MD of Soft Matter

Mark J. Stevens
msteve@sandia.gov

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Molecular Dynamics Simulations

• What has been developed?
• Where are we at?
• Where are we going?
MD & LAMMPS
Molecular Dynamics Basics

• Building the starting state
 – often a time consuming effort for the human
 – for proteins, need a crystal structure (? folding from sequence)

• Integration algorithm
 – Verlet, predictor-corrector
 – multitime step (RESPA)

• Force calculation
 – typically 90% of CPU time
 – Coulomb is most expensive
 ▪ long range requires Ewald
 ▪ particle-mesh methods are fast & parallelizable (N log N)
 – uses global FFTs
 – van der Waals (Lennard-Jones)
 ▪ expensive and scales as cutoff 3
 – bonds and other intramolecular terms
 ▪ fast to calculate, but stiffness determines time step

• Ensemble (thermostat, barostat)
 – fundamental issues of statistical mechanics
 – this is where calculations go wrong

\[F = ma \]
LAMMPS 1995-

LAMMPS

• Massively parallel MD code
 – as system size scales with number of processors, CPU time should remain constant
• Main programmer: Steve Plimpton, Sandia

History:
• parallel Lennard-Jones codes
• CRADA ~1995-
 – spatial decomposition parallelization
 – Nose-Hoover ensemble equations of motion
 – RESPA, multiple time step algorithm
 – Particle mesh Ewald (PPPM), long range Coulomb
 – class 2 atomistic force-field
 – Fortran 77
• Other comparable MD codes
 – 1995: none
 – NAMD, AMBER, CHARMM, GROMACS, DL_POLY
Parallelism via Spatial-Decomposition

- Physical domain divided into 3D boxes, one per processor
- Each proc computes forces on atoms in its box
 - using info from nearby procs
- Each proc owns atoms in its box
 - NO global arrays
- **Communication** occurs every time step
 - update forces between atoms in neighboring boxes
 - via nearest-neighbor 6-way stencil

- Optimal scaling for MD: \(\frac{N}{P} \)
 - so long as load-balanced
- Computation scales as \(\frac{N}{P} \)
- Communication scales
 - sub-linear as \((\frac{N}{P})^{2/3} \)
 - (for large problems)
- Memory scales as \(\frac{N}{P} \)

- **Load Balance**: cost of computing forces vs. time to communicate updated positions
LAMMPS ~1997

52 files

communicate.f integrate.f ppm.f
diagnostic_PE.f integrate_pe3.f ppm2.f
ewald.f integrate_respa.f ppm2_coeff.f
ewald_coeff.f lammps.f ppm2_remap.f
finish.f lapack.f ppm_coeff.f
fix.f min_algs.f random.f
force.f min_support.f read_data.f
force_bond.f misc.f read_restart.f
force_class2.f neighbor.f setup.f
force_many.f output.f setup_special.f
force_respa.f parlib_c90.f start.f
initialize.f parlib_t3d.f string.f
input.f parlib_t3e.f thermo.f
input_zran.f parlib_unix.f velocity.f
LAMMPPS today

Multiple force-field types and Hybrid potentials

224 files

Mark Stevens
msteve@sandia.gov

Mark Stevens
msteve@sandia.gov
Nonbond Interactions

Lennard-Jones (LJ) potential

\[r_c \text{ is cutoff distance} \]
\[\varepsilon_{\alpha\beta}, \sigma_{\alpha\beta} \text{ for pair types } \alpha\beta \]

Hybrid examples:

• LJ + Embedded Atom Method (EAM)
• integrated LJs

available code is very important asset
human costs are high
Parallel Performance

- Fixed-size (32K atoms) and scaled-size (32K atoms/proc) parallel efficiencies
- Metallic solid with EAM potential

- Billions of atoms on 64K procs of Blue Gene or Red Storm
- Opteron processor speed: 5.7E-6 sec/atom/step (0.5x for LJ, 12x for protein)
Other MD codes

