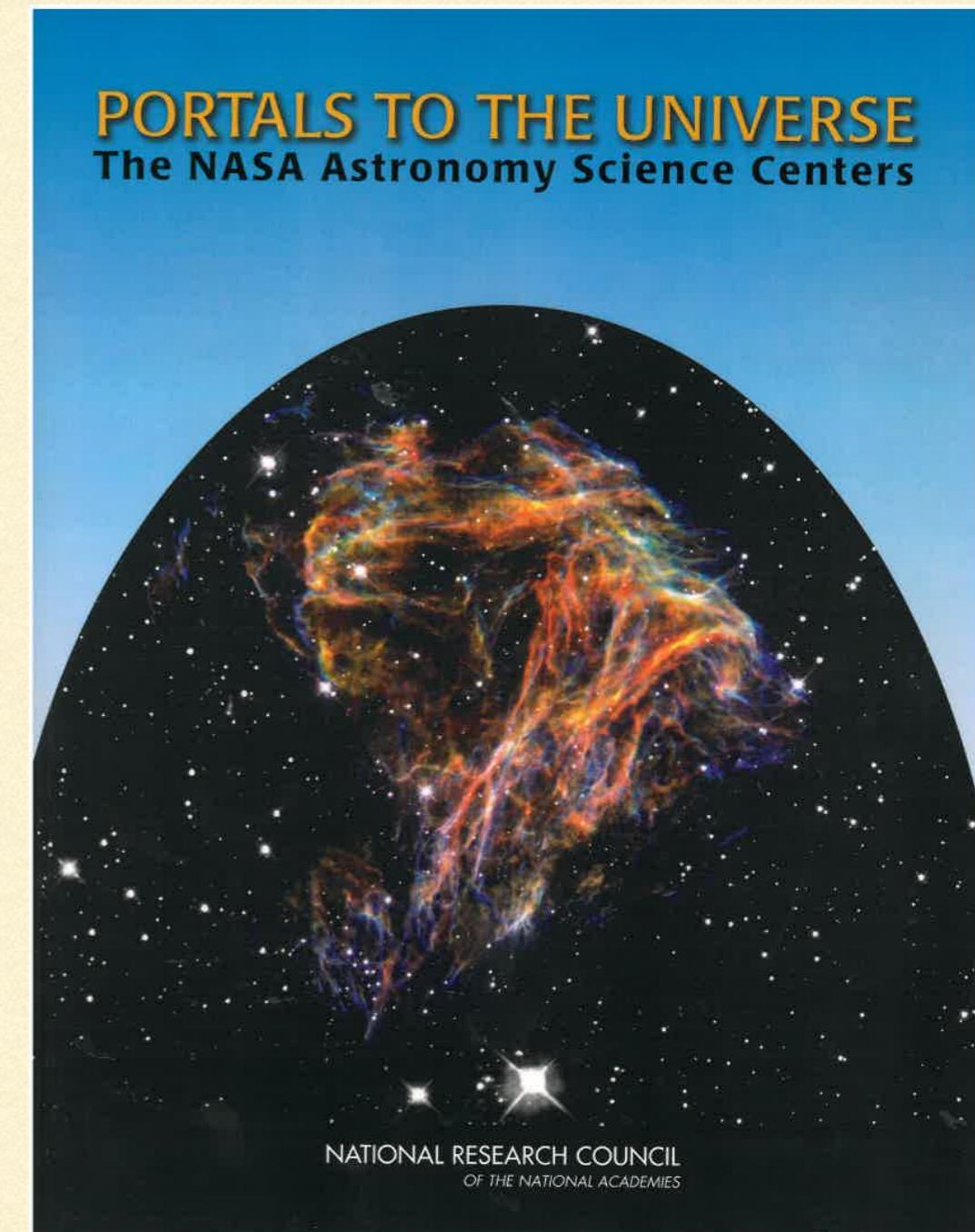

ARCHIVING GROUND-BASED DATA: PERSPECTIVE FROM SPACE


George Helou, Caltech

NRC OIR System Committee
Irvine, 12 October, 2014

PORTALS TO THE UNIVERSE

- Portals to the Universe: The NASA Astronomy Science Centers, NRC Report (2007):
- Science Centers can best process, store and disseminate their data if they maintain mission expertise at the archive centers for the long-term support of active users
- Successful research using archival data sets is dependent on the resident expertise and corporate memory that reside at the science centers.

