

Plasma Science

*From Fundamental Research to
Technological Applications*

Panel on Opportunities in Plasma Science and Technology

Plasma Science Committee
Board on Physics and Astronomy
Commission on Physical Sciences, Mathematics, and Applications
National Research Council

NATIONAL ACADEMY PRESS
Washington, D.C. 1995

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

This project was supported by the Department of Energy under Contract No. DE-FG05-88ER53279, the National Science Foundation under Grant No. PHY-9100105, and the Office of Naval Research under Contract No. N00014-J-1728.

Library of Congress Catalog Card No. 94-69693
International Standard Book No. 0-309-05231-9

Cover: A snapshot of the electron density distribution in a magnetized, pure-electron plasma. These plasmas are nearly ideal, inviscid, two-dimensional fluids and are being used to study the relaxation and self-organization of fluid turbulence (see Plate 2 for details). (Courtesy of C.F. Driscoll, University of California, San Diego.)

Additional copies of this report are available from:

National Academy Press
2101 Constitution Avenue, NW
Box 285
Washington, DC 20055
800-624-6242
202-334-3313 (in the Washington Metropolitan Area)

Copyright 1995 by the National Academy of Sciences. All rights reserved.

Printed in the United States of America

**PANEL ON OPPORTUNITIES IN PLASMA SCIENCE AND
TECHNOLOGY**

CLIFFORD SURKO, University of California, San Diego, *Co-Chair*
JOHN AHEARNE, Sigma Xi, The Scientific Research Society, *Co-Chair*
PETER BANKS, University of Michigan
THOMAS BIRMINGHAM, NASA Goddard Space Flight Center
MICHAEL BOYLE, Bondtronix, Inc.
RONALD C. DAVIDSON, Princeton University
JONAH JACOB, Science Research Laboratory, Inc.
MIKLOS PORKOLAB, Massachusetts Institute of Technology
EDWIN SALPETER, Cornell University
ROBERTA SAXON, SRI International
SAM TREIMAN, Princeton University
HERBERT YORK, University of California, San Diego (retired)
ELLEN ZWEIBEL, University of Colorado

RONALD D. TAYLOR, Senior Program Officer (1992-1994)
DANIEL F. MORGAN, Program Officer

PLASMA SCIENCE COMMITTEE

RAVI SUDAN, Cornell University, *Chair*
RICHARD A. GOTTSCHO, AT&T Bell Laboratories, *Vice Chair*
STEVEN C. COWLEY, University of California, Los Angeles
JAMES DAKIN, GE Lighting
ROY GOULD, California Institute of Technology
RICHARD D. HAZELTINE, University of Texas at Austin
MARY KATHERINE HUDSON, Dartmouth College
WILLIAM L. KRUER, Lawrence Livermore National Laboratory
MICHAEL LIEBERMAN, University of California, Berkeley
CHUAN S. LIU, University of Maryland
NATHAN RYNN, University of California, Irvine
ELLEN ZWEIBEL, University of Colorado

*Former Members of the Committee Who Were Active
During the Period of the Study*

JONATHAN ARONS, University of California, Berkeley
MAHA ASHOUR-ABDALLA, University of California, Los Angeles
IRA BERNSTEIN, Yale University
E.M. CAMPBELL, Lawrence Livermore National Laboratory
RONALD C. DAVIDSON, Princeton University
ALAN GARSCADDEN, Wright Research and Development Center
ROBERT L. McCRARY, JR., University of Rochester
FRANCIS W. PERKINS, Princeton University
JOSEPH PROUD, GTE Laboratories Incorporated
NORMAN ROSTOKER, University of California, Irvine

RONALD D. TAYLOR, Senior Program Officer (1992–1994)
DANIEL F. MORGAN, Program Officer

