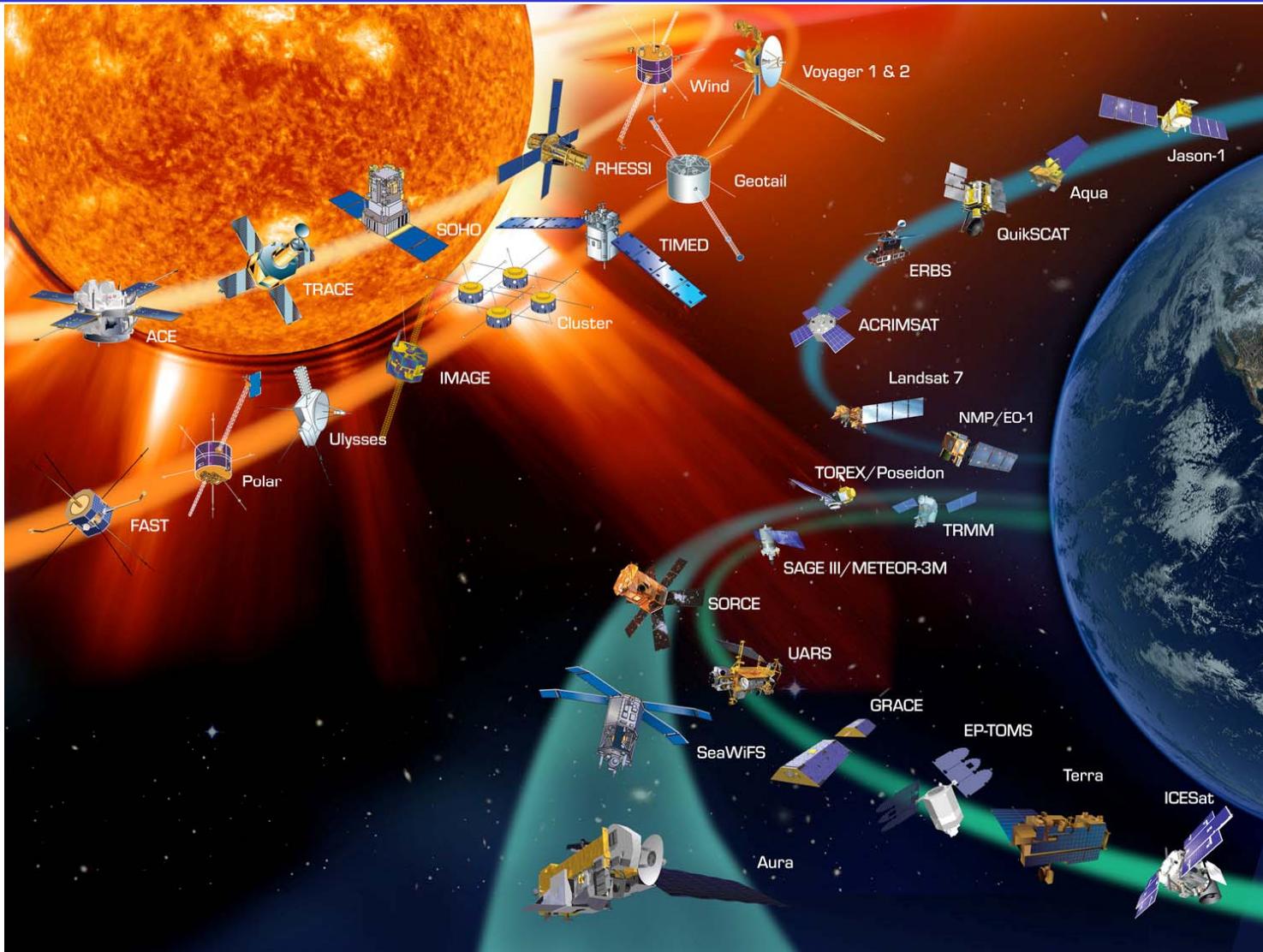


Radio Frequency Earth Science

Overview for


Committee On Radio Frequency (CORF)

National Academy of Science – National Research Council

April 27, 2005

Bill.Watson@NASA.Gov
Program Executive for Ground Networks
Science Mission Directorate

Science Mission Directorate (SMD)

