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High gluon  density in high energy hadronic collisions

Particle production from collisions between "constituents" of the nuclei
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DIS and the parton picture
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DIS
Interaction takes place on a short time scale compared 

to the scale of internal dynamics ('naive parton model')
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Light cone perturbation theory

Fock states

Lifetime of fluctuations

Probability of radiation

Integrated and unintegrated gluon distribution
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fied by the Lorentz time dilation factor p/m, leading to �t

hadron

⇠ p/(m⇤
QCD

). Since

Q

2 � m⇤
QCD

and x < 1, �t

int

⌧ �t

hadron

. This large di↵erence in time scales is the

reason why one can consider the quark that absorbs the virtual photon as a free particle.

So far we have been focussing on valence quarks, and these are indeed the dominant

constituents of the proton when x is not too small (see for instance Fig. 3). But we shall

be eventually interested in partons that carry very small values of x. To understand

where these partons come from, it is useful to recall the structure of the proton wave

function in the infinite momentum frame, as obtained in light-cone perturbation theory

[22]. There, for instance, a valence quark may be viewed as a superposition of the form

|qi = a|qi
0

+ b|qgi
0

+ · · ·, where |qi
0

, |qgi
0

, etc., are commonly referred to as Fock

components, or Fock states (see Fig. 2 for an illustration of the mixing of a “bare”

quark with a quark and a gluon). The calculation of the light cone wave function,

Figure 2. An elementary gluonic fluctuation that accompanies a valence quark.
The valence quark, represented by the straight line, emits a gluon (the curly line)
with transverse momentum k, and longitudinal momentum k

z

= xp

z

, with p

z

the
longitudinal momentum of the valence quark. In the regime where k? ⌧ k

z

and
k

z

⌧ p

z

, i.e., x ⌧ 1, the lifetime of the fluctuation is given by �t ' 2xp

z

/k

2

?.

that is, the determination of the amplitudes (a, b, etc.) of the various Fock states,

requires a quantum mechanical calculation. However in the regimes relevant to the

present discussion, such a calculation leads to a probabilistic picture, on which most of

the forthcoming arguments will be based. Thus, the elementary process displayed in

Fig. 2 can be associated to gluon radiation, occurring with a probability

dP ' ↵

s

C

R

⇡

2

d2

k

k

2

?

dx

x

, (1)

where ↵

s

⌘ g

2

/(4⇡) is the strong coupling constant. This formula, analogous to that

for QED bremsstrahlung, is valid for the radiation from a quark (which belongs to the

fundamental representation of the gauge groupe SU(N
c

)), in which case C

R

= C

F

=

(N2

c

� 1)/2N
c

, and for the radiation from a gluon (in the adjoint representation), where

C

R

= C

A

= N

c

, with N

c

the number of colors (N
c

= 3 for QCD, but it is convenient

to leave open the possibility to vary N

c

, in particular when looking at simplifications

that occur in the large N

c

limit). As revealed by Eq. (1), the radiation probability

is enhanced when the emitted gluon carries a small transverse momentum or a small

energy fraction. These are commonly referred to, respectively, as “collinear” and “soft”
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z

, k

z

⌧ p

z

, x ⌧ 1)

xG(x,Q2) =
↵

s

C

F

⇡
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BBBBB@
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2

⇤2
QCD
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d2
k?

k
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?
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Gluon 'cascades'

 Large logarithms are contained in simple diagrams
Specific ordering of successive momenta

DGLAP 

Lifetime of fluctuation decreases along the cascade
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Figure 4. A typical cascade of gluon emissions. In DGLAP, the transverse momenta
are ordered k

1? < k

2? < · · · < k

n?. In BFKL the longitudinal momenta are
ordered k

1z

> k

2z

> · · · > k

nz

. Note that the lifetimes of the successive fluctuations,
�t

i

= 2k

iz

/k

2

i?, decrease as we move down the cascade.

Note an important feature of this equation, shared in fact by all the evolution

equations that we shall meet in this paper: it does not allow the complete calculation

of xG(x,Q2), but only its evolution from some initial condition at a scale Q

0

� ⇤
QCD

.

The DGLAP evolution of parton distributions, because it is solidly rooted in

perturbation theory, which is under increasing control as Q

2 increases, plays an

important role in the description of hadron structure, as probed for instance in DIS.

The parton distributions have a universal character. Thus, once measured in DIS for

instance, they can be used to calculate other processes. This is due to important

factorization properties, to which we now turn.

2.3. Collinear factorization

Factorization relies on a separation of time scales: a long time scale associated with the

“preparation” of the wave function, and a short time scale during which the interaction

takes place. The long time scale involves non perturbative physics, which in general

one cannot calculate, and is buried into the initial condition for the parton distribution

functions. The interaction, which occurs on a short time scale, involves a small coupling

constant and is calculable in perturbation theory. We have already seen an example of

such factorization in our discussion of DIS. Another example, of direct relevance in the

context of heavy ion physics, is that of the inclusive production of minijets, which are

expected to be an important contribution to the total energy density produced in the

collisions [26, 27] (see also [28], and references therein). The corresponding cross section

is typically of the form

d�

dp2?
=

Z

dx
1

Z

dx
2

x

1

G(x
1

, µ

2) x
2

G(x
2

, µ

2)
d�̂

gg!gg

(ŝ, µ2)

dp2?
, (6)

where xG(x,Q2) is a gluon distribution and �̂

gg!gg

(ŝ, µ2) is an elementary parton-parton

cross section which can be calculated in perturbation theory. The quantity µ, the so-
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↵s ln
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QCD
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BFKL

Same when  ↵
s

ln (1/x) ⇡ 1



Linear evolution equations

Probabilistic interpretation

Only evolution calculable

Universal character of pdf’s- Collinear factorisation 

DGLAP

At small x, for gluons, evolution of the integrated pdf
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cuto↵ ⇠ ⇤
QCD

to the scale Q

2 at which the measurement is done. Roughly speaking,

G(x,Q2)dx counts the number of gluons (of all colors and polarizations) in the hadron

wave function (here the valence quark) with longitudinal momentum between xP

z

and

(x+ dx)P
z

, and transverse momentum k

2

? . Q

2. The infrared cut-o↵ ⇠ ⇤
QCD

accounts

for the fact that the parton description ceases to make sense for partons that have

wavelengths larger than the typical confinement scale r
0

⇠ 1/⇤
QCD

. We shall also write

xG(x,Q2) =

Z

Q

2

⇤

2
QCD

dk2

?
k

2

?
'(x, k?), (3)

where '(x, k?) = Q

2

@

@Q

2xG(x,Q2), is referred to as an “unintegrated parton

distribution”. For a single valence quark,

'(x, k?) =
↵

s

C

F

⇡

⌘ '

q

. (4)

At this level of approximation, '
q

is independent of k? and x.