BOARD ON PHYSICS AND ASTRONOMY

DAVID N. SCHRAMM, University of Chicago, *Chair*
ROBERT C. DYNES, University of California, San Diego, *Vice Chair*
LLOYD ARMSTRONG, JR., University of Southern California
DAVID H. AUSTON, Rice University
DAVID E. BALDWIN, Lawrence Livermore National Laboratory
PRAVEEN CHAUDHARI, IBM T.J. Watson Research Center
FRANK DRAKE, University of California, Santa Cruz
HANS FRAUENFELDER, Los Alamos National Laboratory
JEROME I. FRIEDMAN, Massachusetts Institute of Technology
MARGARET J. GELLER, Harvard-Smithsonian Center for Astrophysics
MARTHA P. HAYNES, Cornell University
WILLIAM KLEMPERER, Harvard University
AL NARATH, Sandia National Laboratories
JOSEPH M. PROUD, GTE Corporation (retired)
ROBERT C. RICHARDSON, Cornell University
JOHANNA STACHEL, State University of New York at Stony Brook
DAVID WILKINSON, Princeton University
SIDNEY WOLFF, National Optical Astronomy Observatories

DONALD C. SHAPERO, Director
ROBERT L. RIEMER, Associate Director
DANIEL F. MORGAN, Program Officer
NATASHA CASEY, Senior Administrative Associate
STEPHANIE Y. SMITH, Project Assistant

**COMMISSION ON PHYSICAL SCIENCES,
MATHEMATICS, AND APPLICATIONS**

RICHARD N. ZARE, Stanford University, *Chair*
RICHARD S. NICHOLSON, American Association for the Advancement of
Science, *Vice Chair*
STEPHEN L. ADLER, Institute for Advanced Study, Princeton
SYLVIA T. CEYER, Massachusetts Institute of Technology
SUSAN L. GRAHAM, University of California, Berkeley
ROBERT J. HERMANN, United Technologies Corporation
RHONDA J. HUGHES, Bryn Mawr College
SHIRLEY A. JACKSON, Rutgers University
KENNETH I. KELLERMANN, National Radio Astronomy Observatory
HANS MARK, University of Texas at Austin
THOMAS A. PRINCE, California Institute of Technology
JEROME SACKS, National Institute of Statistical Sciences
L.E. SCRIVEN, University of Minnesota
LEON K. SILVER, California Institute of Technology
CHARLES P. SLICHTER, University of Illinois at Urbana-Champaign
ALVIN W. TRIVELPIECE, Oak Ridge National Laboratory
SHMUEL WINOGRAD, IBM T.J. Watson Research Center
CHARLES A. ZRAKET, Mitre Corporation (retired)

NORMAN METZGER, Executive Director

Preface

In the mid-1980s, the plasma physics volume of the series *Physics Through the 1990s* (National Research Council, National Academy Press, Washington, D.C., 1986) signaled problems for plasma science in the United States, particularly with regard to the basic aspects of the science. In the years that followed, there developed a widespread feeling in the plasma science community that something systematic needed to be done to address these issues. Out of this concern, the Plasma Science Committee of the Board on Physics and Astronomy was created in 1988. Following its establishment, plans were begun to undertake this study. With funding from the National Science Foundation, the Department of Energy, and the Office of Naval Research, the Panel on Opportunities in Plasma Science and Technology was appointed in May 1992, and the study began.

Approximately half of the 13-member panel consisted of experts in the many facets of plasma science considered in this report and half of scientists outside the field, with one of the co-chairs selected as a person with experience in science policy. Three of the members are from industry; one is from a government laboratory and one from an independent research society; and the remaining eight are from academe.