SMD Missions in Formulation

Mission (PE)	Theme	Launch Readiness Date	FY05						FY06						FY07	FY08	FY09	FY10	
			Q2		Q3		Q4		Q1		Q2-Q4								
Jan.	Feb.	March	April	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.								
Pre-Formulation	Mars Testbed (Survey)	Solar System	Dec. 2011													PER/IRB	QES		
	M50 (Survey)	Solar System	Jan. 2014														IRB	PER/IRB/IRB/IRB	
	GCEx (Science)	Earth-Sun	Mar. 31, 2015														IRB		
	Constellation-X (A)	Universe	Dec. 1, 2016															IRB	
Formulation	Phoenix (Science)	Solar System	Aug. 9, 2007														PER/IRB		
	OCO (Science)	Earth-Sun	Dec. 1, 2007														PER/IRB		
	HST Serv/Deorb	Universe	Dec. 14, 2007														PER/IRB		
	Glory (Science)	Earth-Sun	Dec. 31, 2007														PER/IRB		
	OSIRIS (Science)	Earth-Sun	Apr. 1, 2008														PER/IRB		
	ST-5 (Science)	Earth-Sun	Apr. 26, 2008														PER/IRB		
	WISE (Technology)	Universe	Jun. 21, 2008														PER/IRB		
	Aquarius (Science)	Earth-Sun	Sep. 1, 2008														PER/IRB		
	MSL (A)	Solar System	Oct. 2009													PER/IRB/IRB	QES		
	MTO (A/Per)	Solar System	Oct. 2009													PER/IRB	QES		
	ST-6 (Science)	Earth-Sun	Feb. 8, 2010													PER/IRB	PER/IRB/IRB		
	CFM (A)	Earth-Sun	Jan. 1, 2010													PER/IRB	QES		
	HYDROS (Science)	Earth-Sun	Sep. 3, 2010													PER/IRB	QES/PER		
	LCOM (Survey)	Earth-Sun	2010													PER/IRB	QES		
	WMS (Science)	Earth-Sun	Jan. 30, 2011													PER/IRB/IRB	QES		
	SM (Science)	Universe	April 30, 2011													PER/IRB/IRB	QES		
	JWST (A/Per)	Universe	Aug. 31, 2011													PER/IRB/IRB	QES		
	GOES-R (Science)	Earth-Sun	Nov. 1, 2012													PER/IRB	QES		
	USA (Survey)	Universe	Dec. 1, 2013													PER/IRB/IRB	QES		

SMD Missions In Implementation

Implementation	Mission (PE)	Theme	Launch Readiness Date	FY05									FY06					FY07	FY08	FY09	FY10				
				Q2			Q3			Q4			Q1			Q2-Q4									
				Jan.	Feb.	March	April	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	CDR	CDR								
	Astro-E2 (dioxide)	Universe	May 1, 2005																EDM			EDM			
	GOES N-P (nitrogen)	Earth-Sun	May 4, 2005 (N)																EDM	EDM					
	NOAA N-N' (Nichols)	Earth-Sun	May 15, 2005 (N)																EDM (N)	EDM (N)					
	ST-6 (nitrogen)	Earth-Sun	Jun. 1, 2005																						
	CALIPSO (nitro)	Earth-Sun	June 17, 2005																						
	CloudSat (nitro)	Earth-Sun	June 17, 2005																						
	CINDI (nitro)	Earth-Sun	Jul. 31, 2005																						
	MRO (Dr. Paul)	Solar System	Aug. 10, 2005																						
	TWINS-A (nitro)	Earth-Sun	Sept. 1, 2005																						
	New Horizons (nitro)	Solar System	Jan. 11, 2006																						
	STEREO (nitro)	Earth-Sun	Feb. 11, 2006																						
	ST-5 (nitro)	Earth-Sun	Feb. 28, 2006																						
	DAWN (nitro)	Solar System	Jun. 15, 2006																						
	Solar B (nitro)	Earth-Sun	Sep. 1, 2006																						
	TWINS-B (nitro)	Earth-Sun	Sep. 1, 2006																						
	AIM (nitro)	Earth-Sun	Sep. 30, 2006																						
	THEMIS (nitro)	Earth-Sun	Oct. 19, 2006																						
	NPP (carbon)	Earth-Sun	Oct. 31, 2006																						
	GLAST (blackwood)	Universe	Feb. 27, 2007																						
	Planck (blackwood)	Universe	Aug. 3, 2007																						
	Herschel (blackwood)	Universe	Aug. 3, 2007																						
	Kepler (moon)	Universe	Oct. 1, 2007															CDR							
	ST-7 (nitro)	Earth-Sun	Mar. 31, 2008																EDM	EDM					
	SDO (green)	Earth-Sun	Apr. 30, 2008																EDM	EDM					