QUESTIONS & ANSWERS- I

- **What is the appropriate ratio of software/hardware cost? What's the key expense?**
- These numbers vary with project and phase
- The key expense is science expertise & user support ($>1/3$ of total), then software ($<1/2$) and hardware (5-15%)

QUESTIONS & ANSWERS-2

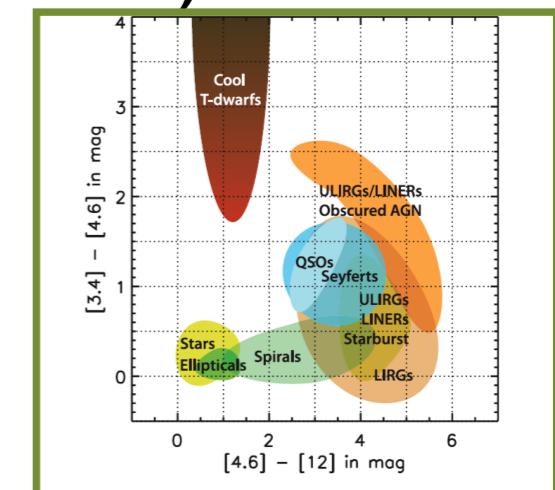
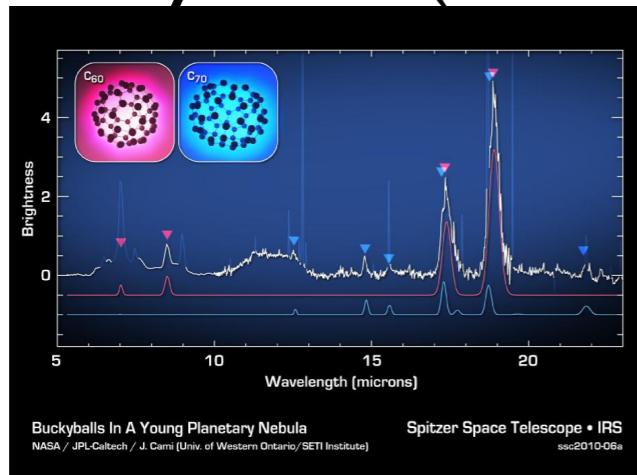
- Discuss raw data vs. pipeline data, and the need for pipelines to be done by experts on the particular instruments.
- Without science-ready data, an archive will eventually become unusable and therefore useless. Therefore pipelines are essential
- Extensive scientific familiarity with the instrument is critical in guiding the development of science-ready data
- Expertise needs to be captured in software, reduced data (multiple products!), and documentation to ensure long-term usefulness

QUESTIONS & ANSWERS-3

- There's a lack of standardization for ground-based data because of the need to reprocess, specific to different instruments, different conditions, different science goals. How will this intermediate-level processing be possible? Where will it occur? (that is, data will be too large to download on individual computers for reprocessing). Is a coordinated effort needed – data centers, etc.?
- The problem becomes tractable by limiting archive-supported instruments, modes, conditions. Surveys are the obvious extreme case to preserve, but support is not viable at the extreme case of idiosyncratic observations
- The experience gained from archiving space data can contribute critical insights and lessons to ground-based archiving, e.g. instrument operations.
Effective data archiving starts with instrument design

QUESTIONS & ANSWERS-4

- **How/where will archiving take place?**
- Policy addresses the goals and requirements; the answer to how/where depends more on practicalities than on policy.
- The requirements are for data integrity, usability, longevity, etc. Implementing those may be best done by a distributed team, as for the Keck Observatory Archive, leveraging diverse expertise

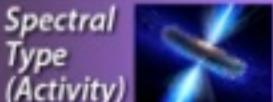


BACKGROUND: IPAC ARCHIVES

- IPAC is a multi-mission science and archive center, interfacing projects to community to enable science beyond the expected
- The NASA center of science, data and operations expertise for IR-submm astrophysics, and of Exoplanet Science, especially **IRSA** (InfraRed Science Archive), **NED** (NASA Extragalactic Database), **Exoplanet Archive**, and **Keck Observatory Archive**
- Also supporting **LCOGT** (archive), **PTF/ZTF** (processing and archive), **LSST** (Science User Tools)