The task statement to the panel requested that this study examine virtually all aspects of plasma science and technology in the United States, assess the health of basic plasma science as a research enterprise, and identify and address key issues in the field. Specifically, the panel was charged with the task of conducting an assessment of plasma science that included beams, accelerators, and coherent radiation sources; single-species plasmas and atomic traps; basic plasma science in magnetic confinement and inertial fusion devices; space plas-

ma physics; astrophysics; low-temperature plasmas; and theoretical and computational plasma science. It was directed to address the following:

1. Assess the health of basic plasma science in the United States as a research enterprise: (a) Identify and describe selected scientific opportunities. (b) Identify and describe selected technological opportunities. (c) Assess and prioritize new opportunities for research using the criteria of intellectual challenge, prospects for illumination of classic research questions, connection with other fields of science, and potential for applications. (d) Assess applications using the criteria of potential for contributing to industrial competitiveness, national defense, human health, and other aspects of human welfare.
2. Identify and address the issues in the field, including the following: (a) Evaluate the quality and size of the educational programs in plasma science in light of the nation's future needs. (b) Assess the institutional infrastructure in which plasma science is conducted, and identify changes that would improve the research and educational effort. (c) Characterize the basic experimental facilities needed to increase scientific productivity. (d) Develop a research strategy that is responsive to the issues. (e) Compare the U.S. program with those of Japan and Western Europe, and identify opportunities for international cooperation. (f) Identify the interactions and synergism with other areas of physics, chemistry, mathematics, and astronomy. (g) Assess the linkage of theory and experiment. (h) Assess manpower requirements and the prospects for meeting them. (i) Identify the users of plasma science and their needs.
3. Make recommendations to federal agencies and to the community that address these issues.

During the course of the study, the panel held three two-day meetings and two lengthy teleconferences. As part of the process, the panel took steps to solicit input from the plasma science community. Letters were sent to 200 scientists and engineers, requesting their input on the issues raised in the charge to the panel. This list was selected from the list of Fellows of the Plasma Physics Division of the American Physical Society (90), and it also included others suggested by members of the panel (65) and by grant officers involved in funding plasma science (45). The letters went to university faculty and staff (90), industrial scientists (25), staff at national laboratories (50), and others (5). A separate, more specialized survey was sent to 33 experimentalists engaged in basic plasma physics research. Input was also solicited by announcements of the panel's work that appeared in the newsletters of the American Geophysical Union, the American Physical Society, the Plasma Physics Division of the American Physical Society, the Committee on Plasma Science of the Institute of Electrical and Electronics Engineers (IEEE), and the University Fusion Associates. Town meetings were held at American Physical Society Plasma Physics Division meetings and the Gaseous Electronics Conference. There is general agreement from these

sources on the themes expressed in this report: There is concern about the decline in basic plasma science, particularly in the area of basic plasma experimentation and other small-scale research efforts, and basic plasma science is perceived to lack a "home" in the federal agencies.

Also during the course of the study, the panel heard presentations from grant officers involved in funding plasma science from the Air Force Office of Scientific Research, the Advanced Research Projects Agency, the Department of Energy, the National Aeronautics and Space Administration, the National Science Foundation, and the Office of Naval Research.

The task statement requested that the panel assess specific areas of plasma science, such as beams, accelerators, and coherent radiation sources (called *topical areas* in the report), and *broad areas of plasma science*, including fundamental plasma experiments, theoretical and computational plasma physics, and education in plasma science. At the first meeting of the panel, these areas were renamed slightly and the topical area of low-temperature plasmas was added, since it had been omitted from the task statement through an oversight. The resulting seven topical areas are assessed in Part II of the report, and the three broad areas of plasma science are assessed in Part III. Part IV consists of some concluding remarks.

During the course of the study, the panel had numerous discussions about the desirability of establishing organizational units specifically devoted to plasma science in the relevant federal agencies. Many members of the plasma science community who were consulted strongly advocated the establishment of such homes, believing that they are needed if basic plasma science is to be given the focused attention and increased support that the panel recommends. While this subject is beyond the scope of the panel's work, the panel suggests that the federal government might give this issue further consideration.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an advisor to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was established by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and of advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce Alberts and Dr. Robert M. White are chairman and vice chairman, respectively, of the National Research Council.