Unacademy

2008, © 2008 Cengage Publishing

DR - [Downloaders](#) [DR-3 PT-able 33]

WCM - Bill of Materials

www.oriental.com

2019-2020-P-2019-2020-2021-2022-P-2022-2023

— Lautlich Phantastisch Einschätzen

PDF - PhotoShop CS6 Light Photoshop PDF

SMD Missions In Operation

Version 5.0

144.4. Critical Design Reviews

ICR - Institut für Politikwissenschaften

ICM, 1993 PT The Mekong

WMO - World Meteorological Organization

2005-2006: *Music, Dance, Drama, Visual Arts* [with a focus on
Music, Music Education, Musical Theatre (Sing, Produce, Act)]

... Laiu's Bill-adding-fiduciary

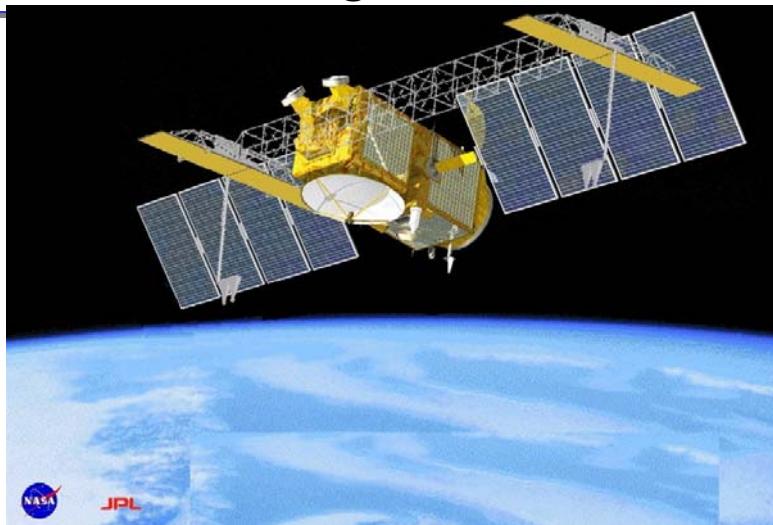
10. Primary Design Patterns (B13 P1M1-B)

Jason-1 is a joint mission between France and the U.S. to monitor global ocean circulation, to improve global climate predictions, and to monitor events such as El Niño Southern Oscillation conditions and ocean eddies. Applications: coastal zone management, disaster management.

LAUNCH:

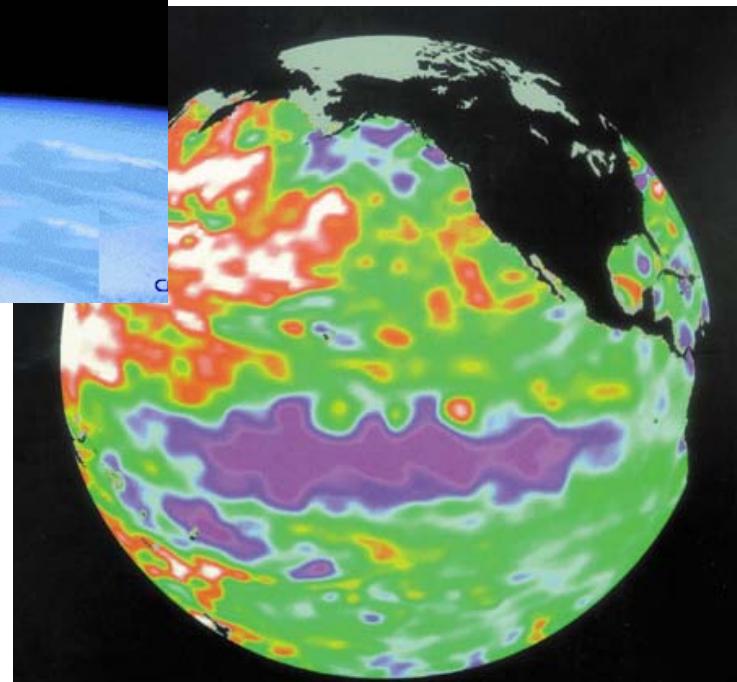
- Date: December 7, 2001

ORBIT:

