-
tion or relinking. The entire VM is streamed over the Internet from
a web server, much as video is streamed today.

1. Software in Science
Reproducibility is at the heart of the scientific method.

Confidence in a result grows as researchers all over the world
are able to reproduce it independently. Today, an increasing
fraction of the world’s intellectual output is in the form of
executable content — i.e., software. This is true in virtually
all areas of scholarship, from physics, chemistry, biology,
and engineering to economics, political science and the hu-
manities. Examples of such executable content include data
analysis tools to slice and dice raw data, zoomable visual-
ization tools that enable results to be viewed at many levels
of abstraction, and simulation models written in a variety
of programming languages and using a wide range of sup-
porting libraries and reference data sets. Such software is
central, not peripheral, to the discovery of new results to-
day. Raw scientific data is often of limited value unless it is
accompanied by the uniquely customized software that was
created to decode, interpret, analyze and display that data.

The role of software in the scientific method is illustrated
by a recent controversy [6]. In early 2010, Reinhart and Ro-
goff published an analysis of economic data spanning many
countries [8, 9]. Herndon et al [4] refuted their findings in
2013 by discovering an error in their calculations. The sig-
nificance of the error was described as follows [7]:
“The Reinhart-Rogoff research is best known for its result that,
across a broad range of countries and historical periods, economic
growth declines dramatically when a country’s level of public debt
exceeds 90 per cent of gross domestic product.
· · ·
When we performed accurate recalculations using their dataset,
we found that, when countries’ debt-to-GDP ratio exceeds 90 per
cent, average growth is 2.2 per cent, not -0.1 per cent.”

The controversy continues, but regardless of how it is even-
tually resolved, there is no denying the central role of soft-
ware (in this case, a Microsoft Excel spreadsheet) in the orig-
inal analysis, its refutation and its eventual resolution.

2. The Ravages of Time
In the Reinhart-Rogoff example, there was no difficulty

in obtaining the software necessary to perform the recalcu-
lations. Only three years had elapsed since the original pub-
lication of results, and the same version of Microsoft Excel
continued to be in widespread use. Imagine, however, that
the recalculations were attempted by a researcher 30 years
later. Would Microsoft Excel still be in use? If so, would the
version then in use accept the data format used by the orig-
inal researchers? Would the calculations performed by that
version be identical in every respect (including, for example,
handling of rounding errors) to the version used by the orig-
inal researchers? What if Microsoft goes out of business ten
years after the original publication of results, and the Win-
dows environment (which is needed to run Excel) ceases to
be in use? As these questions suggest, our growing depen-
dence on software in scientific research introduces new chal-
lenges to the premise of reproducibility that is the bedrock of
science. Unless these challenges are addressed, our ability to
re-validate published results will evaporate over time.

In this paper, we describe a system called Olive that seeks
to freeze and precisely reproduce the environment necessary
to execute software long after its creation (possibly many
decades later). It uses virtual machine (VM) technology to
encapsulate legacy software, complete with all its software
dependencies. This includes the operating system, dynam-
ically linked libraries, tool chains, configuration files, data
files and other supporting items. This legacy world can be
completely closed-source: there is no requirement for avail-
ability of source code, nor a requirement for recompilation
or relinking. The entire VM is streamed over the Internet
from a web server, much as video is streamed today. One-
click execution of pre-packaged legacy software from a web
site thus becomes possible. The rest of this paper examines
the challenges addressed by Olive, and then describes its de-
sign, implementation and current status.

3. Execution Fidelity
Precise reproduction of software execution, which we call

execution fidelity, is a complex problem in which many
moving parts must all be perfectly aligned for a solution.
Preserving this alignment over space and time is difficult.

1

Figure 1: Microsoft Office 6.0 on Windows 3.1

Many things can change: the hardware, the operating sys-
tem, dynamically linked libraries, configuration and user pref-
erence specifications, geographic location, execution timing,
and so on. Even a single change may hurt fidelity or com-
pletely break execution.

Unfortunately, the available mechanisms for enforcing ex-
ecution fidelity are weak. Most software distribution today
takes the form of install packages, typically in binary form
but sometimes in source form. The act of installing a pack-
age involves checking for a wide range of dependencies, dis-
covering missing components, and ensuring that the tran-
sitive closure of dependencies involving these components
is addressed. Tools have been developed to simplify and
partially automate these steps. However, the process still
involves considerable skill and knowledge, remains failure-
prone, and typically involves substantial time and effort.