Leading order perturbation theory, which leads to Eq. (2), is insu�cient to

determine the density of gluons which carry a large transverse momentum or a small

longitudinal momentum. When lnQ2 (or ln 1

x

) increases, ↵

s

lnQ2 (and/or ↵

s

ln 1

x

)

may become of order unity, in which case higher orders have to be considered: there

are indeed classes of diagrams where the smallness of the coupling is systematically

compensated by such large logarithms. The relevant diagrams, those which maximize

these logarithmic enhancements, correspond to relatively simple structures: they can

be viewed as cascades of successive gluon emissions such as that depicted in Fig. 4,

where the transverse and/or the longitudinal momenta are strictly ordered. The first

case (ordering in transverse momenta) corresponds to the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) cascade [24], the second (ordering in longitudinal momenta)

to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) cascade [25]. The properties of these

cascades, and the linear equations that control their evolutions, will be recalled in the

next subsections.

2.2. Linear evolution equations: DGLAP

The gluon cascade that takes into account the corrections of order ⇠ (↵ lnQ2)n is

described by the DGLAP equation [24]. For small (but not too small) x, and for gluons

only (we ignore here the quark contributions, subleading at high energy), this reads

Q

2

@

@Q

2

[xG(x,Q2)] =
↵

s

(Q2)C
A

⇡

Z

1

x

dz

z

[zG(z,Q2)], (5)

where Q

2 determines the scale of the running coupling constant. This equation has a

probabilistic interpretation, its r.h.s. being proportional to the probability that a gluon

carrying a momentum fraction z > x splits into two gluons (see Eq. (1)), one of them

carrying momentum fraction x. One should remember, however, that it results from a

quantum mechanical analysis; in particular destructive interferences play an essential

role in ordering successive transverse momenta along the cascade.
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Figure 4. A typical cascade of gluon emissions. In DGLAP, the transverse momenta
are ordered k

1? < k

2? < · · · < k

n?. In BFKL the longitudinal momenta are
ordered k

1z

> k

2z

> · · · > k

nz

. Note that the lifetimes of the successive fluctuations,
�t

i

= 2k

iz

/k

2

i?, decrease as we move down the cascade.

Note an important feature of this equation, shared in fact by all the evolution

equations that we shall meet in this paper: it does not allow the complete calculation

of xG(x,Q2), but only its evolution from some initial condition at a scale Q

0

� ⇤
QCD

.

The DGLAP evolution of parton distributions, because it is solidly rooted in

perturbation theory, which is under increasing control as Q

2 increases, plays an

important role in the description of hadron structure, as probed for instance in DIS.

The parton distributions have a universal character. Thus, once measured in DIS for

instance, they can be used to calculate other processes. This is due to important

factorization properties, to which we now turn.

2.3. Collinear factorization

Factorization relies on a separation of time scales: a long time scale associated with the

“preparation” of the wave function, and a short time scale during which the interaction

takes place. The long time scale involves non perturbative physics, which in general

one cannot calculate, and is buried into the initial condition for the parton distribution

functions. The interaction, which occurs on a short time scale, involves a small coupling

constant and is calculable in perturbation theory. We have already seen an example of

such factorization in our discussion of DIS. Another example, of direct relevance in the

context of heavy ion physics, is that of the inclusive production of minijets, which are

expected to be an important contribution to the total energy density produced in the

collisions [26, 27] (see also [28], and references therein). The corresponding cross section

is typically of the form

d�

dp2?
=

Z

dx
1

Z

dx
2

x

1

G(x
1

, µ

2) x
2

G(x
2

, µ

2)
d�̂

gg!gg

(ŝ, µ2)

dp2?
, (6)

where xG(x,Q2) is a gluon distribution and �̂

gg!gg

(ŝ, µ2) is an elementary parton-parton

cross section which can be calculated in perturbation theory. The quantity µ, the so-Monte Carlo (HIJING, etc), hard probes, nuclear pdf 

z > x

x

z � x ⇡ z

pdf
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called factorization scale, must be su�ciently large to justify the factorization and the

perturbative calculation of the parton-parton cross section. Corrections are expected

to be power corrections in 1/µ2, and are called higher twists. The factorized formula

(6) can be read as a product of probabilities: the probability to find in the colliding

hadrons, gluons with fractions x
1

and x

2

of the respective hadron momenta, times the

probability that these gluons, when colliding, produce a jet with transverse momentum

p?. Such formulae are used in Monte Carlo codes describing particle production in

nucleus-nucleus collisions (see e.g. [29]).

The scheme that underlies a formula such as Eq. (6) is commonly referred to

as collinear factorization. In the context of heavy ion physics, collinear factorization

is also used to determine the production of so-called hard probes (heavy quarks, W

and Z bosons, jets, etc.). Hard probes are produced over very short space-time

scales through parton-parton interactions which are not influenced by the surrounding

medium. However, hard probes produced in nucleus-nucleus collisions may involve

parton densities which are di↵erent from those of a collection of independent nucleons.

These are referred to as nuclear parton distribution functions [30].

2.4. Linear evolution: BFKL

We now return to the evolution equations and consider increasing the energy, keeping

Q

2 bounded. Then 1/x decreases, and one eventually reaches a regime where ↵
s

ln(1/x)

becomes of order unity, and the corresponding large logarithms need to be resummed.

This new resummation is achieved by the BFKL equation [25], which gives rise to a

cascade similar to the DGLAP cascade (see Fig. 4), with however a di↵erent ordering

of the various emissions, as we have indicated earlier.

Written as an equation for the unintegrated gluon density, the BFKL equation takes

the form §
@'(y,k)

@y

=
↵̄

s

2⇡

Z

p

k

2

p

2(k � p)2
[2'(y,p) � '(y,k)] , (7)

where we have changed variable from x to the rapidity y = ln(1/x), and we have set

↵̄

s

⌘ ↵

s

C

A

/⇡ (this conventional notation will be used throughout). This equation may

be given a probabilistic interpretation, with a loss term ⇠ '(y,k) representing a process

by which the gluon k disappears by splitting into gluons with momenta p and k � p,

respectively, while the term ⇠ '(y,p) summarizes the e↵ect of gain terms corresponding

to the splittings p ! (k,p�k) and p+k ! (k,p). The kernel ⇠ ↵̄

s

k

2d2

p/(p2(k�p)2)

represents the probability for a gluon k to split into two gluons with momenta p and

k � p.