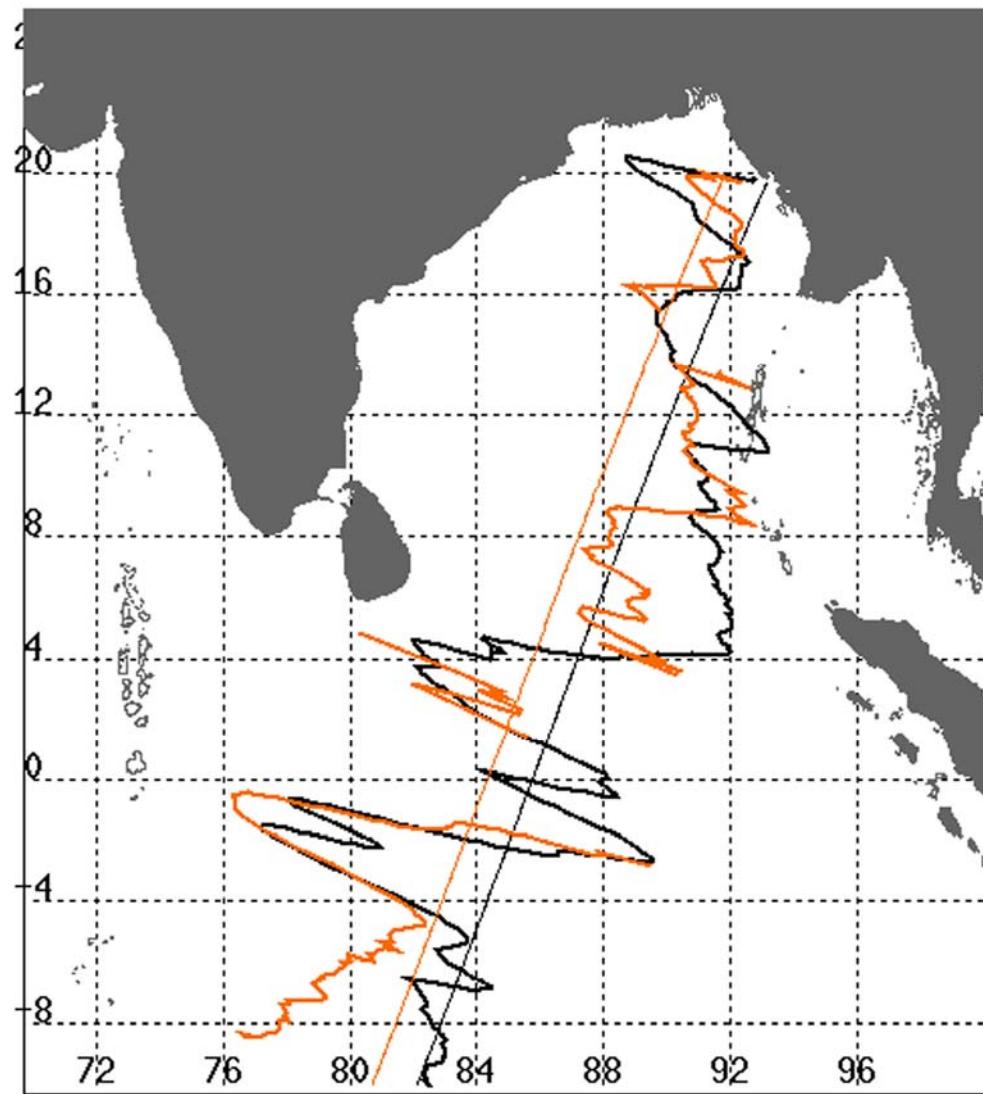

- Altitude: 1,336 km
- Inclination: 66 degrees
- Period: 122.4 minutes
- Repeat Cycle: 10 days
- Non-Sun-Synchronous

DESIGN LIFE:

- 5 years


INSTRUMENTS:

- Laser retroreflector array
- TOPEX radar altimeter 13.6 and 5.3 GHz
- Poseidon-2 radar altimeter 13.65 GHz
- DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) receiver
- Jason Microwave Radiometer
- Turbo Rogue Space Receiver GPS tracking system



MEASUREMENTS:

- Brightness temperature
- Water vapor content
- Liquid water content
- Ocean topography

Tsunami - Jason data

Aura hosts a suite of scientific instruments designed to make the most comprehensive measurements of atmospheric trace gases ever undertaken. The mission measures ozone, aerosols, and several key atmospheric constituents that play an important role in atmospheric chemistry, air quality, and climate. The United Kingdom and The Netherlands are providing some of the instruments for this mission. Applications: air quality management, carbon management, energy forecasting, public health.