These difficulties loom large to any researcher who at-
tempts to re-validate old scientific results. Software install
packages themselves are static content, and can be archived
in a digital library using the same mechanisms that are used
to archive scientific data. However, the chances of success-
fully installing and executing this software in the distant fu-
ture are low. In addition to all of the software installation
challenges mentioned above, there is the additional difficulty
that the passage of time makes hardware and software envi-
ronments obsolete. The chances of finding compatible hard-
ware and operating system on which to even attempt an in-
stall become vanishingly small over time scales of decades.
These challenges have long stymied efforts to archive exe-
cutable content [2, 3, 5].

4. Virtual Machines
Olive leverages VM technology to encapsulate and deliver

a bit-exact, pre-packaged execution environment. The VM
abstraction is implemented by a virtual machine monitor
(VMM). This is a computer architecture and instruction set

Figure 2: Great American History Machine on
Windows 3.1

emulator of such high accuracy and transparency that nei-
ther an application nor the operating system is able to detect
its presence. In other words, emulated execution is indistin-
guishable from execution on genuine hardware. VMs have
a venerable history, dating back to the late 1960s. In the
past decade, the emergence of cloud computing has spawned
tremendous activity and investment in advancing the VM ab-
straction. Olive benefits indirectly from the many efforts in
academia and industry that are aimed at improving the per-
formance and functionality of VM-based systems. In Olive,
VMs are transparently streamed from servers to execution
sites over the Internet. The archived software within the VM
executes without any awareness of the streaming process.

5. Olive Status
Olive contains over 15 VMs today, including operating

systems and applications dating back to the late 1980s. A
summary of the collection is shown at the end of the paper
(Figure 7). The collection continues to grow. For brevity, we
describe only four of these VMs below.

Microsoft Office 6.0
Figure 1 shows a screenshot of this VM, containing Word,
Excel and PowerPoint for Windows 3.1. If Reinhart and Ro-
goff had published their controversial paper [8] in the 1993-
94 timeframe, this is the VM that you would need to re-
validate their results today.

Great American History Machine
This application was originally created in the late 1980s by
Professor David Miller of Carnegie Mellon University. It
was used by him and by many professors at other universi-
ties nationwide to teach 19th century and early 20th century
American history. As the screenshot in Figure 2 shows, this
educational software used census and election data to teach

2

Figure 3: TurboTax 1997 on Windows 3.1

students important historical concepts such as the origins of
the Civil War. The Windows 3.1 version of this software
was created in collaboration with the University of Mary-
land. Because of lack of financial resources to port the soft-
ware to newer Windows platforms, it fell into disuse over
time. No modern equivalent of this software exists today.

TurboTax 1997
This application for Windows 3.1 and Windows 95 was used
by millions of Americans to prepare their 1997 tax returns.
Figure 3 shows a screenshot of this application. Since Tur-
boTax is updated each year to reflect the current tax laws,
a suite of TurboTax VMs from consecutive years can of-
fer unique historical value. Imagine a class in political sci-
ence, public policy or economics assigning students a project
based on TurboTax versions that are ten years apart. By cal-
culating the tax returns for hypothetical families with dif-
ferent sources and amounts of income, students can see for
themselves the impact of tax code changes over time. Such
active learning can transform the abstract topic of tax law
into a source of valuable real-world insights.

NCSA Mosaic
As the world’s first widely-used web browser dating back to
1992-93, Mosaic has a unique historical status. This VM,
whose screenshot is shown in Figure 4, is also interesting
for a second reason. The version of Mosaic that it encapsu-
lates was written for the Apple MacOS 7.5 operating system
on Motorola 68040 hardware. The VM also encapsulates
Basilisk II, an open source hardware emulator for Motorola
68040 on modern Intel x86 hardware running Linux. The
bootable disk image of MacOS 7.5 with Mosaic is stored as
a file in the virtual file system of the outer Linux guest. In
spite of two levels of virtualization, performance is accept-
able because modern hardware is so much faster than the
original Apple hardware. Pointing the Mosaic browser at
modern web sites is instructive. Since Mosaic predates web

Figure 4: Mosaic Browser on MacOS 7.5

technologies such as JavaScript, HTTP 1.1, Cascading Style
Sheets, and HTML5 it is unable to render content from mod-
ern web sites. It is, however, capable of rendering web pages
from some older sites that are still on the Internet.