Acknowledgments

In preparing this report, the Panel on Opportunities in Plasma Science and Technology has benefited greatly from the assistance of many members of the plasma science community. We are particularly indebted to the former chairs of the Plasma Science Committee of the Board on Physics and Astronomy, C.F. Kennel and F.W. Perkins, and the present chair, Ravi Sudan, for their advice and help. The other members of the Plasma Science Committee also provided valuable advice during the course of the study.

The panel would like to acknowledge the following colleagues for the extensive advice and assistance they provided in assembling the broad range of material covered in this report and for critical reading of various portions of it: Jonathan Arons, University of California, Berkeley; Ira B. Bernstein, Yale University; John Bollinger, National Institute of Standards and Technology, Boulder, Colorado; Keith H. Burrell, GA Technologies, Inc.; Vincent S. Chan, GA Technologies, Inc.; Xing Chen, Science Research Laboratory, Inc.; Samuel A. Cohen, Princeton Plasma Physics Laboratory; Bruce Danly, Plasma Fusion Center, Massachusetts Institute of Technology; Luiz Da Silva, Lawrence Livermore National Laboratory; Patrick Diamond, University of California, San Diego; Paul Drake, Lawrence Livermore National Laboratory; C. Fred Driscoll, University of California, San Diego; Eduardo Epperlein, University of Rochester Laboratory for Laser Energetics; Joel Fajans, University of California, Berkeley; Walter Gekelman, University of California, Los Angeles; Brian Gilchrist, University of Michigan; Martin Goldman, University of Colorado; Tamas I. Gombosi, University of Michigan; Daniel Goodman, Science Research Laboratory, Inc.; Richard A. Gottscho, AT&T Bell Laboratories; Roy W. Gould, California Institute of Technology; Hans Griem, University of Maryland; Larry R. Grisham, Princeton

Plasma Physics Laboratory; Richard Hazeltine, University of Texas; Noah Herskowitz, University of Wisconsin; Chuck Hooper, University of Florida; Mary Hudson, Dartmouth College; Chandrashekhar Joshi, University of California, Los Angeles; Robert Kessler, Textron Defense Systems; William Kruer, Lawrence Livermore National Laboratory; Stephen Lane, Lawrence Livermore National Laboratory; Richard Lee, Lawrence Livermore National Laboratory; Bruce Lipschultz, Plasma Fusion Center, Massachusetts Institute of Technology; James F. Lyon, Oak Ridge National Laboratory; James Maggs, University of California, Los Angeles; Earl S. Marmar, Plasma Fusion Center, Massachusetts Institute of Technology; Dennis Mathews, Lawrence Livermore National Laboratory; Jakob Maya, Matsushita Electrical Works, R&D Laboratory; Kevin M. McGuire, Princeton Plasma Physics Laboratory; George Morales, University of California, Los Angeles; Andrew Nagy, University of Michigan; Torsten Neubert, University of Michigan; Francis W. Perkins, Princeton Plasma Physics Laboratory; Arthur V. Phelps, JILA, University of Colorado (retired); Stewart C. Prager, University of Wisconsin; Juan Ramirez, Sandia National Laboratories; Barrett Ripin, American Physical Society; Gerald L. Rogoff, Sylvania, Inc.; Louis Rosocha, Los Alamos National Laboratory; Norman Rostoker, University of California, Los Angeles; Andrew Schmitt, Naval Research Laboratory; Wolf Seka, University of Rochester Laboratory for Laser Energetics; Gary Selwyn, Los Alamos National Laboratory; Frederick Skiff, University of Maryland; Reiner Stenzel, University of California, Los Angeles; Raul Stern, University of Colorado, Boulder; Ravindra Sudan, Cornell University; Roscoe White, Princeton Plasma Physics Laboratory; Scott Wilks, Lawrence Livermore National Laboratory; David Wineland, National Institute of Standards and Technology, Boulder, Colorado; Masaaki Yamada, Princeton Plasma Physics Laboratory; Michael C. Zarnstorff, Princeton Plasma Physics Laboratory.