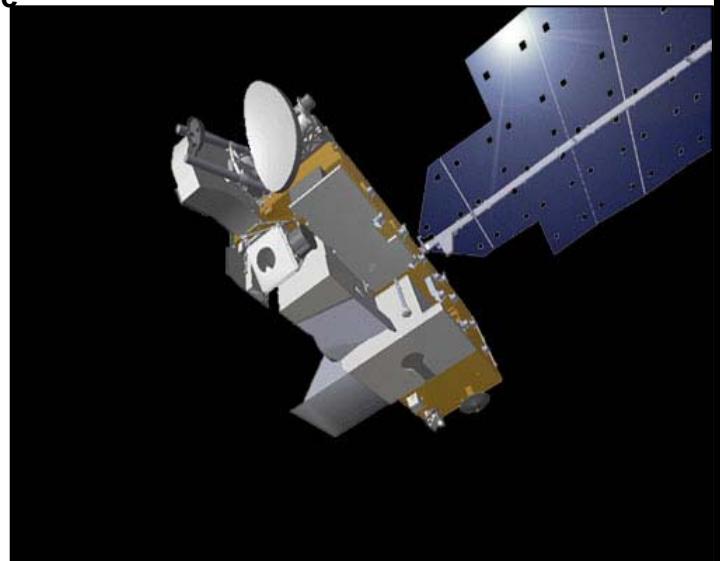
LAUNCH:

- Date: Summer, 2004

ORBIT:

- Altitude: 705 km
- Inclination: 98.2 degrees
- Period: 100 minutes
- Repeat Cycle: 16 days
- Sun-Synchronous, Polar

DESIGN LIFE:


- 3 years

INSTRUMENTS:

- OMI (Ozone Monitoring Instrument)
- MLS (Microwave Limb Sounder)
 - 118 GHz Primarily for temperature and pressure
 - 190 GHz Primarily for H_2O , HNO_3 ,
 - 240 GHz Primarily for O_3 and CO
 - 640 GHz Primarily for N_2O , HCl , ClO , HOCl , BrO , HO_2 , and SO_2
 - 2.5 THz Primarily for OH
- TES (Tropospheric Emission Spectrometer)
- HIRDLS (High Resolution Dynamics Limb Sounder)

MEASUREMENTS:

- Molecular species distribution
- Aerosol index, ozone content, reflectivity, erythemal UV exposure, surface radiance
- Temperature and the locations of polar stratospheric clouds and cloud tops

CloudSAT, a cooperative mission with Canada, will use advanced radar to "slice" through clouds to see their vertical structure, providing a completely new observational capability from space. CloudSAT will look at the structure, composition, and effects of clouds and will be one of the first satellites to study clouds on a global basis. Applications: air quality management, aviation safety, disaster management, energy forecasting, water management and conservation.

LAUNCH:

- Date: 2005

ORBIT:

- Altitude: 705 km
- Inclination: 98.2 degrees
- Period: 99 minutes
- Sun-Synchronous

DESIGN LIFE:

- 2 years

INSTRUMENTS:

- CPR (Cloud Profiling Radar- 94 GHz)

MEASUREMENTS:

- Cloud properties

NPOESS - National Polar-orbiting Operational Environmental Satellite System

The National Polar-orbiting Operational Environmental Satellite System (NPOESS) will provide the U.S. with an enduring capability to measure atmospheric, land, and oceanic environmental parameters globally. The system will provide timely and accurate weather and environmental data to weather forecasters, military commanders, civilian leaders, and the scientific community. The current plan is for the NPOESS constellation to consist of three polar-orbiting satellites. Each satellite will be designed for a 7-year lifetime and will host 10 to 12 sensor payloads. Applications: agricultural competitiveness, air quality management, disaster management, energy forecasting, homeland security, public health, water management and conservation.