§ Throughout this paper we use the following shorthand notation for the integrals over two dimensional
vectors in the transverse plane

Z

x

=

Z

d2

x,

Z

k

=

Z

d2

k

(2⇡)2
,

where the first integral is an integral over coordinates, while the second is over momenta.
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Probabilistic interpretation

Exponential growth
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The BFKL equation is linear, and local in rapidity. One of its most remarkable

feature, already alluded to, is the exponential growth that it predicts for the gluon

density (see Sect. 5.3)

'(y,k) ⇠ e!↵̄sy
, (8)

with ! = 4 ln 2 (in leading order). This explosive growth may be given a simple physical

interpretation in terms of the color charge that keeps accumulating along the cascade,

providing a source of increasing strength for subsequent emissions [31].

A

B

yA

Figure 5. A gluon ladder that contributes to the interaction between two hadrons
(represented here by horizontal straight lines), and often considered as a model for the
(perturbative) Pomeron exchange [32, 33] . Note that gluons propagators and vertices
in such ladders receive non trivial corrections that will not be discussed here. This
picture illustrates a remark made at the beginning of this section. The gluon ladder
spans the entire rapidity gap between A and B. Unless we mark one of the gluons, as
for instance we would do when calculating the inclusive particle production at a given
rapidity y, it is di�cult to attribute the gluons of the ladder to either A or B. One
may view the process in di↵erent frames. In a frame with rapidity y close to y

A

for
instance, one would say that A su↵ers little evolution, while most evolution is put into
B; in that case it could be natural to associate most gluons of the ladder to B.

The BFKL resummation has been also much studied in the context of hadron-

hadron, in particular proton-proton, collisions. The focus in this case is not so much

the wave functions of the hadrons, but rather the connection between QCD and Regge

theory, on which many models of soft hadronic interactions are based. There, one

emphasizes the exchange of particles, or more complex objects, in the “t-channel”.

Thus the BFKL ladder (see Fig. 5) represents a contribution to the two gluon exchange

process, dressed by gluon exchanges. This point of view will not be discussed in this

paper (see e.g. [32, 33] for pedagogical introductions), although it should be stressed

that it has led to a very successful phenomenology of heavy ion collisions in a wide range

of energies (see e.g. [34, 35]). The “s-channel” point of view adopted in this paper, which

~p

~p~k

~k ~k � ~p~p � ~k

(! = 4 ln 2)

(gain) (loss)

Evolution of the unintegrated pdf
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2
s

(x)
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ln
1
x

ln
Q2

�2
QCD

Q2
s(x)

dilute

dense

Figure 6. The various regimes in the plane ln(1/x), ln Q

2. At large Q

2, and moderate
values of x, partons form a dilute system and are weakly coupled (↵

s

(Q2) ⌧ 1). At
small values of x, partons form a dense (‘saturated’) system. Their high density makes
them strongly coupled, although ↵

s

⇠ ↵

s

(Q
s

) in this regime may still be small. The
divide between these two regions (dotted line) is the saturation momentum. Around
this line, non linear e↵ects strongly modify the evolution. The DGLAP evolution
corresponds to increasing Q

2 with moderate variations of x and leads to a more
and more dilute system. The BFKL evolution corresponds to roughly constant Q

2

and decreasing x, and leads to a denser and denser system, eventually crossing the
saturation boundary indicated by the dotted line [2].

the saturation momentum Q

s

, is (parametrically) given by

Q

2

s

⇠ ↵

s

(Q2

s

)
xG(x,Q2

s

)

⇡R

2

. (11)

As illustrated in Fig. 9, the saturation momentum separates partons into dilute modes

with k? � Q

s

that are weakly coupled, and modes with k? . Q

s

that are strongly

coupled because densely populated. The onset of saturation coincides indeed with a

breakdown of perturbation theory where gluon interaction energies become comparable

to their transverse kinetic energies, that is, loosely speaking, @

2 ⇠ ↵

s

hA2i
Q

, where

hA2i
Q

⇠ xG(x,Q2)/⇡R2. This is the place where Eq. (10) ceases to make sense. Another

important consequence of Eq. (11) is that, at saturation, the phase space density of

modes with k

2

? . Q

2 is large, of order xG/(Q2

s

R

2) ⇠ 1/↵
s

.

We shall later give a more precise definition of Q
s

, where the numerical coe�cients

will be fixed (see Eq. (26)). But the parametric relation (11) already allows for a

number of important observations. Equation (11) shows that the square of the saturation

momentum is directly proportional to the density of gluons in the transverse plane. Since

@2
xG(x,Q2)

@ ln(1/x) @ ln Q

2 = ↵̄s

xG(x,Q2) � # ↵̄2
s

[xG(x,Q2)]2

R

2
Q

2

NB. Saturation is not a sharp transition 

Growth of gluon density must be tamed 

(bound on cross section)

A scale emerges: the saturation momentum

gluon density per unit area

in a nucleus ⇠ A1/3fixes the strength of the coupling

phase space occupation
xG(x,Q2

s

)
⇡R2

1
Q

2 ⇠
1
↵

s

suggest classical fields

DGLAP

BFKL

Early approach (correction to the linear evolution)
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Eikonal approximation

Average over the field fluctuations of the target
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z

t

AB

Figure 7. Space-time diagram for the collision of an elementary projectile B (e.g. a
color dipole) with a target A (e.g. a nucleus), with light cone coordinates. The target
is Lorentz contracted so the spread in x

+ is nearly negligible. The coordinate x

+ plays
the role of a longitudinal coordinate for the target, while x

� plays the role of time.
Correlatively, for the target, p

+, variable conjugate to x

� in a Fourier transform, plays
the role of an energy, and p

� that of a longitudinal momentum. The roles of x

+ and
x

�, as well as p

+ and p

�, are interchanged for the projectile.

eikonal phase along a straight trajectory, which here takes the form of a path ordered

exponential

U(x) ⌘ Texp

 

ig

Z

x

+

�1
dz

+

A

�
a

(z+,x)ta
!

, (12)

where A�
a

(z+,x) is the color field of the target, and t

a a color matrix. The path ordering,

denoted here by the symbol T, plays indeed a role similar to the time ordering (recall

also that x

+ plays the role of a time for the right moving projectile – see Fig. 7). It

is needed to take care of the non commutation of the color matrices: it places the

operators with larger x+ to the left of those with smaller x+. Throughout, we use light-

cone coordinates, xµ = (x+

, x

�
,x), with x

± = (t ± z)/
p
2 and x is a 2-dimensional

vector in the transverse plane. We shall refer to U(x) in Eq. (12) as a Wilson line. In

cases where x+ can be sent to infinity, this will be denoted simply as U
x

. Equation (12)

is written for a quark, with t

a a color matrix in the fundamental representation. A

similar Wilson line describes the eikonal propagation of a gluon with t

a replaced by a

matrix T

a of the adjoint representation. We have chosen a gauge where A

+ = 0, suited

to the parton description of the projectile, and such that the only relevant component

of the gauge field of the nucleus is A�(x+

,x).