Contents

Executive Summary	1
-------------------	---

PART I ❖ OVERVIEW

Introduction, 7
The Role of Plasma Science in Our Society, 8
The Discipline of Plasma Science, 11
Common Research Themes, 11
Wave-Particle Interactions and Plasma Heating, 11
Chaos, Turbulence, and Transport, 14
Plasma Sheaths and Boundary Layers, 14
Magnetic Reconnection and Dynamo Action, 14
Research and Education in Plasma Science, 15
Basic Plasma Experiments, 15
Theory and Computational Plasma Physics, 17
Education in Plasma Science, 18
Summary of Topical Areas, 19
Low-Temperature Plasmas, 19
Nonneutral Plasmas, 20
Inertial Confinement Fusion, 21
Magnetic Confinement Fusion, 22

Beams, Accelerators, and Coherent Radiation Sources, 24
Space Plasmas, 24
Astrophysical Plasmas, 26
Central Messages of This Report, 26
Conclusions and Recommendations, 28

PART II
❖
TOPICAL AREAS

1	<i>Low-Temperature Plasmas</i>	33
	Introduction, 33	
	Lighting, 36	
	Gas Discharge Lasers, 37	
	Plasma Isotope Separation, 38	
	Plasmas for Electric Propulsion of Space Vehicles, 39	
	Magnetohydrodynamics, 39	
	Plasmas for Pollution Control and Reduction, 40	
	Plasma Processing of Materials, 42	
	Conclusions and Recommendations, 45	
	Conclusions, 45	
	Recommendations, 45	
2	<i>Nonneutral Plasmas</i>	47
	Introduction and Background, 47	
	Recent Advances in Nonneutral Plasmas, 48	
	Electron Plasmas, 49	
	Ion Plasmas, 50	
	Ion Plasmas in Electron-Beam Ion Traps, 51	
	Confinement of Antimatter, 53	
	Research Opportunities, 53	
	Coherent Structures and Vortex Dynamics, 54	
	Transport Processes, 54	
	Confinement Properties in Nonaxisymmetric Geometries, 54	
	Stochastic Effects, 54	
	Strongly Coupled Nonneutral Plasmas, 55	
	Quantum-Mechanical Effects, 56	
	Antimatter, 56	
	Opportunities for Advances in Technology, 57	
	Precision Clocks, 57	
	Precision Mass Spectrometry, 57	
	Ion Sources with Enhanced Brightness, 57	

Electron-Beam Ion Traps, 58	
Radiation Sources, 58	
Pressure Standard in Ultrahigh-Vacuum Regime, 58	
Summary, Conclusions, and Recommendations, 59	
3 <i>Inertial Confinement Fusion</i>	60
Introduction and Background, 60	
Recent Advances, 61	
Laser Fusion, 61	
Ion-Beam Fusion, 62	
Scientific and Technological Opportunities, 64	
Conclusions and Recommendations, 69	
4 <i>Magnetic Confinement Fusion</i>	71
Introduction, 71	
Magnetohydrodynamics and Stability, 72	
Introduction and Background, 72	
Past Achievements, 72	
Future Prospects, 73	
Tokamak Transport, 74	
Introduction and Background, 74	
Past Achievements, 74	
Future Prospects, 75	
Edge and Divertor Physics, 77	
Introduction and Background, 77	
Recent Advances, 79	
Future Research and Technical Opportunities, 79	
Plasma Heating and Non-inductive Current Drive, 80	
Neutral-Beam Heating and Current Drive, 80	
Introduction and Background, 80	
Past Achievements, 81	
Future Prospects, 81	
Radio-Frequency Heating and Current Drive, 81	
Introduction and Background, 81	
Past Achievements, 83	
Future Prospects, 83	
Diagnostic Development, 84	
Introduction and Background, 84	
Past Achievements, 84	
Future Prospects, 86	
Non-Tokamak Concepts, 86	
Introduction and Background, 86	
Recent Advances, 87	

