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v physics broadly impacts many areas of science

v properties are critical input to many physics
questions

 Particle/Nuclear Physics

— Fundamental questions about standard model

— Fundamental issues regarding interactions
« Cosmology

— Large scale structure

— Leptogenesis and matter-antimatter asymmetry
» Astrophysics

— Supernova explosions

— Solar burning
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The major physics questions addressed by 33

e Decay can only occur if neutrinos are massive Majorana
particles
 This conclusion is model independent if B3 is observed.

e Critical for understanding incorporation of mass into standard
model

B is only practical experimental technique to answer this question

BB(0v) decay rate proportional to neutrino mass
e Most sensitive laboratory technique (if Majorana particle)

e Decay can only occur if Lepton number conservation is
violated
e Leptogenesis?

 Fundamental nuclear/particle physics process
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BB Decay Rates

I3, = sz‘Mz V‘z _

G are calculable phase space factors.
GOV ~Q

IMI| are nuclear physics matrix elements.
Hard to calculate.

If I" is non-zero, it implies Lepton number is not
conserved and that neutrinos are massive
Majorana particles.
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What about mixing, m, & BB(0v)?

virtual v
exchange

e = %1, CP conservation

Compare to 3 decay result: Compare to cosmology:
3 2, real v — .
<mﬂ> = EJU il m; emission Z - Z mi
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Sensitivity
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Nuclear Matrix Elements

Recent progress NSM-QRPA:
2005 within x 5
2010 agree within x 2

Does agreement between
methods provide an estimate
of theoretical uncertainty?

Barea and lachello, PRC 79 (2009), IBM approach
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Nuclear Matrix Elements
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Need Several Experiments to Fully
Deduce Underlying Physics

If I'% is non-zero, v’s are massive Majorana particles, but...

FOV:GOV‘MOVU‘Z or GOV‘MOV‘2<mﬂﬁ>2

* There are many physics models that lead to
Lepton Number Violation (n), [M| can change
with the model
— Light neutrino exchange
— Heavy neutrino exchange
— R-parity violating supersymmetry
— RHC
— efc.
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Observation of B[3(0v) implies massive

Majorana neutrinos, but:

« Relative rates between isotopes might discern light neutrino
exchange and heavy particle exchange as the B3 mechanism.

» Relative rates between the ground and excited states might
discern light neutrino exchange and right handed current
mechanisms.

Effective comparisons require experimental uncertainties to be
small wrt theoretical uncertainties. Correlations between |M|
calculations are important.

Require 3-4 results in different isotopes.
Total uncertainty, experimental/theoretical, 20-50%.

Deppish/Pas Phys. Rev. Lett. 98, 232501 (2007)
Gehman/Elliott J. Phys. G 34, 667 (2007) [Erratum G35, 029701 (2008)
Fogli/Lisi/Rotunno Phys. Rev. D 80, 015024 (2009)
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The need for more than 1 experiment

It is very important to understand that a healthy neutrinoless double-beta decay
program requires more than one isotope. This is because:

* There are many unknown gamma transitions and a line observed at the “end
point” in one isotope does not necessarily imply that OvBg decay was discovered
(daughter tagging and exceptional energy resolution help)

* Nuclear matrix elements are not very well known and any given isotope could
come with unknown liabilities

» Different isotopes correspond to vastly different experimental techniques

« 2 neutrino background is different for various isotopes (low rates in some
isotopes and energy resolution)

« The elucidation of the mechanism producing the decay requires the analysis of
more than one isotope

Double Beta Decay 15 NRC Review, Dec. 2010



3 heutrino mass measurements

BB, cosmology,

» Because we know v’s have mass, even null
results constrain the mass specira.

* No m, measurement directly determines a
mass eigenvalue.

» The 3 techniques measure different

critical roles.

* In degenerate region, all m, techniques
measure a value approximately equal to the

average mass eigenvalue.

BB might lead to Majorana phase data.
Cosmology is model dependent. 3 decay is

least model dependent.

combinations of neutrino parameters. All 3 play

Vogel, Piepke, Particle Data Book
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PaSt Resu Its: Very . 1 Annu. Fov. Phet. Scl. 2002 52:115