Diagrams illustrating the eikonal coupling and eikonal propagation are given in

Fig 8. The coupling between the parton, taken here to be a quark, and the gluon field is

given by the interaction Hamiltonian gq̄(x)�
µ

A

µ

a

(x)taq(x) with, in light cone variables,
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A�a (p� � p)

p�p v+ta

Figure 8. The eikonal vertex (left) for the propagation of a quark in the color field
A

�
a

of a target. The quark momentum is along the + direction, i.e., its transverse
momentum vanishes and p

z

' p

0

. The interaction with the field A

� is soft, with
negligible transverse momentum exchange. The + component of the momentum is
preserved in the interaction (i.e., p

0+ = p

+), as well as spin or polarization. The gluon
coupling would be similar, with v

+

t

a replaced by p

+

T

a. The diagram on the right
illustrates the multiple insertions of the field which need to be resummed in a Wilson
line when the field is strong, that is when g

R

x

+ A

�(x+) & 1.

�

µ

A

µ = �

+

A

�+��A+ ��? ·A?. With our present choice of gauge, and the fact that we

ignore the transverse motion of the projectile partons, this reduces to �+A� ! v

+

A

�,
from which Eq. (12) follows. In the eikonal approximation the component p

+ of the

momentum is conserved (there is no exchange of p+ with the target), which is related to

the fact that the field A

� can be considered as independent of x� during the interaction.

Note also that the projectile parton only probes the field A

� at (or near) x� = 0.

3.2. Deep inelastic scattering in the dipole frame

We now return to DIS, and view the process in a frame, the “dipole frame”, where the

photon has a large longitudinal momentum. In this frame, Lorentz time dilation renders

the fluctuations of the virtual photon into qq̄ pairs long lived, so that the interaction of

the photon with the nucleus is best viewed as the interaction of the qq̄ Fock component of

the photon with the target (see Fig. 9). The picture in the dipole frame is complementary

to that given earlier in the Bjorken frame. The Bjorken frame is convenient to exhibit

the parton structure of the target, while the dipole frame puts emphasis on its color

field (see e.g. [19]).

In the dipole frame, the total cross section �
�

⇤
p

(at a given impact parameter) is of

the schematic factorized form [42]

�

�

⇤
p

(x,Q2) =

1

Z

0

dz

Z

r

�

�

 (Q2

, z, r)
�

�

2

�

dip

(r), (13)

where we leave aside here the distinction between transversely and longitudinally

polarized virtual photons. In this formula,  (Q2

, z, r) is the Fock component of the

virtual photon light-cone wave function that corresponds to a qq̄ pair; it depends on
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Figure 9. DIS viewed in a frame where the lifetime of the fluctuation of the virtual
photon into a qq̄ pair is enhanced by Lorentz time dilation. In this frame, the
interaction of the virtual photon with the hadron is visualized as the interaction of
the qq̄ pair, a color dipole, with the color field of the hadron.

the invariant mass Q2 of the virtual photon, on the transverse distance r between the

quark and the antiquark, and on the fraction z of the photon longitudinal momentum

taken by the quark. The other factor in this formula, the dipole cross section �

dip

(r),

summarizes the QCD interaction of the dipole with the hadronic target. It can be

calculated in terms of the (forward) S-matrix element

S(b, r) ⌘ 1

N

c

htr (U
x

U

†
y

)i (14)

where the two Wilson lines U

x

and U

†
y

describe the propagation of the quark (at

transverse position x) and the antiquark (at y) in the field of the target, and the

brakets indicate an averaging over the color field of the target, which will be specified

shortly. We have set b = (x + y)/2, representing the impact parameter of the dipole

and r = x � y, and we shall use interchangeably the notations S
xy

and S(b, r) for the

S-matrix. The dipole cross section can then be obtained from the general relation, in

the eikonal approximation, between the S-matrix and the total cross section, namely

�

dip

(r) = 2

Z

d2

b (1 � ReS(b, r)). (15)

The formula (13) exhibits a factorization into a product of probabilities: the square

of the light-cone wave function of the virtual photon �

⇤, giving the probability that �⇤

splits into a qq̄ pair of a given transverse size, and the probability that this color dipole

interacts with the target, represented by the dipole cross section. This factorization

relies, as emphasized before, on the existence of well separated time scales: a long time

scale associated with the fluctuation of the virtual photon into a qq̄ pair (this time scale

is magnified by Lorentz time dilation in the dipole frame), and the short time scale of

the interaction of the dipole with the target color field. During the short duration of

the interaction, the dipole transverse coordinates may be considered as frozen.
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Dipole nucleon/nucleus S-matrix
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quark and the antiquark, and on the fraction z of the photon longitudinal momentum

taken by the quark. The other factor in this formula, the dipole cross section �

dip

(r),

summarizes the QCD interaction of the dipole with the hadronic target. It can be

calculated in terms of the (forward) S-matrix element

S(b, r) ⌘ 1

N

c

htr (U
x

U

†
y

)i (14)

where the two Wilson lines U

x

and U

†
y

describe the propagation of the quark (at

transverse position x) and the antiquark (at y) in the field of the target, and the

brakets indicate an averaging over the color field of the target, which will be specified

shortly. We have set b = (x + y)/2, representing the impact parameter of the dipole

and r = x � y, and we shall use interchangeably the notations S
xy

and S(b, r) for the

S-matrix. The dipole cross section can then be obtained from the general relation, in

the eikonal approximation, between the S-matrix and the total cross section, namely

�

dip

(r) = 2

Z

d2

b (1 � ReS(b, r)). (15)

The formula (13) exhibits a factorization into a product of probabilities: the square

of the light-cone wave function of the virtual photon �

⇤, giving the probability that �⇤

splits into a qq̄ pair of a given transverse size, and the probability that this color dipole

interacts with the target, represented by the dipole cross section. This factorization

relies, as emphasized before, on the existence of well separated time scales: a long time

scale associated with the fluctuation of the virtual photon into a qq̄ pair (this time scale

is magnified by Lorentz time dilation in the dipole frame), and the short time scale of

the interaction of the dipole with the target color field. During the short duration of

the interaction, the dipole transverse coordinates may be considered as frozen.
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A�a (p� � p)

p�p v+ta

Figure 8. The eikonal vertex (left) for the propagation of a quark in the color field
A

�
a

of a target. The quark momentum is along the + direction, i.e., its transverse
momentum vanishes and p

z

' p

0

. The interaction with the field A

� is soft, with
negligible transverse momentum exchange. The + component of the momentum is
preserved in the interaction (i.e., p

0+ = p

+), as well as spin or polarization. The gluon
coupling would be similar, with v

+

t

a replaced by p

+

T

a. The diagram on the right
illustrates the multiple insertions of the field which need to be resummed in a Wilson
line when the field is strong, that is when g

R

x

+ A

�(x+) & 1.