- **NAMD**
 - Klaus Schulten (U. Illinois)
 - parallel
 - CHARMM FF
 - NIH supported, open source

- **AMBER**
 - >UCSF + many others
 - now parallel
 - associated force-field
 - support ?
 - license

- **CHARMM**
 - Martin Karplus (Harvard) + community
 - weakly parallel
 - associated force-field
 - support ?
 - license

- **GROMACS**
 - Erik Lindahl (Stockholm)
 - David van der Spoel (Uppsala)
 - Berk Hess (Mainz)
 - parallel & fast
 - ~GROMOS force-field
 - open source

- **DL_POLY**
 - W. Smith & others (Britain)
 - parallel
 - license
Hardware & SPEED
Atomistic Simulation of Protein Dynamics

- **Rhodopsin**
 - a membrane protein that absorbs light
 - starts signaling cascade that results in our vision
 - a G-protein coupled receptor (GPCR)
- **GPCR**
 - ligand binds and activates the G-protein on the cytosol and starts a signal
 - big drug target
- **Simulations**
 - 2000 Bovine Rhodopsin crystallized in dark state
 - 2003 MD simulation (and others)
 - 40 ns simulation (only a few competitors)
 - 2007 simulation of photoisomerization (and IBM group)
 - 150 ns simulation
 - changes in transmembrane helices
 - movement of water
 - side chain dynamics
 - just last month crystal structure of light state
 - understand the physical mechanism of the transition between states
- 10 ns standard for major simulators; 100 ns possible
Protein Simulations: Future

• We have reached a new era in protein simulations
 – starting to examine the sequential dynamics of proteins

• BlueGene
 – on the biggest computer, serious attacks on such problems are happening
 ▪ µs simulation
 ▪ many 100 ns simulations
 – statistics of single trajectories (not identical)
 ▪ Is there a way to efficiently obtain good statistics?
 ▪ statistics of a transition path (see also free energy calculation)
 – BlueGene computer
 ▪ optimized code for special processors
 ▪ many many processors ⇒ algorithm must be (and is) fast for few atoms/processor
 ▪ i.e. a lot of work was performed to make it happen & not all code is transferable
 – Alan Grossfield, U. Rochester; Michael Pitman, IBM

• Starting without a measured crystal structure
 – Building a protein is equivalent to folding it.
 – How do you build a GPCR in general? based on rhodopsin?

• Can we simplify the dynamics and make the calculation faster?
 – Do we need to treat the transmembrane helices in full detail all the time?
 – Cost ~ number of interactions to be calculated
Computers of the Future

- GPUs (and other coprocessors)
- Nvidia: CUDA language
- Desktop → 60 processor computer
- resurrection of the workstation?
 - ~$20,000 = ~1000 CPU equivalents?
- Requires code rewrites
 - load imbalanced
 - getting data in/out of GPU efficiently
 - NAMD conversion only get 4x speedup
- nodes on parallel computers will (do!) have GPUs

What's New?

LAMMPS

• C++ code
• many new force-fields
 – typically not funded
 – essential
• ability to combine force-fields
 – Ex: organic-metal system
 – Ex: model systems that use multiple interaction types
• rigid body dynamics
• aspherical potentials
• input script language

Wish list

• combining with continuum mechanics
Coarse-Graining
Coarse-grained models

- polymer
 - standard CG motivation
 - polyelectrolyte examples
 - DNA
 - elliptical interactions for sugar bases
- lipids
 - follow polymer (minimal) models
 - chemically defined models
 - Voth, Klein, Marrink
 - atomistic FFs need work (e.g. CHARMM vs. GROMOS)
- & proteins
 - rigid body
 - same FF issues as lipids

Biomembranes

• Challenges
 – Fusion
 – Effect of lipids on protein activity (e.g. rhodopsin)
 – Organization of multicomponent membranes
 ▪ Domains (rafts) organize proteins
 – transport of particles thru membrane
 ▪ toxins, nanoparticles

• Lipid membranes as a material
 – liquid surface
 – self-assembly
Simulating Biomembranes

We want to simulate lipid membranes & must treat liquid dynamics.