LAUNCH:

- Date: September 1, 2010

ORBIT:

- Altitude: 833 km
- Inclination: 98.75 degrees
- Period: 101 minutes
- Sun-Synchronous

DESIGN LIFE:

- 5 years

INSTRUMENTS:

- VIIRS (Visible/Infrared Imager/Radiometer Suite)
- CMIS (Conical Microwave Imager/Sounder 6.6, 18.7, 36.5, 60.4 GHz)
- CrIS (Crosstrack Infrared Sounder)
- GPSOS (Global Positioning System Occultation Sensor)
- OMPS (Ozone Mapping and Profiler Suite)
- SESS (Space Environment Sensor Suite)

MEASUREMENTS:

- Atmospheric temperature and water vapor profiles
- Electron density and ionospheric profiles
- Vertical and horizontal distribution of ozone
- Total solar irradiance and solar spectral irradiance
- Earth radiation budget, land/water and sea surface temperature, ocean color, and low light imagery
- Characteristics of auroral boundary

Aquarius

Aquarius is a focused satellite mission to measure global sea surface salinity (SSS). Aquarius will resolve missing physical processes that link the water cycle, the climate, and the ocean. The Aquarius science goals are to observe and model the processes that relate salinity variations to climatic changes in the global cycling of water and to understand how these variations influence the general ocean circulation. One application of the Aquarius mission data will be to benefit coastal zone management.

LAUNCH:

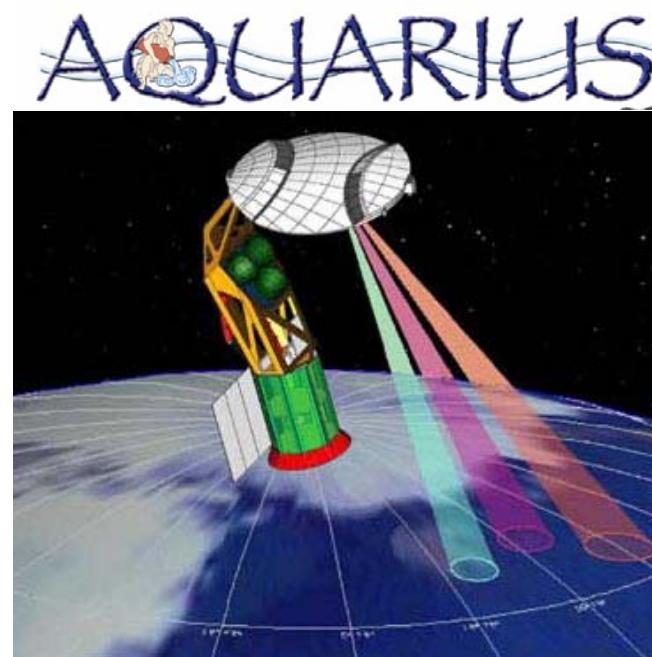
- Date: 2008

ORBIT:

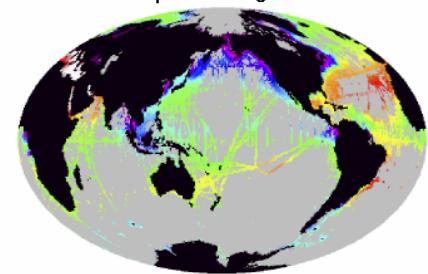
- Altitude: 600 km
- Repeat Cycle: 8 days
- Sun-Synchronous

DESIGN LIFE:

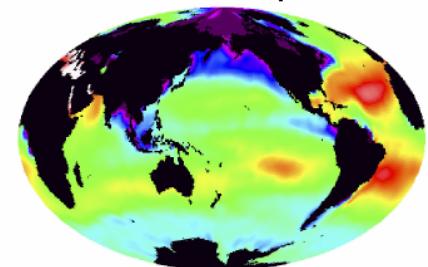
- 3 years


INSTRUMENTS:

- Radiometer/Scatterometer


Radiometers at 1.413 GHz
Scatterometer at 1.26 GHz

MEASUREMENTS:


- Seawater emissivity sensitive to salinity

Routine Ship and Buoy Observations

One Month of Aquarius

GPM – Global Precipitation Mapper

GPM is a joint mission with the National Space Development Agency (NASDA) of Japan and other international partners. Building upon the success of the Tropical Rainfall Measuring Mission (TRMM), GPM will initiate global precipitation measurement, a key climate factor. Its science objectives are to improve ongoing efforts to predict climate by providing near-global measurement of precipitation, its distribution, and physical processes; to improve the accuracy of weather and precipitation forecasts through more accurate measurement of rain rates and latent heating; and to provide more frequent and complete sampling of the Earth's precipitation. Applications: agricultural competitiveness, disaster management, water management and conservation.