�

µ

A

µ = �

+

A

�+��A+ ��? ·A?. With our present choice of gauge, and the fact that we

ignore the transverse motion of the projectile partons, this reduces to �+A� ! v

+

A

�,
from which Eq. (12) follows. In the eikonal approximation the component p

+ of the

momentum is conserved (there is no exchange of p+ with the target), which is related to

the fact that the field A

� can be considered as independent of x� during the interaction.

Note also that the projectile parton only probes the field A

� at (or near) x� = 0.

3.2. Deep inelastic scattering in the dipole frame

We now return to DIS, and view the process in a frame, the “dipole frame”, where the

photon has a large longitudinal momentum. In this frame, Lorentz time dilation renders

the fluctuations of the virtual photon into qq̄ pairs long lived, so that the interaction of

the photon with the nucleus is best viewed as the interaction of the qq̄ Fock component of

the photon with the target (see Fig. 9). The picture in the dipole frame is complementary

to that given earlier in the Bjorken frame. The Bjorken frame is convenient to exhibit

the parton structure of the target, while the dipole frame puts emphasis on its color

field (see e.g. [19]).

In the dipole frame, the total cross section �
�

⇤
p

(at a given impact parameter) is of

the schematic factorized form [42]

�

�

⇤
p

(x,Q2) =

1

Z

0

dz

Z

r

�

�

 (Q2

, z, r)
�

�

2

�

dip

(r), (13)

where we leave aside here the distinction between transversely and longitudinally

polarized virtual photons. In this formula,  (Q2

, z, r) is the Fock component of the

virtual photon light-cone wave function that corresponds to a qq̄ pair; it depends on

DIS in 'dipole frame'

x

+ =
t + zp

2
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Dipole-nucleon, at leading order (2 gluon exchange)
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aside issues of gauge invariance (these will be addressed somewhat in the next section),

one can indeed relate the integrated gluon density to the correlator of the color electric

field:

xG(x,Q2) =

Z

Q

2
dk2

?
4⇡2

hF i�
a

(k�
,k)F i�

a

(�k

�
,�k)i. (21)

where

hF i�
a

(k�
,k)F i�

b

(�k

�
,�k)i

=

Z

dx+dy+
Z

x,y

e�ik

�
(x

+�y

+
)eik?·(x?�y?)hF i�

a

(x+

,x)F i�
b

(y+,y)i. (22)

In setting the coordinates of the fields to be both equal to b in Eq. (20) we have

assumed an upper cuto↵ in the integration over x � y, that is |x � y| . 1/Q2, while

the integration over b = (x+ y)/2 yields a factor ⇡R2 (assuming that hF i�
a

(x)F i�
b

(y)i
is independent of b). Similarly, in the integral over x

+ and y

+, we can first perform

the integration over (x++ y

+)/2 over the longitudinal size of the proton, assuming that

hF i�
a

(x+)F i�
b

(y+)i depends only on x

+ � y

+, which leaves us with the integration over

x

+ � y

+. The resulting value of k� will eventually fix the value of x = k

�
/p

� in the

gluon distribution, with p

� the minus component of the proton momentum. This value

of k� depends on the process. If the dipole that one is considering is that occurring in

DIS, the natural choice is x = x

Bj

. Arguments guiding the relevant choice of x in the

context of momentum broadening are given in [45].

One can then deduce from the expression (20) above, and the relation (15), the

dipole-nucleon cross section in the two-gluon exchange approximation [46, 47]

�

dip

(r?) =
⇡

2

↵

N

c

r

2

?xGN

(x,Q2), Q

2 ⇠ 1/r2?. (23)

The quadratic dependence on the dipole size is characteristic of gauge theories. It

reflects the phenomenon of color transparency [48, 49, 42, 47] (see [50] for a review),

already alluded to earlier : when the size of the dipole is small, it is seen as a color

neutral object by the field of the target, and it passes through it without interacting,

i.e., S(0) = 1.

Note that what is meant by a “small’ or a “large” dipole depends on a scale. As

can be seen on the expression (20) of the S-matrix element, this scale is proportional

to the gluon density per unit transverse area (in fact, we shall identify it shortly to

the saturation momentum). In a collision of the dipole with a large nucleus, the gluon

density seen by the dipole can become large, thereby invalidating the 2-gluon exchange

approximation. However, if the collisions between the dipole and the nucleons can be

treated as independent, we can handle this situation of large gluon density by using a

standard multiple scattering calculation. This is what we do in the next subsection.

3.5. Multiple scattering, momentum broadening, saturation

To proceed simply, we note that |S(b, r)|2 can be interpreted as the survival probability,

that is, the probability that the dipole crosses the target without su↵ering interaction.

(Q2 = 1/r2)

Dipole-nucleus, multiple scattering

L

Survival probability
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Knowing this probability for the case where the target is a nucleon, for which a

perturbative calculation has been done in the previous subsection, one can easily

obtain the corresponding result for a target nucleus via a standard multiple scattering

calculation [19]. (A calculation that handles directly the average of Wilson lines in the

strong field regime, as illustrated by the right panel of Fig. 8, will be presented in the

next section.) This calculation assumes that individual dipole-nucleon collisions can be

treated as independent, i.e. are not overlapping. One gets

S

2(b, r) = e�L/�

,

1

�(r?)
= ⇢ �

dip

(r?), (24)

where L is the length travelled by the dipole through the nucleus, ⇢ the density of

nucleons per unit volume, � the mean free path, and we have taken into account that

S is real in the two-gluon exchange approximation, i.e., |S|2 = S

2.

