

CORF Meeting

October 15, 2006

Tomas E. Gergely

Electromagnetic Spectrum Manager

National Science Foundation

tgergely@nsf.gov

703-292-4896

Spectrum Management for Radio Astronomy

A Historical Perspective

- **Prehistory – K. Jansky to ~ 1958**
Radio Astronomy Born Out of Interference Concerns
✓ No Consistent Spectrum Management for Radio Astronomy
- **In-band Protection (~ 1958 to ~ 1979)**
Dominant Concern: Fixed Transmitters
 - **Beginnings of International Spectrum Management for Radio Astronomy**
 - ✓ Radio astronomers begin attending ITU meetings (WARCs and CCIR)
 - ✓ Radio astronomy recognized as a radio service (albeit not a radiocommunication service)
 - ✓ First allocations to the Radio Astronomy Service
 - ✓ Rec. 769 (Report 224) and other ITU Recommendations
 - **Beginnings of US Spectrum Management**
 - ✓ NRAO established within the NRQZ
 - ✓ NSF Spectrum management office set up

Spectrum Management for Radio Astronomy

A Historical Perspective (2)

- **Satellites – Mostly NGSO (~ 1979 to ~ 2003)**

Dominant Concern: Unwanted Emissions From Satellites

➤ **International**

- ✓ Radio astronomers seek to limit unwanted emissions from satellites spilling over into radio astronomy bands
- ✓ Series of ITU-R Task Groups (TG 1/3,1/5,1/7, 1/9)
- ✓ First regulatory limits on space system unwanted emissions (RR App. 3 on Spurious Ems – Far from satisfying RA requirements)
- ✓ Mandatory Limits in a Few Bands; Voluntary Consultation in Others (Res. 739)
- ✓ Typical Systems of Concern: Iridium, GLONASS
- ✓ RA receivers increasingly wide-band
- ✓ Upward creep in frequency in radio astronomy, followed by commercial applications

➤ **US**

- ✓ MoUs with various satellite entities limit access to spectrum/provide access at required noise floor level for limited period of time

Spectrum Management for Radio Astronomy

A Historical Perspective (3)

- **Ubiquitous Unlicensed, Low-Power, Broad-band Devices (~ 2000 to present, and beyond)**
Dominant concern: Rising noise floor
 - International and Domestic
 - ✓ Cell phones show the way to mass marketing of wireless devices
 - ✓ UWB developed for commercial applications
 - ✓ Limits between national and International regulations blurred, as controlling the transport of mass market devices is difficult
 - ✓ US leads the charge in adoption of mass market devices
 - ✓ Typical systems: BPL, IMT-2000 (under many names)
 - ✓ Radio astronomers, driven by science, increasingly interested in the entire spectrum
 - ✓ Development of large, multinational radio astronomy observatories

Issues

**New Concerns Added to Older Ones – not Substituted
(Issues from Previous Period don't Become Obsolete e.g.
NRQZ)**

- **Regulatory Problem:**
Coexistence of Band Allocations for Authorized Radio Services (Radio Astronomy?) with Unlicensed Devices
- **Bandwidth Issue:**
Are Radio Astronomy Allocations Needed in an Era of Broad Band Receivers?
- **Dynamic Scheduling Issue:**
Full Exploitation of Expensive Radio Astronomy Facilities (Coupled with Technological Progress) Requires (Allows) Dynamic Scheduling of Telescopes
- **Development of Mitigation Techniques and their Limitations?**
- **Will/Can Radio Astronomers (and other passive services) Benefit or (Suffer) from Adaptive/Smart Radio?**

1.6 GHz Satellite Coordination Iridium Issues

- **June, 2006 - Agreement signed on aeronautical uplinks operating in the 1616 - 1626.5 MHz band, on terms similar to those of the NSF-Globalstar agreement**
 - When an airborne mobile Earth station is within $4.1(\sqrt{h})$ km (where h is the aircraft altitude in meters) of a radio astronomy site that is making observations, the average unwanted emission levels at the input port to the transmit antenna for any 1 MHz segment in the band 1610.6 - 1613.8 MHz from the airborne mobile Earth station shall not exceed -82 dBW/MHz, with a corresponding aircraft underside antenna gain of nominally -10 dBi or lower gain.
 - No restrictions apply during times when no 1612 MHz observations have been notified.
- **NRAO and NAIC should send their scheduled observing periods at 1612 MHz to Iridium and Globalstar.**
- **FCC authorized Iridium operations down to 1618.25 MHz some time ago. Any increase in interference?**
- **Indications are that Iridium may wish to operate down to 1616 MHz.**

1.6 GHz Satellite Coordination GLONASS Issues

- **GLONASS unwanted emissions measured by Leeheim monitoring station**
 - > Individual GLONASS satellites comply with Rec. ITU-R RA.769 level for the band, but exceed by about 20 dBs the *epfd* (aggregate) level.
 - > Other RNSS systems operating in the 1559-1610 MHz band comply or plan to comply with the level
- **GLONASS argues that it has complied with the IUCAF-GLONAS agreement and is unwilling to take further measures. Arguments based on:**
 - ✓ RNSS being a safety service
 - ✓ Equitable access to RNSS band (GLONASS separated only 0.6 MHz from radio astronomy band edge!)