MEASUREMENTS:

- Cloud structure and precipitation characteristics including rain rate, cloud type, 3D cloud structure, and drop-size distribution
- Global precipitation

LAUNCH:

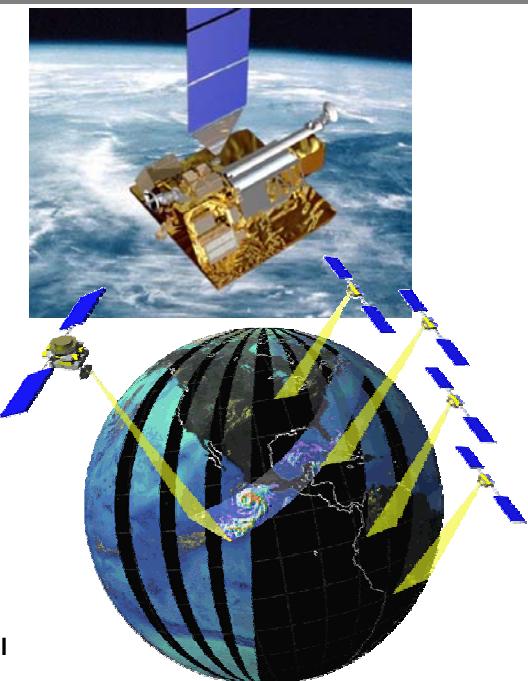
- Date: November 2007

ORBIT:

- Altitude: 400 km
- Inclination: 65 degrees
- Sun-Synchronous

DESIGN LIFE:

- 3 years


INSTRUMENTS:

- DPR (Dual-frequency Precipitation Radar)
KuPR 13.597 & 13.603 GHz
KaPR 35.547 & 35.553 GHz
- GMI (GPM Microwave Imager)
Ch # Center Freq (GHz) Pass-band Bandwidth

1	10.65	100
2	10.65	100
3	18.7	200
4	18.7	200
5	23.80	200
6	36.5	1000
7	36.5	1000
8	89.0	4000
9	89.0	4000

(150 or 166 GHz and 183 GHz are TBD high frequency channel enhancement options)

- Constellation of passive microwave radiometers

Hydros - The Hydrosphere State Mission

Hydros is expected to provide the first global view of the Earth's changing soil moisture and land surface freeze/thaw state. It will conduct hydroclimatology of the soil moisture at 40 km, hydrometeorology of the soil moisture at 10 km, and observe freeze/thaw conditions at 3km during a 2 year mission. Science applications from Hydros include an enhanced understanding of processes that link water, energy, and carbon cycle, and improved weather and climate prediction.

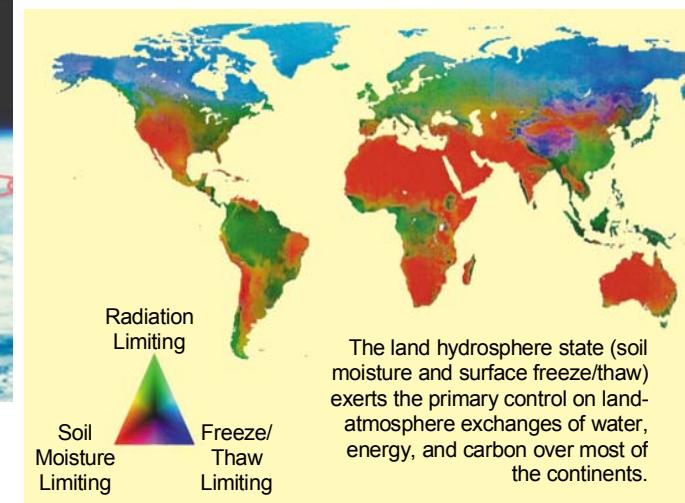
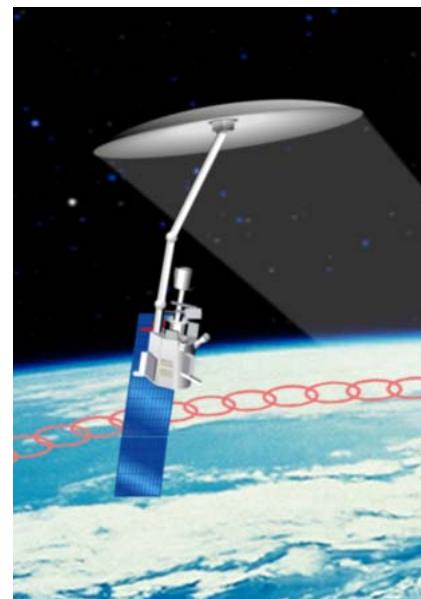
LAUNCH:

