

Before the  
FEDERAL COMMUNICATIONS COMMISSION  
Washington, DC 20554

In the Matter of

7 Allocation and Designation of Spectrum for )  
8 Fixed-Satellite Services in the 37.5-38.5 GHz, )  
9 40.5-41.5 GHz and 48.2-50.2 GHz Frequency )  
10 Bands; Allocation of Spectrum to Upgrade Fixed )  
11 and Mobile Allocations in the 40.5-42.5 GHz ) IB Docket No. 97-95  
12 Frequency Band; Allocation of Spectrum in the )  
13 46.9-47.0 GHz Frequency Band for Wireless )  
14 Services; and Allocation of Spectrum in the )  
15 37.0-38.0 GHz and 40.0-40.5 GHz Frequency Band )  
16 for Government Operations. )

## REPLY COMMENTS OF THE NATIONAL ACADEMY OF SCIENCES' COMMITTEE ON RADIO FREQUENCIES

23 The National Academy of Sciences, through the National Research Council's  
24 Committee on Radio Frequencies (hereinafter, CORF<sup>1</sup>), hereby submits these Reply  
25 Comments in response to the Commission's Notice of Proposed Rulemaking (NPRM;  
26 FCC 10-186) in the above-captioned docket. Herein, CORF notes the importance of  
27 protecting Radio Astronomy Service (RAS) users in the 42.5-43.5 GHz band from out-  
28 of-band interference and addresses relevant filed comments

## 29 I. Introduction: The Role of Radio Astronomy and the Importance of 30 Observations in the 42.5-43.5 GHz Band

31 CORF has a substantial interest in the spectrum issues raised in this proceeding,  
32 because it represents the interests of the passive scientific users of the radio spectrum.  
33

<sup>1</sup> A roster of the committee members is attached.

34 including users of the RAS bands.<sup>2</sup> RAS observers perform extremely important yet  
35 vulnerable research and provide data of national importance.

36 As the Commission has long recognized, radio astronomy is a vitally important  
37 tool used by scientists to study our universe. It was through the use of radio astronomy  
38 that scientists discovered the first planets outside the solar system, circling a distant  
39 pulsar. It has also enabled the discovery of organic matter and pre-biotic molecules  
40 outside our solar system, leading to new insights into the potential existence of life  
41 elsewhere in the galaxy. Measurements of radio spectral line emission have identified  
42 and characterized the birth sites of stars in the Milky Way galaxy, the processes by  
43 which stars slowly die, and the complex distribution and evolution of galaxies in the  
44 universe. Radio astronomy measurements have discovered fluctuations in the cosmic  
45 microwave background, generated in the early universe, which later formed the stars  
46 and galaxies we know today. RAS observations have established the existence of a  
47 black hole in the galactic center of the Milky Way, a phenomenon that may be crucial to  
48 galaxy formation. Observations of supernovas have allowed us to witness the creation  
49 and distribution of heavy elements essential to the formation of planets like Earth, and  
50 of life itself.

51 However, the critical science undertaken by RAS observers cannot be performed  
52 without access to interference-free spectrum. Notably, the emissions that radio  
53 astronomers receive are extremely weak—using its full allocated band, a radio  
54 telescope receives only about one-billionth of one-billionth of a watt ( $10^{-18}$  W) from a

---

<sup>2</sup> CORF also represents the interests of remote sensing scientists, including users of the Earth Exploration Satellite Service, which has an allocation at 40.0-40.5 GHz.

55 typical cosmic object. Because radio astronomy receivers are designed to pick up such  
56 remarkably weak signals, radio observatories are particularly vulnerable to interference  
57 from in-band emissions, spurious and out-of-band emissions from licensed and  
58 unlicensed users of neighboring bands, and emissions that produce harmonic signals in  
59 the RAS bands. Even weak, distant in-band man-made emissions have precluded RAS  
60 use of these bands on numerous occasions.