One can then write the S-matrix for the dipole-nucleus interaction as follows

S(b, r?) = e�L/2� = e�
L⇢
2 �dip(r?) = e�Q

2
sr

2
?/4

, (25)

where

Q

2

s

=
2⇡2

↵

N

c

L⇢ xG

N

(x, 1/r2?) =
2⇡2

↵

N

c

AxG

N

(x, 1/r2?)
⇡R

2

(26)

is the saturation momentum for a quark dipole [19] (the corresponding saturation

momentum for a gluon dipole would be obtained by multiplying Eq. (26) by a factor

C

A

/C

F

). The independence of the successive nucleon-nucleon collisions is reflected

here in the additive character of the gluon density, which grows with the nucleon

number. The saturation momentum (26), which has the same parametric dependence

as in Eq. (11), also grows with A, as A

1/3. It follows that at fixed dipole size, the

dipole-nucleus interaction can be large if the nucleus is large. Note however that in

contrast to what would happen for the perturbative estimate (20) where the S-matrix

could become negative for a too large gluon density, here S ! 0 as Q

2

s

r

2

? becomes

large. Multiple scattering provides a mechanism by which saturation of the interaction

between the dipole and the nucleus is achieved, a feature of saturation often referred to

as “unitarization” of the dipole cross section.

Multiple scattering is also essential for momentum broadening, which leads to

another interpretation of the saturation momentum. To see that, let us take the Fourier

transform of Eq. (25). One gets

P(p?) =
Z

r

e�ip·r e�
L⇢
2 �dip(r) ⇡ 4⇡

Q

2

s

e�p

2
?/Q

2
s
, (27)

where the final result has been obtained by assuming a constant Q
s

(i.e., ignoring the

weak dependence of the gluon distribution on the scale r? – see also end of Sect. 4.2).

Equation (27) has a natural interpretation in terms of di↵usion in momentum space,

with Q

s

playing the role of a di↵usion constant: Q2

s

is the average momentum squared

acquired by the quark after traversing a length L of the medium. This is traditionally

denoted by q̂L [45], so that Q

2

s

= q̂L (recall that Q

2

s

is indeed proportional to L, see

Eq. (26)).
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1/3. It follows that at fixed dipole size, the
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contrast to what would happen for the perturbative estimate (20) where the S-matrix

could become negative for a too large gluon density, here S ! 0 as Q
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large. Multiple scattering provides a mechanism by which saturation of the interaction

between the dipole and the nucleus is achieved, a feature of saturation often referred to

as “unitarization” of the dipole cross section.

Multiple scattering is also essential for momentum broadening, which leads to

another interpretation of the saturation momentum. To see that, let us take the Fourier

transform of Eq. (25). One gets
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weak dependence of the gluon distribution on the scale r? – see also end of Sect. 4.2).

Equation (27) has a natural interpretation in terms of di↵usion in momentum space,

with Q
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playing the role of a di↵usion constant: Q2
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is the average momentum squared

acquired by the quark after traversing a length L of the medium. This is traditionally

denoted by q̂L [45], so that Q
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= q̂L (recall that Q
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is indeed proportional to L, see
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Color transparency for "small" dipoles

 "small" 

 "large" (r?Qs � 1)

(r?Qs ⌧ 1)

 "small" or "large" depends on the gluon density of the target

color transparency

black disk limit

S (b, r?) = e�Q2
s r2
?/4

Q

2
s

=
2⇡2↵

N

c

AxG

N

(x, 1/r2
?)

⇡R2
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3.6. Phenomenological dipole model

The previous discussion has revealed that the strength of the interaction between a

dipole and a target is determined by the product of the dipole size and the saturation

momentum. The saturation momentum characterizes the change of regime between the

dilute regime (r? ⌧ 1/Q
s

) and the saturated one (r? � 1/Q
s

), and is proportional

to the gluon density of the target. Assuming that all the energy dependence can be

absorbed in the saturation momentum, via its dependence on the gluon density, Golec-

Biernat and Wüstho↵ (GBW) [51] have proposed the following parameterization for the

DIS dipole cross section

�

GBW

(x, r?) = �

0

h

1 � e

� 1
4Q

2
s(x)r

2
?

i

, Q

2

s

(x) ⌘ Q

2

0

(x
0

/x)� . (28)

Quite remarkably, this led to a good description of early HERA data at x < 10�2 and

moderate Q

2, including di↵raction data [55]. Typical values of parameters are �

0

' 23

mb, � ' 0.288, and x

0

' 3⇥ 10�4, while Q
0

= 1 Gev fixes the dimension. The fact that

the x dependence of the cross section enters only through the saturation momentum

has been dubbed ‘geometrical scaling’ [55]. This is illustrated in Fig. 11 where the total

cross section �

�

⇤
p!X

tot

is plotted as a function of the scaling variable ⌧ ⌘ ln(Q2

/Q

2

s

(x)).

(For more recent fits of HERA data that take into account latest advances in non linear

evolution equations, see [52, 53, 54]. For a thorough and critical discussion of the dipole

model see Ref. [56]. See also [57] and [58, 59] for calculations of NLO corrections. )
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function of a priori the two variables r and x, Tqq̄(r,b ≃ 0;x) is
actually a function of the single variable r2Q2

s (x) up to inverse
dipole sizes significantly larger than the saturation scale Qs(x).
In formulae, one can write

(12)Tqq̄(r,b;x) = S(b)T
(
r2Q2

s (x)
)
,

where we have introduced the impact parameter profile S(b).
Typically, S(b) = e−b2/R2

p where Rp is the transverse radius
of the proton. When performing the b integration in formulae
(6), (7) or (10), this contributes only to the normalization via a
constant factor

∫
d2b S(b) = Sp , characterizing the transverse

area of the proton. If r2Q2
s > 1 then T = 1 and the scaling is

obvious. We insist that the scaling property (12) is a non-trivial
prediction for r2Q2

s ≪ 1, when T is still much smaller that 1. Of
course the geometric scaling window has a limited extension: at
very small dipole sizes, deep into the leading-twist regime, the
scaling breaks down. Universal scaling violations [20] due to x

not being small enough have also been derived. Recently, a new
type of scaling violations has been predicted [8,21], this one
eventually arising when x becomes even smaller, transform-
ing the geometric scaling regime into an intermediate energy
regime.