Lipid diffusion is ‘slow’
- diffusion constant $\sim 10^{-8} \text{ cm}^2/\text{s} = 10^{-3} \text{ nm}^2/\text{ns}$
- lipid exchange time $\sim 100 \text{ ns}$
- too slow for atomistic simulations

⇒ need to use coarse-grained models
Coarse-grained Models

• Follow successful coarse-grained models in polymer physics
 – bead-spring model
 – 2 types
 ▪ hydrophobic & hydrophilic

• Can treat essential physical features that drive key phenomena
 – connectivity
 – hydrophobic/hydrophilic interactions
 ▪ self-assembly
 – membrane fluidity

• This is sufficient for more complex phenomena
 – microdomains
 – fusion
 – membrane-protein interactions
Simulations of Bilayer Membranes

Membrane self-assembly? Yes!

1x10^6 time steps
Liquid Membrane

Verifying fluidity of bilayer
• Lipids diffuse across simulation box
• Lipid diffusion not possible presently in atomistic simulations
• Matching diffusion times yields map: LJ time unit $\tau \rightarrow 0.2$ ns.
• $5000 \, \tau = 1.0 \, \mu s$.
• Times in the μs to ms range achievable

![Graph showing liquid and gel phases with time in LJ time units and r^2 (\sigma^2) on the y-axis.](image)
Fusion Simulation Setup

- Create single liposome by placing lipids on inner & outer spheres: \(D = 30 \) \(\sigma = 15 \) nm, \(N_T = 4 \).
- Apply constant force to bring liposome together
- Images are slices

\[
\begin{align*}
f & \quad f \\
2158 \text{ lipids/liposome} \\
333680 \text{ total beads}
\end{align*}
\]
Fusion Dynamics
Coarse-grained Models

• Model and FF development of CG lipid
 – Siewaart-Jan Marrink (Netherlands)
 ▪ MARTINI FF (in GROMACS)
 ▪ ~5 LJ types, partial charges
 ▪ different lipid head group
 ▪ cholesterol
 – Greg Voth
 ▪ force matching method (atomistics to CG)
 ▪ atomistic to CG connection
 ▪ well defined mathematics
 ▪ also done work to coarse-grained at higher level (field theory)
 – Michael Klein
 ▪ revised version of early work on surfactants
 ▪ new results on lipids coming
 – Markus Deserno
 ▪ 3-bead lipid model and no solvent
 ▪ for larger scale systems

• atom to CG is not 1:1
 – multiple relevant versions possible
 – best choice may depend on problem

• Need multiple levels of coarse-graining
CG Lipid Simulations

Next Stage

• Different lipid types
 – more complex models

• Free energy calculations
 – very very expensive
 – WHAM
 ▪ constrain system (ex. two vesicles at fixed separation in fusion simulation)
 ▪ do a full simulation at each constraint
 ▪ collect statistics
 ▪ calculate free energy difference from 'WHAM' equations
 – energy barriers
 ▪ slow dynamics → expensive calculations
 ▪ various methods proposed
 ▪ multiple dimensions are a challenge
 – ? who is funded

• Including proteins in membrane simulations
 (next page)
Including Proteins

• Many problems of interest involving lipids and membrane proteins
 – biological problems vs. model systems
 – interactions between proteins in membrane
 – fusion peptides
 – antimicrobial peptides
 – domain organization of proteins (rafts)

• CG protein models
 – Thirumalai (90s)
 ▪ alpha helix & beta sheet
 ▪ recently complex orientational FF
 – Marrink
 – many minimal models developed for protein folding
 – folding vs dynamics
 – rigid body dynamics
 ▪ treat protein as cylinder
 ▪ treat helices as rigid
Coarse-grained Models: Future

• hydrogen bonding
 – directionality important?
 – how incorporate small scale into CG model

• water
 – hydrogen bonding liquid
 – dielectric screening
 – 90% of particles
 – implicit water especially far away