Future Prospects, 88	
Conclusions, 89	
Recommendations, 90	
5 <i>Beams, Accelerators, and Coherent Radiation Sources</i>	92
Introduction and Background, 92	
Recent Advances and Science and Technology Opportunities, 92	
Intense Charged-Particle Beams, 92	
Accelerators, 94	
Coherent Radiation Sources, 96	
Conclusions and Recommendations, 98	
6 <i>Space Plasmas</i>	100
Introduction, 100	
Background, 100	
Status, 101	
Tools for Space Plasma Physics, 103	
Space-Based Techniques, 103	
Ground-Based Techniques, 103	
Plasma Theory and Simulations, 105	
Laboratory Techniques, 106	
Fundamental Processes in Space Plasmas, 106	
Wave-Particle Interactions, 106	
Charged-Particle and Plasma Energization, 107	
Dust-Plasma Interactions, 108	
The Critical Ionization Velocity Effect, 108	
Radiation Processes, 109	
Active Experiments, 109	
Plasma and Neutral Mass Injections, 109	
Particle Beam Experiments, 110	
Wave Injection Experiments, 110	
Vehicle-Environment Interactions, 111	
Future Plans and Opportunities, 112	
In Situ Observations, 112	
In Situ Experiments, 116	
Terrestrial Observation Networks, 116	
Laboratory Experiments, 117	
Conclusions and Recommendations, 118	
7 <i>Plasma Astrophysics</i>	120
Recent Accomplishments in Plasma Astrophysics, 120	
Magnetized Disks, Winds, and Jets, 120	
Particle Acceleration in Shocks, 121	

Magnetized Convection in Stars, 121
Formation of Low-Mass Stars, 121
Problems in Plasma Astrophysics, 123
Dense Stellar Plasmas, 123
Thermal Conduction in Plasmas, 123
Structure of Collisionless Shocks, 123
Acceleration of Particles to High Energies, 124
Hydromagnetic Turbulence, 124
Magnetic Reconnection, 124
The Magnetization of the Universe, 125
Laboratory Experiments, 125
Training in Plasma Astrophysics, 125
Funding for Plasma Astrophysics, 126
Summary, 127
Conclusions and Recommendations, 127
Conclusions, 127
Recommendation, 127

PART III

BROAD AREAS OF PLASMA SCIENCE

8	<i>Basic Plasma Experiments</i>	131
	Introduction and Background, 131	
	Overview of Recent Progress, 133	
	Basic Plasma Experiments, 133	
	Wave Phenomena, 133	
	Bernstein Waves, 133; Mode Conversion, 134	
	Wave-Particle Interactions, 134	
	Magnetically Trapped Particle Instabilities, 134; Lower Hybrid	
	Wave Current Drive, 135; Beat Wave Excitation and Particle	
	Acceleration, 135	
	Nonlinear Phenomena, 135	
	Double Layers, 135; Ponderomotive Forces and the Filamentation	
	of Electromagnetic Radiation, 135; Magnetic Field Line Reconnec-	
	tion, 136; Plasma Reorganization, 136	
	Chaos and Turbulence, 137	
	Chaos, 137; Quasilinear Effects and Single-Wave Stochasticity,	
	137; Collisionless Heat Transport, 139; Strong Langmuir Turbu-	
	lence, 139	
	Experimental Techniques and Capabilities, 139	
	Plasma Sources, 139	
	Mechanical Probes, 141	