In this Letter, we shall consider the case of exact scal-
ing (12). As already mentioned, the resulting prediction for the
DIS total cross-section is in very good agreement with experi-
mental measurements [3] (see also [22]). Our goal is to further
test the geometric scaling regime by considering its predic-
tion for diffractive observables. But, as a reminder, let us start
with the total cross-section. Neglecting quark masses, one can
rewrite the cross-section (6) as

σ
γ ∗p→X
tot

(
x,Q2)

= 2Sp
αemNc

π

∑

f

e2
f

∞∫

0

r̄ dr̄

1∫

0

dz
{
fT(z)K2

1
(√

z(1 − z)r̄
)

(13)+ fL(z)K2
0
(√

z(1 − z)r̄
)}

T

(
Q2

s (x)

Q2 r̄2
)

,

where we have introduced the functions fL(z) = 4z2(1 − z)2

and fT(z) = (z2 + (1 − z)2)z(1 − z) and rescaled the size vari-
able |r| to the dimensionless variable r̄ = Q|r|. We obtain the
geometric scaling of the total cross-section at small x:

(14)σ
γ ∗p→X
tot

(
x,Q2) = σ

γ ∗p→X
tot (τ ), τ = Q2/Q2

s (x).

This has been seen confirmed by experimental data [3] with
Qs(x) given by

(15)Qs(x) = Q0

(
x

x0

)−λ/2

, Q0 ≡ 1 GeV

and the parameters λ = 0.288 and x0 = 3.04 × 10−4 taken
from [4]. In order to illustrate it, Fig. 1 is an update of the origi-
nal plot which shows the cross-section σ

γ ∗p→X
tot as a function of

τ with the latest data of the different experiments which provide
measurements at x < 0.01: the H1 [23], ZEUS [24], E665 [25]
and NMC [26] Collaborations. Except for one E665 point, the

Fig. 1. The total cross-section σ
γ ∗p→X
tot as a function of τ for x < 0.01. The

data are the most recent by the H1, ZEUS, E665 and NMC Collaborations. Only
statistical uncertainties are shown.

data do lie on the same curve. This is even true at low values of
Q2, for which one could have expected scaling violations do to
the charm quark mass, but one can see on Fig. 1 that these are
not sizable (see also [27]).

Let us now consider the diffractive cross-section (7). It can
be rewritten

dσ
γ ∗p→Xp
diff

dβ

(
β, xP,Q2)

= Sp
αemNc

2πβ2

∑

f

e2
f

1∫

0

dz z(1 − z)

(16)×
∑

λ=L,T

fλ(z)I
2
λ

(
z,β,Q2

s (xP)/Q2)

with the following integral

IT,L
(
z,β,Q2

s /Q
2)

=
∞∫

0

r̄ dr̄ K1,0
(√

z(1 − z)r̄
)
J1,0

(√
z(1 − z)(1 − β)/β r̄

)

(17)× T

(
Q2

s

Q2 r̄2
)

,

where IT contains K1 and J1 Bessel functions and IL contains
K0 and J0. So, another signature of the saturation regime of
QCD should then be the geometric scaling of the diffractive
cross-section at fixed β and small xP:

dσ
γ ∗p→Xp
diff

dβ

(
β, xP,Q2) = dσ

γ ∗p→Xp
diff

dβ
(β, τd),

(18)τd = Q2/Q2
s (xP).

Figure 11. Illustration of geometrical scaling: the total cross section �

�

⇤
p!X

tot

, which
depends a priori on the independent variables x and Q

2 is seen to be a function only
of ⌧ ⌘ ln(Q2

/Q

2

s

(x)). Figure taken from Ref. [60].

This phenomenon of geometrical scaling provides perhaps the best experimental
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3.6. Phenomenological dipole model

The previous discussion has revealed that the strength of the interaction between a

dipole and a target is determined by the product of the dipole size and the saturation

momentum. The saturation momentum characterizes the change of regime between the

dilute regime (r? ⌧ 1/Q
s

) and the saturated one (r? � 1/Q
s

), and is proportional

to the gluon density of the target. Assuming that all the energy dependence can be

absorbed in the saturation momentum, via its dependence on the gluon density, Golec-

Biernat and Wüstho↵ (GBW) [51] have proposed the following parameterization for the

DIS dipole cross section
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the x dependence of the cross section enters only through the saturation momentum

has been dubbed ‘geometrical scaling’ [55]. This is illustrated in Fig. 11 where the total
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model see Ref. [56]. See also [57] and [58, 59] for calculations of NLO corrections. )
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function of a priori the two variables r and x, Tqq̄(r,b ≃ 0;x) is
actually a function of the single variable r2Q2

s (x) up to inverse
dipole sizes significantly larger than the saturation scale Qs(x).
In formulae, one can write

(12)Tqq̄(r,b;x) = S(b)T
(
r2Q2

s (x)
)
,

where we have introduced the impact parameter profile S(b).
Typically, S(b) = e−b2/R2

p where Rp is the transverse radius
of the proton. When performing the b integration in formulae
(6), (7) or (10), this contributes only to the normalization via a
constant factor

∫
d2b S(b) = Sp , characterizing the transverse

area of the proton. If r2Q2
s > 1 then T = 1 and the scaling is

obvious. We insist that the scaling property (12) is a non-trivial
prediction for r2Q2

s ≪ 1, when T is still much smaller that 1. Of
course the geometric scaling window has a limited extension: at
very small dipole sizes, deep into the leading-twist regime, the
scaling breaks down. Universal scaling violations [20] due to x

not being small enough have also been derived. Recently, a new
type of scaling violations has been predicted [8,21], this one
eventually arising when x becomes even smaller, transform-
ing the geometric scaling regime into an intermediate energy
regime.

In this Letter, we shall consider the case of exact scal-
ing (12). As already mentioned, the resulting prediction for the
DIS total cross-section is in very good agreement with experi-
mental measurements [3] (see also [22]). Our goal is to further
test the geometric scaling regime by considering its predic-
tion for diffractive observables. But, as a reminder, let us start
with the total cross-section. Neglecting quark masses, one can
rewrite the cross-section (6) as
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and fT(z) = (z2 + (1 − z)2)z(1 − z) and rescaled the size vari-
able |r| to the dimensionless variable r̄ = Q|r|. We obtain the
geometric scaling of the total cross-section at small x:

(14)σ
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x,Q2) = σ
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This has been seen confirmed by experimental data [3] with
Qs(x) given by

(15)Qs(x) = Q0
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)−λ/2

, Q0 ≡ 1 GeV

and the parameters λ = 0.288 and x0 = 3.04 × 10−4 taken
from [4]. In order to illustrate it, Fig. 1 is an update of the origi-
nal plot which shows the cross-section σ