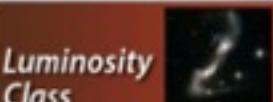
InfraRed Science Archive at IPAC

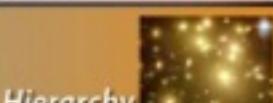
- Provides efficient access to NASA mission data
 - Began with IRAS and 2MASS, leading into the decade of IR missions
- IRSA serves “Heritage Archives” from Spitzer and other observatories, plus a unique array of all-sky IR surveys covering 20 bands from 1 μ m to 10 mm
- Supports many research communities from Solar System (NEOWISE) to Cosmology (Planck)

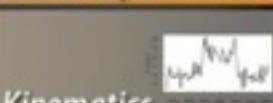
EXTRAGALACTIC DATABASE NED NASA/IPAC

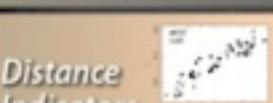

Overview - What is NED?
THE hub for multi-wavelength research on extragalactic objects

Unified multi- λ DB and Knowledgebase


$f(\lambda)$:

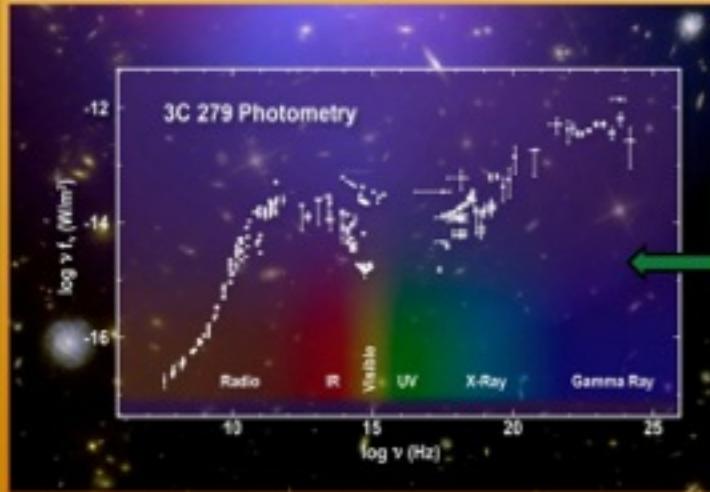

- Name
- (α, δ)
- Redshift
- D_{Mpc}
- Flux
- Diameter
- Attributes
- References
- Notes
- Images
- Spectra
- A_{λ}


Galaxy Morphology


Spectral Type (Activity)

Radio Morphology

Luminosity Class


Hierarchy

Kinematics

Distance Indicators

• Standard Formats & Units
 • Velocity Corrections
 • Cosmological Corrections
 • Distances, Luminosities, etc.

• Best available coordinates via any alias: Name Resolver
 • Spectral Energy Distributions

Astrophysics Missions

E-Literature

Large Sky Surveys

- Research scientists and educators
- Observation and mission planning

- Access via Web, email & computer
- VO program interfaces

NEW! PI Access to LWS Data and Public Access to ESI Data Now Available: [Data Access](#)

Funded by [NASA](#), the *Keck Observatory Archive (KOA)* is a joint development between the [W. M. Keck Observatory](#) (WMKO) located in Waimea, Hawaii and the [NASA Exoplanet Science Institute](#) (NExScl) located in Pasadena, California. Currently, KOA archives data taken with [HIRES](#), [NIRSPEC](#), [NIRC2](#), [LRIS](#), [KI \(Keck Interferometer\)](#), [MOSFIRE](#), [DEIMOS](#), [ESI](#), [OSIRIS](#), [NIRC](#), and [LWS](#).

The process by which data are archived is as follows:

- Locate all FITS files taken in the previous 24 hour period
- Determine the validity and data integrity of each file
- Add [meta-keywords](#) to the FITS header
- Archive the metadata ([native](#) + [meta-keywords](#)) for each FITS header
- Archive the data for each FITS file
- Archive ancillary data associated with each night's data
Ancillary data include Keck nightly plots of weather and image quality trends and, when available, all-sky images and photometric data

The physical location of the archive is at [NExScl](#). Both metadata and raw FITS files are transferred via the internet from WMKO to NExScl, and are available through a [User Interface](#) within hours of the end of observations. Both the data files and the metadata are subject to a [proprietary period policy](#). During the proprietary period, program PIs will be able to access their data via a [user login/password protected site](#). The data are released to the public upon expiration of the proprietary period.