• nonspherical potentials
 – to treat rings (phenyl, sugars)
 – to treat other rigid or semirigid components
 – need efficient algorithms

• charges
 – explicit (done, but expensive)
 – Debye-Hückel or other effective interaction

• efficiency: complexity or adding features tends to add costs
Next Level of Coarse-grained Models

Schematics have essential features
How do you simulate all this?
• better models
 – cholesterol
 – lipids
• need a model
 – glycolipids
• protein shapes
 – know the shape?
 – model shape better than a collection of points
 – interaction between a shape & particle
 • reduce number of interactions
 – dynamic vs static 'mesh'
 – varying degrees of flexibility
• time scales
 – components
 – multiple levels of coarse-graining
 – fastest frequency → short time step
• can do length scale?
Nanoparticles
Nanoparticles

• What can we do with nanoparticles?
 – most nanoparticles must be coated in order to reside in a system

• In simulations what needs to be done?
 – structure of coated nanoparticles
 – interaction between coated nanoparticles
 ▪ influence of solvent
 – what structures of sets of nanoparticles occur
 – how do you make a desired structure?
 – how do you put the nanoparticles where you want them
 ▪ polymer nanocomposites
 ▪ nanoparticle crystals
SAMs & AFM tips

• Have treated self-assembled monolayers (SAMs)
• primarily on SiO$_2$
• treated a variety of terminations
 – CF$_3$, OH, COOH, ethylene glycol, nylon
 – issue: treating ionization
 ▪ free H$^+$ is problematic
 ▪ dynamics of dissociation/association
 ▪ FF have defined connectivity
• Now doing explicit SiO$_2$ tips

• Nanoparticles
 – coatings on nonplanar surfaces
 – will encompass a big leap in length and time scales
 ▪ want to do more than 2 particles
 ▪ particle dynamics on slower scale than solvent
 ▪ how reduce number of solvent molecules

Mark Stevens
msteve@sandia.gov
PEO-coated silica inter-particle force

- approx. 360,000 water atoms
- approx. 400,000 total atoms
- 90% solvent

- 128 processors for 16 days (slowest case)
- now ~ 2 million atoms to treat hydrodynamics
Force on PEO coated Silica in water

- $v = 1 \text{ m/s}$
- $v = 5 \text{ m/s}$
- $v = 50 \text{ m/s}$

Mark Stevens
msteve@sandia.gov
Interaction Potential

- \(r_c = 10\AA \)
- Sum of LJ ?LJ
- Hybrid potential model
- Solvent represented by standard Lennard-Jones (LJ) particles
- NP-NP interaction treated as interactions between integrated LJ particles\(^1\)
- NP-solvent interaction treats NP as an integrated particle

\[
\begin{align*}
U_{\text{nano-solvent}} &= \frac{2a_1^2 \sigma_{ij}^2 A_{ns}}{9(a_2^3 - r_{ij}^3)^3} \left[1 - \frac{(5a_2^6 + 45a_2^3 r_{ij}^2 + 63 a_2^3 r_{ij}^1 + 15 r_{ij}^2) \sigma^*}{15(a_2 - r_{ij})^6 (a_2 + r_{ij})^6} \right] \\

U_{\text{nano-nano}} &= \frac{-A_{nn}}{6} \left[\frac{2a_1 a_2}{r_{ij}^2 - (a_1 + a_2)^2} + \frac{2a_1 a_2}{r_{ij}^2 - (a_1 - a_2)^2} + \ln \left(\frac{r_{ij}^2 - (a_1 + a_2)^2}{r_{ij}^2 - (a_1 - a_2)^2} \right) \right] \\
U_{\text{R}} &= \frac{A_{nn} \sigma^*}{37800 r_{ij}^2} \left[\frac{r_{ij}^2 - 7r_{ij} (a_1 + a_2) + 6 (a_1^2 + 7a_1 a_2 + a_2^2)}{(r_{ij} - a_1 - a_2)^7} \\
&+ \frac{r_{ij}^2 + 7r_{ij} (a_1 + a_2) + 6 (a_1^2 + 7a_1 a_2 + a_2^2)}{(r_{ij} + a_1 + a_2)^7} \\
&- \frac{r_{ij}^2 + 7r_{ij} (a_1 - a_2) + 6 (a_1^2 - 7a_1 a_2 + a_2^2)}{(r_{ij} + a_1 - a_2)^7} \\
&- \frac{r_{ij}^2 - 7r_{ij} (a_1 - a_2) + 6 (a_1^2 - 7a_1 a_2 + a_2^2)}{(r_{ij} - a_1 + a_2)^7} \right] \\
U &= U_A + U_R,
\end{align*}
\]