6. Olive Implementation
Figure 5 illustrates the conceptual structure of an Olive

client. At the bottom (1 and 2) is standard Intel x86 desk-
top or laptop hardware running Linux (generically called
the “host operating system”). Layered above this (3) is an
Olive component called VMNetX that implements caching
and prefetching of VM images over the Internet. VMNetX
presents the illusion of a fully assembled VM image to the
VMM layer above, which virtualizes the x86 host hardware.
We use KVM/QEMU as our VMM. Layers 5 through 8 in
Figure 5 are encapsulated within the archival VM image that
is streamed from Olive servers. The lowest of these layers
(5) is a hardware emulator that presents the illusion of now-
obsolete hardware (such as Motorola 68040). This layer can
be omitted if the archived environment targets x86 hardware.
Layer 6 is the archived operating system (generically called
the “guest” operating system). The virtual disk of the VM
is managed by the guest operating system, and appears as a
local file system to higher layers.

Layer 7, which represents the archived application (such
as the Great American History Machine) is the focal point
of interest in archiving. It is to support execution of this ap-
plication with high fidelity that the entire edifice shown in
Figure 5 is necessary. Layer 8 represents input that is pro-
vided to the archived application. In the Reinhart-Rogoff
example, Layer 8 would be the original Excel spreadsheet
that was used in their analysis. Layer 7 would be the version
of Excel that they used. In a different situation, such as ex-
amining an old archived engineering drawing, Layer 7 might
be the AutoCAD application and Layer 8 would be the input
files to AutoCAD that represent the drawing. Alternatively,
Layer 8 may be placed on an external data source such as

3

1

1. Today’s Hardware (x86)

3. VMNetX

4. Virtual Machine Monitor (KVM/QEMU)

gu
es

t e
nv

iro
nm

en
t

2. Operating System (Linux) (host OS)

5. Hardware emulator (e.g. Basilisk II)
(not needed if old hardware was x86)

6. Old Operating System (guest OS)
(e.g., Windows 3.1)

7. Old Application
(e.g., Great American History Machine)

8. Data file, Script, Simulation Model, etc.
(e.g. Excel spreadsheet)

ho
st

 e
nv

iro
nm

en
t

Virtual Machine
(streamed over the Internet from Olive archive)

Figure 5: Abstract Olive Client Structure

a distributed file system and exposed to the guest OS as a
virtual floppy disk or virtual CD-ROM.

Figure 6 shows how the abstract layers shown in Figure 5
are mapped to the Olive architecture. Layers 8 through 5
are encapsulated within the VM instance shown on the left.
Layer 4 (KVM/QEMU) is explicitly shown in Figure 6. Layer
3 (VMNetX) maps to the user-level process and file caches
(“pristine” and “modified”). As the VM instance executes, it
may access parts of its VM image that have not been cached
yet. VMNetX services these cache misses using HTTP range
requests to a standard Web server such as Apache. The “web
page” in this case is a large file on the server that contains
all components of the VM image, including its disk image,
its memory image, and its hardware configuration.

To support non-Linux clients, the entire client structure
shown in Figure 6 can be executed on a nearby cloudlet [10]
or private cloud. The SPICE remote desktop protocol [1] is
used for thin client user interactions with the VM instance.
Low-latency, high-bandwidth network connectivity between
the user and the VM instance is necessary for thin clients to
provide a good user experience.

7. Conclusion
Executable content ranging from simulation models to vi-

sualization tools plays an increasingly important role in sci-
entific research. The ability to archive these artifacts for pos-
terity would be an important transformative step. Imagine
being able to reach back across time to execute the simu-
lation model of a long-dead scientist on new data that you
have just acquired. What do the results suggest? Would they
have changed the conclusions of that scientist? Although
you aren’t quite bringing the scientist back to life, you are
collaborating with that person in a way that was not possible
until now. Olive is the first system to provide this new capa-
bility, which we predict will become a sine qua non for the
scientific method in the 21st century and beyond.

Linux

VMNetX
client

FUSE

VM Image file

pristine
cache

modified
cache

to Olive server
via standard
HTTP range

requests

G
ue

st
 O

S

KVM / QEMU

VM
M

G
ue

st
 A

pp Unmodified
Web Server

Manifest Domain
XML

Disk
Image

Memory
Image

Figure 6: Olive Architecture

Availability
The Olive web site is at http://olivearchive.org. Due to soft-
ware licensing restrictions outside our control, the VMs on the web
site are currently accessible only to our research collaborators. We
hope to lift this restriction in the future. VMNetX is open-source
software available under the GPLv2 license.

Acknowledgements
Vas Bala and his colleagues at IBM collaborated with us on the early
research that led to the Olive vision. We wish to thank IBM for its
support and early advocacy of Olive. This work was supported by the
Alfred P. Sloan Foundation and the Institute of Museum and Library
Sciences. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and should not be
attributed to Carnegie Mellon University or the funding sources.

