Data
Intensive
Scalable
Computing
Its Role in Scientific Research

Randal E. Bryant Carnegie Mellon University

http://www.cs.cmu.edu/~bryant

Examples of Big Data Sources

Google / Yahoo! / Microsoft

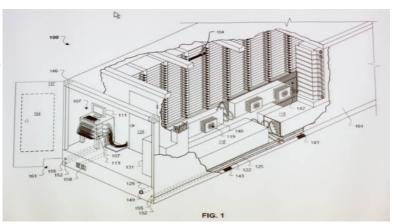
- Search over > 20 B web pages
- Also maps, images, videos, ...

Wal-Mart

- 267 million items/day, sold at 6,000 stores
- HP built them 4 PB data warehouse
- Mine data to manage supply chain, understand market trends, formulate pricing strategies

LSST

- Chilean telescope will scan entire sky every 3 days
- Generate 30 TB/day of image data



Google Data Centers

- Hydroelectric power @ 2¢ / KWH
- 50 Megawatts
- Enough to power 6,000 homes

- Engineered for maximum modularity & power efficiency
- Container: 1160 servers, 250KW
- Server: 2 disks, 2 processors

Why So Much Data?

We Can Get It

Automation + Internet

We Can Keep It

- Seagate Barracuda
- 1.5 TB @ \$110 (7.3¢ / GB)

We Can Use It

- Scientific breakthroughs
- Business process efficiencies
- Realistic special effects
- Better health care

Seagate Barracuda 7200.11 1.5 TB 7200RPM SATA 3Gb/s 32MB Cache 3.5 Inch Internal Hard Drive ST31500341AS-Bare Drive (Amazon Frustration-Free Packaging)

Other products by Seagate

★★★★☆ ▽ (277 customer reviews) | More about this product

Size Name:

1.5 TB: \$109.99

List Price: \$199.99

Price: \$109.99 Free Standard Shipping (3-5 days)

<u>Details</u>

You Save: \$90.00 (45%)

Special Offers Available

Could We Do More?

Apply more computing power to this data

Oceans of Data, Skinny Pipes

No more blaming connection speeds for your losses.

Verizon FiOS – the fastest Internet available.

Plans as low **\$39.99/month** (up to 5 Mbps). Plus, order online & **get your first month FREE!**

Enter your home phone number below to check availability.

Don't have a Verizon phone number? Qualify your address.

1 Terabyte

- Easy to store
- Hard to move

Disks	MB/s	Time
Seagate Barracuda	115	2.3 hours
Seagate Cheetah	125	2.2 hours
Networks	MB/s	Time
Home Internet	< 0.625	> 18.5 days
Gigabit Ethernet	< 125	> 2.2 hours
PSC Teragrid Connection	< 3,750	> 4.4 minutes

Data-Intensive System Challenge

For Computation That Accesses 1 TB in 5 minutes

- Data distributed over 100+ disks
 - Assuming uniform data partitioning
- **Compute using 100+ processors**
- Connected by gigabit Ethernet (or equivalent)

System Requirements

- Lots of disks
- Lots of processors
- Located in close proximity
 - Within reach of fast, local-area network

Is This Cloud Computing?

"I don't want to be a system administrator. You handle my data & applications."

- Hosted services
- Documents, web-based email, etc.
- Can access from anywhere
- Easy sharing and collaboration

-7-

"I've got terabytes of data. Tell me what they mean."

- Very large, shared data repository
- Complex analysis
- Data-intensive scalable computing (DISC)