61 Of particular importance in this proceeding are observations at 42.5-43.5 GHz.  
62 Radio astronomers make spectral line observations of silicon monoxide (SiO) in this  
63 band because it contains several of the lowest rotational transitions ( $J = 1-0$ ) of various  
64 vibrational states of the SiO molecule, a key tracer of the physical conditions in the  
65 envelopes of some aged stars and young stellar objects. Because of its maser  
66 capabilities, the transition can be used to obtain unique information on the temperature,  
67 density, stellar wind velocity, and envelope geometry for these objects. More  
68 importantly, observing the angular movement of the SiO masers in these objects can  
69 lead to a direct estimate of the distance to the objects in question. Traditionally,  
70 determining an accurate distance to an astronomical object outside the solar system is  
71 the most difficult task in astronomy, so that any tool that can be employed to this end is  
72 priceless. In addition to observing the SiO masers, RAS use of this band includes  
73 determining the high-frequency portion of continuum spectra for galaxies and quasars.  
74 This requires interference-free access to the full 1 GHz band.

75 The SiO spectral lines with rest frequencies of 42.519, 42.821, 43.122, and  
76 43.424 GHz are included in Table 1 of Recommendation ITU-R RA. 314-10, which lists  
77 the radio frequency lines of greatest importance to the RAS. Studies of multiple SiO

78 transition lines are desirable because, when coupled with radiative transfer models of  
79 the molecular emission environment, they offer the best technique for obtaining the  
80 volume density of the region in question.

81 **II. CORF Supports Deletion of the BSS Allocation at 42.0-42.5 GHz.**

82 As noted in paragraph 12 of the NPRM, the National Telecommunications and  
83 Information Administration (NTIA) seeks deletion of the Broadcasting Satellite Service

84 (BSS) allocation at 42.0-42.5 GHz, because it would be “difficult or impossible to reduce  
85 out-of-band emissions into the 42.5-43.5 GHz band, where sensitive RAS operations  
86 are located, if BSS operations were to be implemented in the 42.0-42.5 GHz band.”

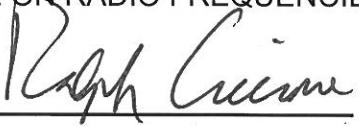
87 Similarly, in the Comments of the National Radio Astronomy Observatory (NRAO) at  
88 paragraph 4, it is noted that “the ubiquitous nature of the desired coverage of [BSS] and  
89 the presence of a signal originating on the sky in direct line of sight appears to make  
90 compatibility between BSS and RAS problematic.” CORF concurs with NTIA and  
91 NRAO on the degree of the out-of-band emission problem that such BSS operations  
92 would cause for RAS observers, and agrees that the best solution in this case would be  
93 deletion of that BSS allocation.

94 **III. If the Commission Adds an Allocation for FSS at 42.0-42.5 GHz,  
95 the Commission Should Also Mandate the Protection Levels in  
96 Footnotes 5.551H and 5.551I for the Neighboring RAS Band.**

97 CORF takes no position on the proposal in the NPRM to add an allocation for  
98 FSS (Fixed Satellite Service) at 42.0-42.5 GHz. However, if such an allocation is  
99 added, then the Commission should, as suggested at paragraph 20 of the NPRM, enact  
100 additional measures to protect RAS observations/users in the 42.5-43.5 GHz band.

102 CORF concurs with NRAO (Comments at paragraph 6) that the Footnotes 5.551H and  
103 5.551I provide the appropriate levels of protection for RAS use in this band. The  
104 protection levels for non-GSO (non-geostationary orbit) systems stipulated in Footnote  
105 5.551H are particularly important given the inability of RAS operations to avoid the near-  
106 ubiquitous presence of non-GSO systems at a given time or position in the sky.