8. REFERENCES
[1] Spice, 2014. http://www.spice-space.org/.
[2] P. Conway. Preservation in the Digital World.

http://www.clir.org/pubs/reports/conway2/, March
1996.

[3] P. Conway. Preservation in the Age of Google: Digitization,
Digital Preservation, and Dilemmas. Library Quarterly, 80(1),
2010.

[4] T. Herndon, M. Ash, and R. Pollin. Does High Public Debt
Stifle Economic Growth? A Critique of Reinhart and Rogoff.
Working Paper 322, Political Economy Research Institute,
University of Massachussets Amherst, April 2013.
http://www.peri.umass.edu/236/hash/
31e2ff374b6377b2ddec04deaa6388b1/publication/566/.

[5] B. Matthews, A. Shaon, J. Bicarreguil, and C. Jones. A
Framework for Software Preservation. The International
Journal of Digital Curation, 5(1), June 2010.

[6] P. Monaghan. ’They Said at First That They Hadn’t Made a
Spreadsheet Error, When They Had’. The Chronicle of Higher
Education, April 2013. https://chronicle.com/article/
UMass-Graduate-Student-Talks/138763/.

[7] R. Pollin and M. Ash. Austerity after Reinhart and Rogoff.
Financial Times, April 2013. http://www.ft.com/cms/s/0/
9e5107f8-a75c-11e2-9fbe-00144feabdc0.html#
axzz2zLV7HuwS.

[8] C. M. Reinhart and K. S. Rogoff. Growth in a Time of Debt.
American Economic Review, 100(2):573–78, May 2010.

[9] C. M. Reinhart and K. S. Rogoff. Growth in a Time of Debt.
Working Paper 15639, National Bureau of Economic Research,
January 2010. http://www.nber.org/papers/w15639.

[10] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The
Case for VM-Based Cloudlets in Mobile Computing. IEEE
Pervasive Computing, 8(4), October-December 2009.

4

Timeframe Operating Application Description
System

1 Late 1980s
to early
1990s

Microsoft MS-
DOS

Preferred orientation
package - Los Alamos

Texture analysis software package that provides a comprehensive treatment

of material texture analysis.

2 Air Stripper Design and
Costing (ASDC)

ASDC enables rapid generation and evaluation of alternative air stripper de-

signs for removal of volatile organic compounds (VOCs) from water.

3 Amortizer Plus 3.01 Amortizer calculates loan amortization in a user-friendly, character-cell

interface

4 Wanderer Wanderer is a game similar to the old ”Boulderdash” or ”Repton” games, and

was originally written to run under UNIX on text terminals (TVI910 and

Wyse60)

5 DOOM for DOS The original DOOM First Person Shooter game

6 Early to
mid-1990s

Microsoft Win-
dows 3.1

Microsoft Office 6.0 Microsoft Word 6.0c, Excel 5.0, and PowerPoint 4.0

7 WordPerfect 6.1 Widely used word-processing software before Microsoft Word became

dominant

8 Electronic Anesthesiol-
ogy Library 1991-95

A compilation in multimedia format of four journals (Anesthesiology, Anesthe-

sia and Analgesia, British Journal of Anaesthesia, and The Canadian Journal

of Anaesthesia). Includes the Knowledge Finder software for searching the

journals.

9 TurboTax 1997 Tax-preparation software for tax year 1997

10 Great American History
Machine

Visualization software to explore historical American census and election data

from the 19th and early 20th centuries. The original version was created in

the late 1980s for Carnegie Mellon University’s Andrew system.

11 Mid-1990s Apple MacIn-
tosh 7.5

Oregon Trail 1.1 A game designed to teach school children about the realities of 19th century

pioneer life on the Oregon Trail. The original pre-Mac version was conceived

in 1971 and produced by the Minnesota Educational Computing Consortium

(MECC) in 1974.

12 HyperCard 2.4.1 The last version of Apple’s HyperCard multimedia authoring system for

Macintosh.

13 NCSA Mosaic 1.0 A very early web browser that triggered world-wide awareness of the Internet

14 Netscape Navigator 1.12 One of the earliest versions of the first commercial web browser.

15 Early 2000s Microsoft Win-
dows XP

Basic operating system environment

16 2012 Scientific Linux
6.4

A Linux release put together by Fermilab, CERN, and various other labs and

universities around the world. Its primary purpose is to reduce duplicated effort

of the labs, and to have a common install base for the various experimenters.

17 ChemCollective A collection of virtual labs, scenario-based learning activities, tutorials, and

concept tests to teach and learn chemistry.

Figure 7: VM Collection in Olive as of April 2014

5