Nanoparticles in Solvent

• Simulation details:
 – 10-2000 nanoparticles
 – 0.5-2 million LJ solvent particles
 – $T = \frac{e}{k_B}$, $P = 0.1e/s^3$

• Simulations only feasible due to significant improvements in LAMMPS
 – Multi-region neighbor lists
 – Improved communications

Pieter J. in ’t Veld, Matt K. Petersen, Gary S. Grest, Steve Plimpton
Coarse-Graining of Background Fluid

• Issue
 – too many solvent particles
 – solvent/colloid ratio may be 100:1 or 1000:1
 – interest is colloidal dynamics

• SRD = stochastic rotation dynamics (particle)
 – Hecht et al, PRE, 72 (2005)
 – intermediate Peclet numbers of around 1
 – Pe = ratio of advection to diffusion

• Basic idea:
 – solvent moves by random rotation + streaming flow
 – solvent particles do not interact with each other

• Implementation issues
 – Cheap because no solvent-solvent interactions (LJ) to compute
 – How to add lots of (non-interacting) particles and not slow down
 – How to detect SRD/colloid collisions efficiently?
 – How to thermostat?
Nanoparticles

• We are now considering the 1-2 type nanoparticle systems.

• Proteins are nanoparticles.
• There are interesting materials made of proteins.
• The surfaces of proteins are far more complex
 – many interaction sites
 – many shapes
• The possibilities are far beyond what we are imagining.
Rigid Body Dynamics
Patchy Particles

- Use C_{80} to define sites on a sphere
- 4 matching sites on nanoparticle
 - attractive: blue:red and cyan:green
 - acid:base binding
 - will make sheets?
- Simulation
 - 500 rigid bodies
- Large particle may reside on multiple processors
 - need efficient parallel methods
 - fast communications

largest cluster
Patchy Particles

- **Modify model**
 - provide orientation within patches
 - yield alignment of bonded particles
 - which yields sheet fragments
 - slow dynamics of fragments forming single sheet

- **Monte Carlo may be more efficient at low densities**
 - Cluster moves
 - No general Monte Carlo codes
 - typically not parallel

- **Mimic MC move in MD?**
 - redefine cluster as rigid unit
 - reduces intra-body calculations
 - allows larger time step ~ rotation of large cluster
 - parallelization issues

- **People are just beginning to study such systems**
 - can use with coarse-grained systems to study proteins in lipids
Atomistic/Continuum Coupling

MD + finite elements for stress/strain response
- boundary conditions for MD
- transfer between MD forces and FE stress
- general issues: applies to solids and liquids

- Rob Hoy and Mark Robbins (JHU)
 - solids, fracture
- Greg Wagner, Reese Jones, Jeremy Templeton (Sandia)
- Jeremy Lechman, Randy Schunk (Sandia)
 - liquids
Acknowledgements

Steve Plimpton
Gary Grest
Jeremy Lechman
Pieter in 't Veld
Matt Lane
Matt Petersen

LAMMPS Funding:
• DoE Office of Science: OASCR/OBER offices, GTL program
• Sandia LDRD program
• original CRADA (Cray, Dupont, Bristol-Myers Squibb)

Stevens Funding:
• Sandia LDRD program
• ASCI program
• DoE Office of Science: BES office