- Date: 2007

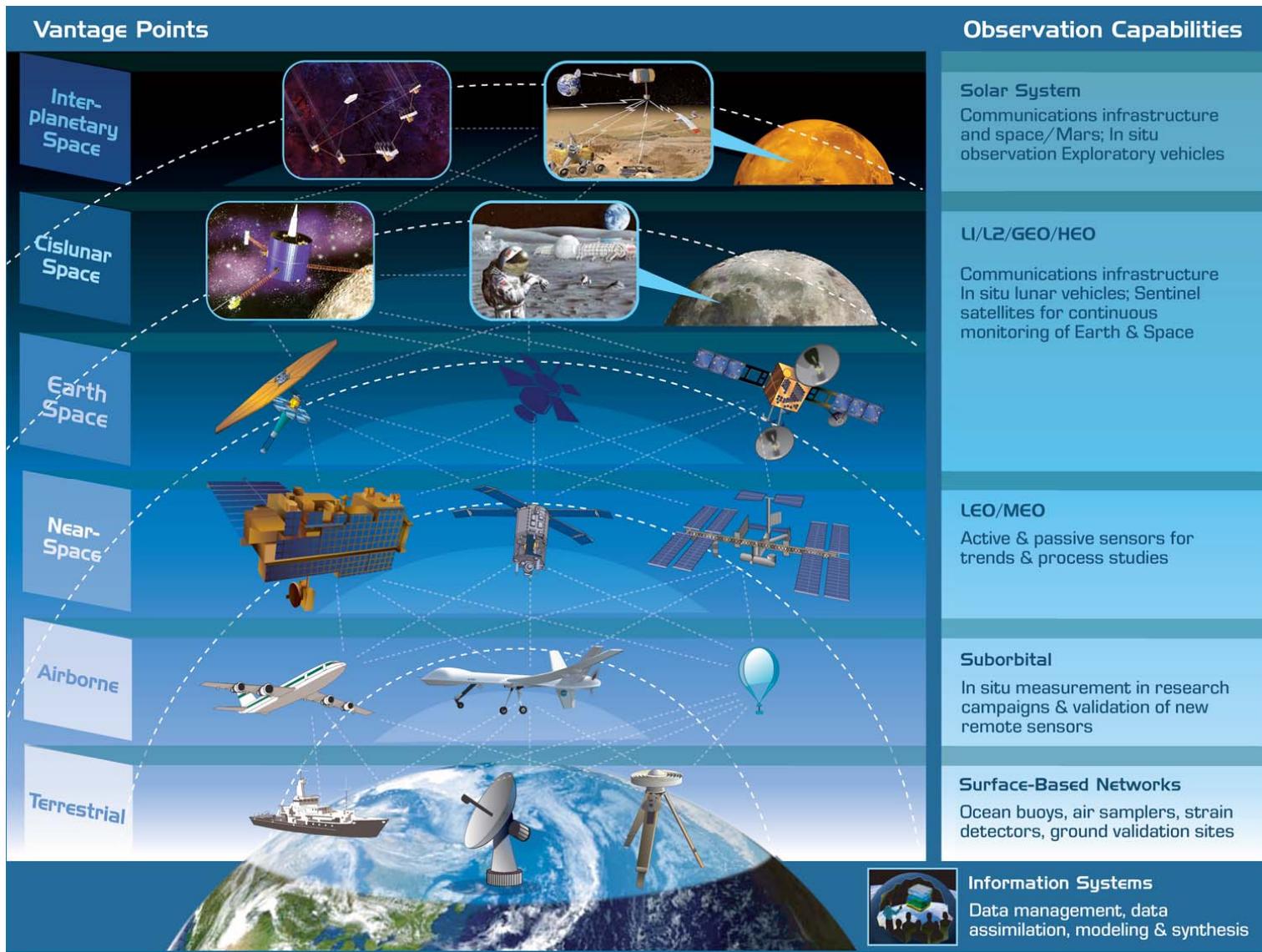
ORBIT:

- 6AM/6PM sun-synchronous orbit at km, for a 2 year mission
- Altitude: 670 km

DESIGN LIFE:



- 2 years

INSTRUMENTS:


- L-band radar 1.24 GHZ and radiometer 1.41 GHz using one deployable antenna;
- Radiometer from GSFC
- Radar from ASI (Italian)
- Antenna from CSA

MEASUREMENTS:

- Hydroclimatology of the soil moisture at 40 km
- Hydrometeorology of the soil moisture at 10 km
- Observe freeze/thaw conditions at 3km

Integrated Observations