Jd y " l
4Ca CaF, >5.8x102y | <(3.5-22) eV
76Ge H-M >1.9x105y | <0.35 eV ot - i
76Ge IGEX >1.6x105y | <(0.33-1.35) eV :
76Ge KDHK =1.2x105y | =0.44 eV <
(] 3 _] —
s25e NEMO >3.6x102y | <(0.89-1.61) eV g :
%Zr NEMO 59.2x102'y | <(7.2-19.5) eV £
100Mo NEMO | >1.1x10%y | <(0.45-0.93) eV § .
116Cd Kiev >1.7x102y | <1.7eV
128Te geochem | >7.7x10%*y | <(1.1-1.5) eV 1 T\ton |
1 | d |
130Te (CUORE) | >2.94x102y | <(0.21-0.70) eV Rl (ence hlemeny E
Region
136Xe Gotthard | >4.4x102y | <(1.8-5.2) eV
159Nd NEMO | >1.8x102y | <(1.7-7.6) eV 004 | | | ]
1940 1960 1980 2000 2020
Year
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Great Number of Proposed Experiments

Worldwide

Experiment |Isotope| Mass Technique Present Status Location
CANDLES ®Ca [0.35 kg CaFz scint. crystals Prototype Kamioka
CARVEL ¥Ca | 1ton CaFz scint. crystals Development Solotvina
COBRA H8Cd | 183 kg “Cd CZT semicond. det. Prototype GGran Sasso
CUORICING | "Te | 11 kg TeOz bolometers Complete - 2008 |Gran Sasso
CUORE 130T | 200 kg TeOs bolometers Construction - 2012 |Gran Sasso
DCBA “'Ne | 20 kg “""Nd foils and tracking Development Kamioka
EX0O-200 138 %e | 160 kg Lig. *""Xe TPC /scint. Construction - 2011 WIPP
EXO H8%e | 1-10 ¢ Lig. """ Xe TPC/scint. Proposal DUSEL
GEM Ge | 1ton “"TGe det. 1n lig. nitrogen Inactive
GENIUS Ge | 1ton *""Ge det. in lig. nitrogen Inactive
GERDA Ge =35 kg “"Tze semicond. det. Construction - 2012 |Gran Sasso
G50 ¥90d | 2 ton |Gd2S8i0s:Ce crys. scint. in lig. scint. Development
KamLAND-Zen| ¥ Xe | 400 kg =1 Xe disolved in lig. scint. Contruction - 2011 | Kamioka
MaJORANA | "Ge | 26 kg """ (e semicond. det. Construction - 2013| SUL
MOON Wi | 1t =n" Mofoils,/scint. Development
NEXT 138 %e | 80 kg gas TPC Development Canfranc
SNO+ YONd | 55 kg Nd loaded lig. scint. Construction - 2012| SNOLab
SuperNEMO | %Se [ 100 kg =nrSe foils/ tracking Proposal Frejus
Xe 9%%e | 1.56 t “""Xe in liq. scint. Development
XMASS 136%e | 10 ton liquid Xe Inactive for g3 Kamioka
HPXe "% ¥e | tons High Pressure Xe gas Development
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Great Number of Proposed Experiments
Worldwide
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Isotope

Mass

Technique
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A Recent Claim I
has become a litmus test S i
for future efforts
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Future Data Requirements

Why wasn’t this claim sufficient to avoid controversy?

e Low statistics of claimed signal - hard to repeat
measurement

e Background model uncertainty
e Unidentified lines
e Insufficient auxiliary handles
Result needs confirmation or refutation
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Various Levels of Confidence in a Result

« Preponderance of the evidence: a combination of
— Correct peak energy
— Single-site energy deposit
— Proper detector distributions (spatial, temporal)
— Rate scales with isotope fraction

« Beyond a reasonable doubt: include the following
— QObserve the two-electron nature of the event

— Measure kinematic dist. (energy sharing, opening angle)
— QObserve the daughter

— Observe the excited state decay
« Smoking Gun

— See the process in several isotopes
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International Program in 33

Expt. Size: up to 10 kg Expt. Size: 100-200 kg
Sensitivity: ~1 eV ~ Several experiments
~10 BB(2v) measurements 5%‘ Program to measure

(g : :
& ' ratein several isotopes

o Expt. Size: 30-200 kg Expt. Size: few T

Sensitivity: ~100 meV >3 experiments
Quasi-degenerate Program to measure

~8-10 expts. worldwide rate in several isotopes
Kinematic meas.

\\Q?%M% Y
pt. Size: ~1T Expt. Size: > 10T
~3 expts. — ~3expts.
Sensitivity: 50 meV Sens.: 5 meV
Atmos. scale Solar scale

SUL/DUSEL will play a significant role far into the future! I
1985- Present 2007-2015 2015- 2025 Future )
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Solar Scale: Showstoppers?

* Need 100 tons of isotope

— Enrichment costs and production rates are not
sufficient yet

— Requires R&D to improve capability

* Need excellent energy resolution
— Better than 1% FWHM

— An experiment with 10° solid state detectors is possible
» Cost/detector will need to be greatly reduced
« Large multi-element detector electronics are improving
— Metal loaded liquid scintillator or Xe techniques
« Scales more easily and cost effectively
« Resolution requires R&D
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Double Beta Decay in the US

two collaborations that are led by US groups and proposing to work at DUSEL

2 2 i
FOszm/‘Mov‘ m, | 1-tonne Ge

At least one neutrino
has a mass >50 meV.
These experiments
will have a sensitivity
below 50 meV.