107       Although the Satellite Industry Association (SIA) states that the limits provided in  
108 these two Footnotes are acceptable to the industry, SIA does recommend (Comments  
109 at page 7) that the Commission apply the “per 500 KHz components” of the power  
110 limitations in those Footnotes only in the 42.7-43.5 GHz portion of the RAS band.  
111 CORF opposes this suggestion, since as noted above in Section 1 of this document,  
112 RAS use of this band to determine the high-frequency portion of continuum spectra for  
113 galaxies and quasars requires interference-free access to the full 1 GHz band. In  
114 addition, SIA’s suggestion is inconsistent with the international requirements. SIA  
115 stated (Comments at page 17) in a different context that “[t]he inherently international  
116 nature of satellite service makes it particularly important to maintain consistency with  
117 the international regulations for satellite services as much as is possible.” That same  
118 need for consistency applies as well to requirements affecting the RAS.


119 **IV. CORF Supports Exclusion of the Aeronautical  
120 Mobile Service from 40.5-42.5 GHz.**

121       In paragraph 25 of the NPRM, comments are sought as to whether the  
122 Commission should change the allocation for the Mobile Service in the 40.5-42.5 GHz  
123 band to exclude the Aeronautical Mobile Service (AMS), noting that AMS use of that  
124 band could cause in-band interference to FSS gateway Earth stations as well as  
125 increase the chance for harmful out-of-band interference to RAS observations. CORF

127 supports the exclusion of the AMS from this band. The risk to RAS observations is  
128 suggested by Footnote US211, which urges protection of RAS observations in this band  
129 from interference from airborne operations. CORF recognizes that while NRAO states  
130 at paragraph 12 of its Comments that elimination of the AMS allocation would be  
131 beneficial to the RAS, it also notes that some AMS use might be compatible with RAS  
132 use, where there is sufficient geographic separation and attention is paid to individual  
133 cases. However, CORF believes that more generally, the risks of interference from  
134 such use outweigh the potential benefits.

135 **V. Conclusion.**

136  
137 Recognizing the important scientific data obtained by RAS users in the 42.5-43.5  
138 GHz band, and the unique vulnerability of RAS observations to interference, CORF  
139 urges the Commission to delete the BSS allocation at 42.0-42.5 GHz, and if the  
140 Commission enacts an allocation to FSS, to mandate the protection levels in Footnotes  
141 5.551H and 5.551I. The Commission should also exclude the AMS from the 40.5-42.5  
142 GHz band.

143 Respectfully submitted,  
144  
145 NATIONAL ACADEMY OF SCIENCES'  
146 COMMITTEE ON RADIO FREQUENCIES  
147  
148  
149 By:   
150

151 Ralph Cicerone  
152 President, National Academy of Sciences  
153  
154

155 February 7, 2011

156  
157 Direct correspondence to:  
158

159 CORF  
160 Keck Center of the National Academies  
161 500 Fifth St., NW, Room 954  
162 Washington, DC 20001  
163 (202) 334-3520  
164  
165  
166  
167  
168

169 **Attachment**

170

171 CORF Membership List:

172

173 Jeffrey Piepmeier, *Chair*, NASA Goddard Space Flight Center

174 Sandra L. Cruz-Pol, University of Puerto Rico at Mayagüez

175 Kenneth Kellermann, National Radio Astronomy Observatory

176 David G. Long, Brigham Young University

177 Loris Magnani, University of Georgia

178 Darren McKague, University of Michigan

179 Timothy Pearson, Caltech

180 Melinda Piket-May, University of Colorado at Boulder

181 Steven C. Reising, Colorado State University

182 Alan E.E. Rogers, Massachusetts Institute of Technology/Haystack Observatory

183 Gregory Taylor, University of New Mexico

184 Liese van Zee, Indiana University

185

186 Michael Davis, *Consultant*

187 Paul Feldman, Fletcher, Heald, and Hildreth, *Consultant*

188 A. Richard Thompson, National Radio Astronomy Observatory, *Consultant*

189