Laser-Based Optical Diagnostics, 142	
Data Acquisition and Processing, 143	
Research Opportunities, 144	
Fundamental Plasma Processes, 144	
Wave Phenomena, 144	
Alfvén Waves, 144; Wave-Plasma Interactions, 144; Intense	
Laser-Plasma Interactions, 144	
Chaos, Turbulence, and Localized Structures, 145	
Nonlinear Particle Dynamics and Chaos, 145; Nonlinear Wave	
Phenomena, 145; Turbulence, 145; Turbulent Transport, 146;	
Sheaths, Boundary Layers, and Double Layers, 146; Shock Waves,	
147; Striated Plasmas, 147; Flows in Magnetized Plasmas, 147;	
Plasmoids, 147	
Magnetic Effects, 148	
Magnetic Field Line Reconnection, 148; Dynamo Action, 148;	
Magnetic Reconfiguration, 149	
New Experimental Capabilities, 150	
Use of Nanotechnology, 150	
Optical Diagnostics, 150	
New Regimes of Plasma Parameters, 151	
Data Acquisition, 151	
Massively Parallel Plasma Diagnostics, 151	
Summary, Conclusions, and Recommendations, 152	
9 <i>Theoretical and Computational Plasma Physics</i>	156
Introduction and Background, 156	
Recent Advances in Theoretical and Computational Plasma	
Physics, 159	
Hamiltonian Transport, 159	
Coherent Structures and Self-Organization, 160	
Strong Plasma Turbulence, 160	
Gyrokinetics, 160	
Large-Orbit Effects on Plasma Stability, 161	
Three-Dimensional Magnetohydrodynamics, 161	
Numerical Simulation of Plasma Processes, 161	
Nonlinear Laser-Plasma Interaction, 161	
Nonlinear Processes in Ionospheric Plasmas, 162	
Collisional Relaxation of Nonneutral Plasmas, 162	
Free-Electron Lasers and High-Power Microwave Sources, 163	
Research Opportunities, 163	
Basic Plasma Theory and Applications to Laboratory Plasmas, 163	
Nonlinear Plasma Processes, 163	
Numerical Simulation, 164	

Novel Analytical Techniques, 164	
Boundary Layers, 164	
Kinetic Theory, 165	
Stochastic Effects in Evolving Plasmas, 165	
Alpha-Particle Effects in Magnetically Confined Plasmas, 165	
Concept Improvement, 166	
Nonlinear Interaction of Intense Electromagnetic Waves with Plasmas, 166	
Current-Carrying Plasmas with Flow, 167	
Engineering Design Tools, 167	
Space Plasmas, 167	
Magnetic Reconnection, 168	
Turbulence, 168	
Large-Scale Flows, 169	
Particle Acceleration, 169	
Plasma Confinement and Transport, 170	
Collisionless Shocks, 171	
Chaotic Effects, 171	
Summary, 172	
Conclusions and Recommendations, 172	
10 Education in Plasma Science	174
Degree Production and Employment Statistics, 174	
Estimate of Future Supply of Plasma Physicists, 177	
Educating Non-Plasma Students in Plasma Physics, 178	
General Comments, 178	
Recommendations, 180	

PART IV
◆
CONCLUSION

APPENDICES

A Federal Funding Data, 189
B Letters to Funding Agencies, 193
C List of Agencies Contacted, 199

Plasma Science

*From Fundamental Research to
Technological Applications*

Executive Summary

Plasma science is the study of the ionized states of matter. Most of the observable matter in the universe is in the plasma state. Plasma science includes plasma physics but aims to describe a much wider class of phenomena in which, for example, atomic and molecular excitation and ionization processes and chemical reactions can play significant roles. The intellectual challenge in plasma science is to develop principles for understanding the complex macroscopic behavior of plasmas, given the known principles that govern their microscopic behavior.

Plasmas of interest range over tens of orders of magnitude in density and temperature—from the tenuous plasmas of interstellar space to the ultradense plasmas created in inertial confinement fusion, and from the cool, chemical plasmas used in the plasma processing of semiconductors to the thermonuclear plasmas created in magnetic confinement fusion devices. A healthy plasma science enterprise can be expected to make many important contributions to our society for the foreseeable future. The purpose of this report is to provide guidance regarding the ways in which plasma science can contribute to society and to recommend actions that will optimize these contributions.