Two detectors proposed for DUSEL: EXO and 1TGe, which use isotopes of
136Xe and 7Ge with very different and complementary techniques. Both
are currently building prototypes for tonne-scale experiment.

These reports call out the

need for BB in general and il Astoiyses

these experiments in e RS

particular. CUORE was also

well recommended. IheINeufoIME X
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Key Infrastructure Need |
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An exciting time for f!

For at least
ohe nheutrino:
Capability of the technologies: _

< mgg > In the range
near 50 meV is very interesting.
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Conclusions

« The present technology is ready for atmospheric scale
sensitivity and we can at least discuss it for the solar scale.

« Even null results will be interesting.

* Need several measurements with a total uncertainty
(experiment & theory) of ~50% or less, and eventually
even better (20%),).

« The worldwide program will support several experiments
and DUSEL is well poised to house 2 experiments on a
very timely schedule.

If we see BB, the qualitative physics results are profound,
but next we’ll want to quantify the underlying physics.
We need space underground to pursue this program.
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EXTRAS
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Background Considerations

BB(2v)

e natural occurring radioactive materials

° neutrons
e long-lived cosmogenics
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Some of the usual suspects

BB(2v)

— For the current generation of experiments, resolutions are sufficient to
prevent tail from intruding on peak. Becomes a concern as we
approach the ton scale

— Resolution, however, 1s a very important issue for signal-to-noise

e Natural Occurring Radioactive Materials

— Solution mostly understood, but hard to implement

e Great progress has been made understanding materials and the U/Th
contamination, purification

* FElaborate QA/QC requirements

— Future purity levels greatly challenge assay capabilities
e Some materials require levels of 1uBg/kg or less for ton scale expts.
e Sensitivity improvements required for ICPMS, direct counting, NAA
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The other usual suspects

e Long-lived cosmogenics
— material and experimental design dependent
— Minimize exposure on surface of problematic materials

e Neutrons (elastic, inelastic, short-lived cosmogenics)
— (a,n) up to 10 MeV can be shielded

— High-energy-u generated n are a more complicated problem
e Depth and/or well understood anti-coincidence techniques

* Rich spectrum and hence difficult at these low rates to discern actual
process, e.g. (n,n’y) reactions

e Simulation codes not entirely accurate wrt low-energy nuclear physics
e Low energy nuclear physics is tedious to implement and verify
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Signal:Background ~ 1:1

Its all about the background

Half life ~Signal ~Neutrino mass
(years) (cnts/ton-year) scale (meV)
10%° 530 400 Degenerate
5x1026 10 100
To reach |
5x10%7 atmospheric 40 Atmospheric
scale need BG
on order 1/t-y.
>102° <0.05 <10 Solar
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An ldeal Experiment

Maximize Rate/Minimize Background

Large Mass (~ 1 ton)

Large Q value, fast BB(0v)
Good source radiopurity
Demonstrated technology
Ease of operation

Natural isotope

Small volume, source = detector
Good energy resolution
Slow BB(2v) rate

|dentify daughter in real time
Event reconstruction
Nuclear theory
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Key Past Experimental Limitations

 Scintillators: Resolution and internal radioactivity
 Tracking Detectors: Source mass

 Calorimeters: External background
— Most sensitive techniques to date
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How many experiments?

Compare theories

— Even though theory is uncertain,
one can estimate the number of

Requires results
from 3-4 isotopes
& calculation of
NME to ~20%

required experiments by using %< | & CEP)
the theoretical calculations at S o b
face value to compare the T [ |YHeawy |
spread. St} sy .
Is there a preferred set of isotopes? 5 ERHG ‘
. 20— ;
— Perhaps, but this a dangerous g 1 5 ;
stretch for the theory. 5 i "
15— : i :
: X ¥ .
10— v :
: . | : N
5 ’ 3 M
C ’ é
0 3 ?EIGe Szlse 100;‘0 "sl:d 13%)1-8 136xe
Gehman, Elliott, J. Phys. G: Nucl. Part. Phys. 34, 667 (2007) BB Isotope

Deppish, Pas, Phys. Rev. Lett. 98 232501
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Why a precision measurement?

If <mge> is near the degenerate scale:

« We will want to compare results from several
Isotopes to fully understand the underlying physics.

« A 10-20% decay rate measurement will allow
effective comparisons between isotopes, when the
matrix element uncertainty nears ~20%.
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