Desiderata for DISC Systems

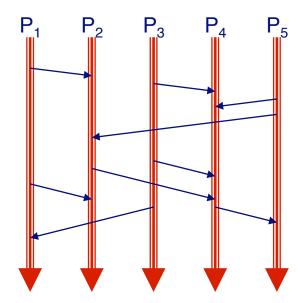
Focus on Data

■ Terabytes, not tera-FLOPS

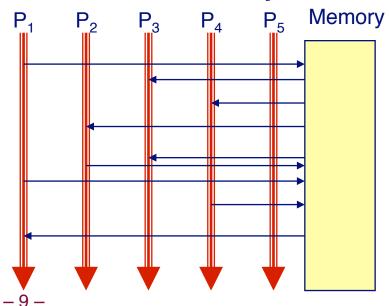
Problem-Centric Programming

Platform-independent expression of data parallelism

Interactive Access


From simple queries to massive computations

Robust Fault Tolerance


Component failures are handled as routine events

Contrast to existing High Performance Computing (HPC) systems

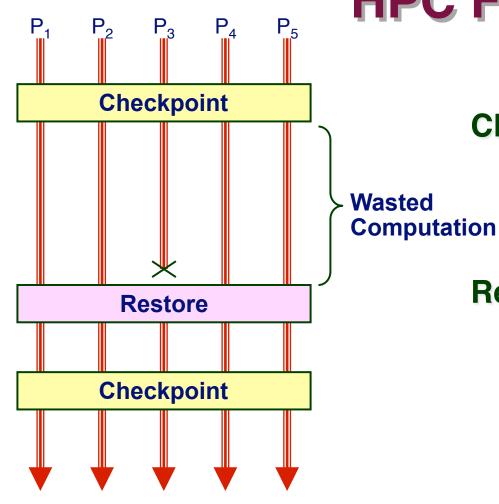
Message Passing

Shared Memory

Typical HPC Operation

Characteristics

- **Long-lived processes**
- Make use of spatial locality
- Hold all program data in memory (no disk access)
- High bandwidth communication


Strengths

- High utilization of resources
- Effective for computationallyintensive applications

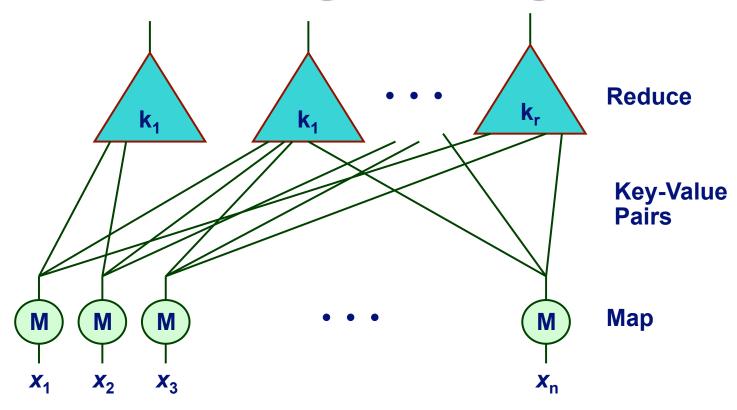
Weaknesses

- Requires careful tuning of application to resources
- Intolerant of any variability

HPC Fault Tolerance

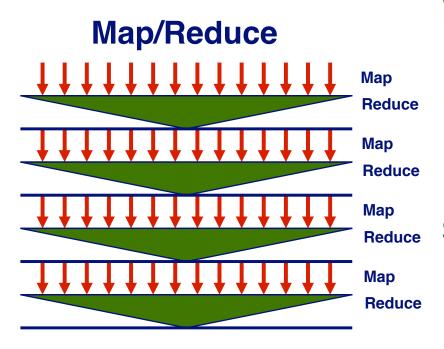
Checkpoint

- Periodically store state of all processes
- Significant I/O traffic


Restore

- When failure occurs
- Reset state to that of last checkpoint
- All intervening computation wasted

Performance Scaling


Very sensitive to number of failing components

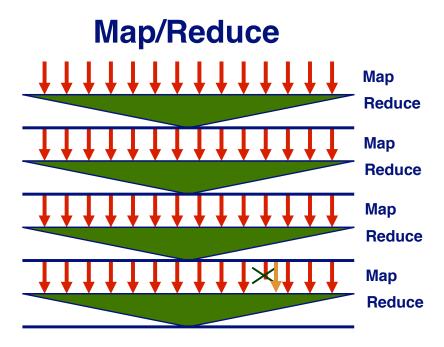
Map/Reduce Programming Model

- Map computation across many objects
 - E.g., 10¹⁰ Internet web pages
- Aggregate results in many different ways
- System deals with issues of resource allocation & reliability

Map/Reduce Operation

Characteristics

- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Use disk storage to hold intermediate results


Strengths

- Great flexibility in placement, scheduling, and load balancing
- Can access large data sets