FINDINGS

1. Plasma science impacts daily life in many significant ways. It plays an important role in plasma processing, the sterilization of medical products, lighting, and lasers. Plasma science is central to the development of fusion as an

energy source, high-power radiation sources, intense particle beams, and many aspects of space science.

2. Plasma science is a fundamental scientific discipline, similar, for example, to condensed-matter physics. This fact is apparent when one considers the commonality of the intellectual problems in plasma science that span the wide range of applications to science and technology. Despite its fundamental character, plasma science is frequently viewed in the academic community as an interdisciplinary enterprise focused on a large collection of applications. Experiment, theory, and computation are all critical components of modern plasma science.

3. While the applications of plasma science have been supported by the federal government, no agency has assumed responsibility for basic research in plasma science. In general, there is a lack of coordination of plasma science research among the federal agencies.

4. As the development of plasma applications has progressed, small-scale research efforts have declined, particularly in the area of basic plasma experiments. This decline has led to a significant backlog of important scientific opportunities. This core activity in fundamental plasma science, carried out by small groups and funded by principal-investigator grants, is dangerously small, considering its importance to the national effort in fusion energy and other applied programs.

5. Plasma scientists in academic institutions are less likely to be in tenure-track positions than are other physicists, and courses in plasma science are currently unavailable at many educational institutions.

CONCLUSIONS

1. Plasma science can have a significant impact on many disciplines and technologies, including those directly linked to industrial growth. To properly pursue the potential offered by plasma science, the United States must create and maintain a coherent and coordinated program of research and technological development in plasma science.

2. Recognition as a distinct discipline in educational and research institutions will be crucial to the healthy development of plasma science.

3. There is no effective structure in place to develop the basic science that underlies the many applications of plasmas, and if the present trend continues, plasma science education and basic plasma science research are likely to decrease both in quality and quantity. If nothing is done by the federal government, it is likely that research in basic plasma science will cease to exist, and progress in the applications that depend on it will eventually halt.

4. The future health of plasma science, and hence its ability to contribute to the nation's technological development, hinges on the revitalization of basic plasma science and, in particular, on the revitalization of small-scale basic plas-

ma experiments. With regard to theory and modeling, although the current programs have been successful, there is a need for individual-investigator-led research on questions fundamental to basic plasma science.

5. Coordination of research efforts is vital, to make the most effective use of resources by maintaining complementary programs and to ensure that all critical problems are addressed.

6. Because of the commonality underlying all areas of plasma science, renewed emphasis on basic plasma science will benefit all areas. Therefore, it is appropriate that redistribution of funding to support basic plasma science come from all areas of plasma science.

RECOMMENDATIONS

1. To reinvigorate basic plasma science in the most efficient and cost-effective way, emphasis should be placed on university-scale research programs.

2. To ensure the continued availability of the basic knowledge that is needed for the development of applications, the National Science Foundation should provide increased support for basic plasma science.

3. To aid the development of fusion and other energy-related programs now supported by the Department of Energy, the Office of Basic Energy Sciences, with the cooperation of the Office of Fusion Energy, should provide increased support for basic experimental plasma science. Such emphasis would leverage the DOE's present investment in plasma science and would strengthen investigations in other energy-related areas of plasma science and technology.

4. Approximately \$15 million per year for university-scale experiments should be provided, and continued in future years, to effectively redress the current lack of support for fundamental plasma science, which is a central concern of this report. Furthermore, individual-investigator and small-group research, including theory and modeling as well as experiments, needs special help, and small amounts of funding could be life-saving. Funding for these activities should come from existing programs that depend on plasma science. A reassessment of the relative allocation of funds between larger, focused research programs and individual-investigator and small-group activities should be undertaken.

5. The agencies supporting plasma science should cooperate to coordinate plasma science policy and funding.

6. Members of the plasma community in industry and academe should work aggressively for tenure-track recognition of plasma science as an academic discipline, and work with university faculty and administrators to provide courses in basic plasma science at the senior undergraduate level.

Additional recommendations regarding specific areas of plasma science are made in the main text of the report.