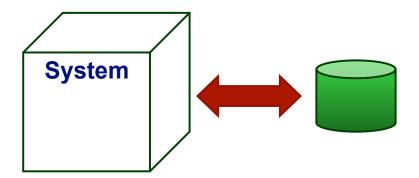
Weaknesses

- Higher overhead
- Lower raw performance

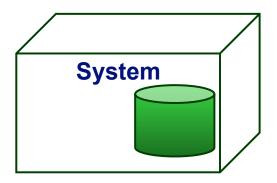
Map/Reduce Fault Tolerance

Data Integrity

- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

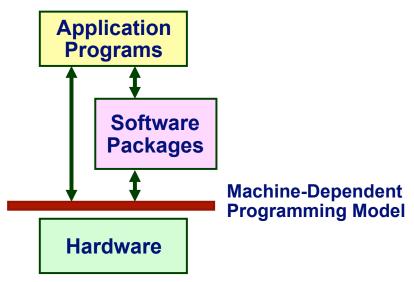

Recovering from Failure

- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy


System Comparison: Data

Conventional HPC

DISC


- Data stored in separate repository
 - No support for collection or management
- Brought into system for computation
 - Time consuming
 - Limits interactivity

- System collects and maintains data
 - Shared, active data set
- Computation collocated with storage
 - Faster access

System Comparison: Programming Models

Conventional HPC

- Programs described at very low level
 - Specify detailed control of processing & communications
- Rely on small number of software packages
 - Written by specialists
 - Limits classes of problems & solution methods

DISC

Machine-Independent Programming Model

Application Programs

Runtime System

Hardware

- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing,

. . .

System Comparison: Reliability

Runtime errors commonplace in large-scale systems

- Hardware failures
- Transient errors
- Software bugs

Conventional HPC

"Brittle" Systems

- Must back up entire computation to most recent checkpoint
- Must bring down system for diagnosis or repair

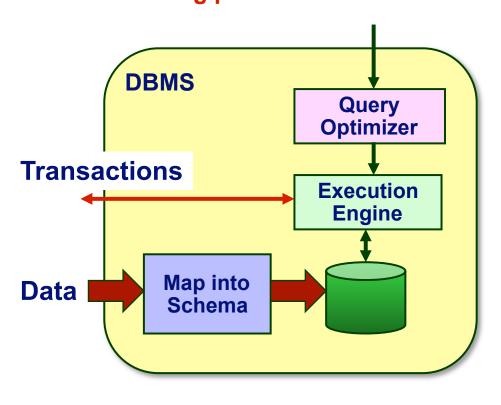
DISC

Flexible Error Detection and Recovery

- Runtime system detects and diagnoses errors
- Selective use of redundancy and dynamic recomputation
- Nonstop operation
- Requires flexible programming model & runtime environment

Compare to Database Technology

Structured Data


- Based on previously conceived schema design
- Bulk loaded or via transactions

Access with Queries

- Declarative language
- Extract, cross-reference, and aggregate data

Monolithic System

Implementation details hidden (in principle) "Find the average number of items purchased by shoppers using promotion code 58937"

- 17 - ■ Often proprietary

Simplistic Comparison

DBMS

- Data stored according to schema
- Declarative query language
- Many sophisticated optimizations
- Support small & large queries
- Limited scaling

Map/Reduce

- Data stored as unstructured files
- User-defined map & reduce functions
- Runtime system fairly straightforward
- Batch processing of data only
- Designed to operate on massive scale

DBMS: Map/Reduce Convergence

Computational Support in DBs

- User defined functions
 - Lets user write code to operate on data
 - Recently adding map / reduce expressive power

Database Support in M/R Environments

- Layer database features onto file system
 - Limit expressive power in favor of scalability
- Layer query language on top of Map / Reduce
 - e.g., Pig, Hive

Getting Started

Goal

Get university faculty & students involved in DISC

Software

- Hadoop Project
 - Open source project providing file system and Map/Reduce
 - Supported and used by Yahoo
 - Rapidly expanding user/developer base
 - Prototype on single machine, map onto cluster

Access to Hardware

Rent from Amazon

- Elastic Compute Cloud (EC2)
 - Generic Linux cycles for \$0.10 / hour (\$877 / yr)

Network-accessible storage for \$0.15 / GB / month (\$1800/TB/yr)

Borrow from Others

- IBM / Google providing access to cluster through NSF
- Yahoo providing access to selected universities through M45 program
- OpenCirrus Consortium: Intel, HP, Yahoo, and others

Build Your Own

■ Universities acquiring clusters of 10—100 nodes.

(Potential) Impact on Science

Analyzing Measured / Acquired Data

- Spatio-temporal data (astronomy, accelerators, ...)
- Unstructured / semistructured data (DNA databases, ...)
- Different needs and approaches
 - Variations of HPC, DB, and Map/Reduce

Analyzing Synthetic Data

- Simulations generate massive data sets
- Need new tools to evaluate and understand

Impact on Traditional Scientific Computing

- Simple hardware, extreme scalability, abstract programming model
- Current performance well short of HPC for computationally -intensive applications