γ ∗p→X
tot as a function of

τ with the latest data of the different experiments which provide
measurements at x < 0.01: the H1 [23], ZEUS [24], E665 [25]
and NMC [26] Collaborations. Except for one E665 point, the
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data do lie on the same curve. This is even true at low values of
Q2, for which one could have expected scaling violations do to
the charm quark mass, but one can see on Fig. 1 that these are
not sizable (see also [27]).
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where IT contains K1 and J1 Bessel functions and IL contains
K0 and J0. So, another signature of the saturation regime of
QCD should then be the geometric scaling of the diffractive
cross-section at fixed β and small xP:
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function of a priori the two variables r and x, Tqq̄(r,b ≃ 0;x) is
actually a function of the single variable r2Q2

s (x) up to inverse
dipole sizes significantly larger than the saturation scale Qs(x).
In formulae, one can write

(12)Tqq̄(r,b;x) = S(b)T
(
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,

where we have introduced the impact parameter profile S(b).
Typically, S(b) = e−b2/R2

p where Rp is the transverse radius
of the proton. When performing the b integration in formulae
(6), (7) or (10), this contributes only to the normalization via a
constant factor

∫
d2b S(b) = Sp , characterizing the transverse

area of the proton. If r2Q2
s > 1 then T = 1 and the scaling is

obvious. We insist that the scaling property (12) is a non-trivial
prediction for r2Q2

s ≪ 1, when T is still much smaller that 1. Of
course the geometric scaling window has a limited extension: at
very small dipole sizes, deep into the leading-twist regime, the
scaling breaks down. Universal scaling violations [20] due to x

not being small enough have also been derived. Recently, a new
type of scaling violations has been predicted [8,21], this one
eventually arising when x becomes even smaller, transform-
ing the geometric scaling regime into an intermediate energy
regime.

In this Letter, we shall consider the case of exact scal-
ing (12). As already mentioned, the resulting prediction for the
DIS total cross-section is in very good agreement with experi-
mental measurements [3] (see also [22]). Our goal is to further
test the geometric scaling regime by considering its predic-
tion for diffractive observables. But, as a reminder, let us start
with the total cross-section. Neglecting quark masses, one can
rewrite the cross-section (6) as
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where we have introduced the functions fL(z) = 4z2(1 − z)2

and fT(z) = (z2 + (1 − z)2)z(1 − z) and rescaled the size vari-
able |r| to the dimensionless variable r̄ = Q|r|. We obtain the
geometric scaling of the total cross-section at small x:

(14)σ
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x,Q2) = σ
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Qs(x) given by

(15)Qs(x) = Q0
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, Q0 ≡ 1 GeV

and the parameters λ = 0.288 and x0 = 3.04 × 10−4 taken
from [4]. In order to illustrate it, Fig. 1 is an update of the origi-
nal plot which shows the cross-section σ

γ ∗p→X
tot as a function of

τ with the latest data of the different experiments which provide
measurements at x < 0.01: the H1 [23], ZEUS [24], E665 [25]
and NMC [26] Collaborations. Except for one E665 point, the
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data do lie on the same curve. This is even true at low values of
Q2, for which one could have expected scaling violations do to
the charm quark mass, but one can see on Fig. 1 that these are
not sizable (see also [27]).
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for the existence of a saturation momentum
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function of a priori the two variables r and x, Tqq̄(r,b ≃ 0;x) is
actually a function of the single variable r2Q2

s (x) up to inverse
dipole sizes significantly larger than the saturation scale Qs(x).
In formulae, one can write

(12)Tqq̄(r,b;x) = S(b)T
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s (x)
)
,

where we have introduced the impact parameter profile S(b).
Typically, S(b) = e−b2/R2

p where Rp is the transverse radius
of the proton. When performing the b integration in formulae
(6), (7) or (10), this contributes only to the normalization via a
constant factor

∫
d2b S(b) = Sp , characterizing the transverse

area of the proton. If r2Q2
s > 1 then T = 1 and the scaling is

obvious. We insist that the scaling property (12) is a non-trivial
prediction for r2Q2

s ≪ 1, when T is still much smaller that 1. Of
course the geometric scaling window has a limited extension: at
very small dipole sizes, deep into the leading-twist regime, the
scaling breaks down. Universal scaling violations [20] due to x

not being small enough have also been derived. Recently, a new
type of scaling violations has been predicted [8,21], this one
eventually arising when x becomes even smaller, transform-
ing the geometric scaling regime into an intermediate energy
regime.

In this Letter, we shall consider the case of exact scal-
ing (12). As already mentioned, the resulting prediction for the
DIS total cross-section is in very good agreement with experi-
mental measurements [3] (see also [22]). Our goal is to further
test the geometric scaling regime by considering its predic-
tion for diffractive observables. But, as a reminder, let us start
with the total cross-section. Neglecting quark masses, one can
rewrite the cross-section (6) as
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able |r| to the dimensionless variable r̄ = Q|r|. We obtain the
geometric scaling of the total cross-section at small x:
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τ with the latest data of the different experiments which provide
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Fig. 1. The total cross-section σ
γ ∗p→X
tot as a function of τ for x < 0.01. The
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data do lie on the same curve. This is even true at low values of
Q2, for which one could have expected scaling violations do to
the charm quark mass, but one can see on Fig. 1 that these are
not sizable (see also [27]).

Let us now consider the diffractive cross-section (7). It can
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where IT contains K1 and J1 Bessel functions and IL contains
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QCD should then be the geometric scaling of the diffractive
cross-section at fixed β and small xP:
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and fT(z) = (z2 + (1 − z)2)z(1 − z) and rescaled the size vari-
able |r| to the dimensionless variable r̄ = Q|r|. We obtain the
geometric scaling of the total cross-section at small x:

(14)σ
γ ∗p→X
tot

(
x,Q2) = σ

γ ∗p→X
tot (τ ), τ = Q2/Q2

s (x).

This has been seen confirmed by experimental data [3] with
Qs(x) given by

(15)Qs(x) = Q0

(
x

x0

)−λ/2

, Q0 ≡ 1 GeV

and the parameters λ = 0.288 and x0 = 3.04 × 10−4 taken
from [4]. In order to illustrate it, Fig. 1 is an update of the origi-
nal plot which shows the cross-section σ

γ ∗p→X
tot as a function of

τ with the latest data of the different experiments which provide
measurements at x < 0.01: the H1 [23], ZEUS [24], E665 [25]
and NMC [26] Collaborations. Except for one E665 point, the

Fig. 1. The total cross-section σ
γ ∗p→X
tot as a function of τ for x < 0.01. The

data are the most recent by the H1, ZEUS, E665 and NMC Collaborations. Only
statistical uncertainties are shown.

data do lie on the same curve. This is even true at low values of
Q2, for which one could have expected scaling violations do to
the charm quark mass, but one can see on Fig. 1 that these are
not sizable (see also [27]).

Let us now consider the diffractive cross-section (7). It can
be rewritten

dσ
γ ∗p→Xp
diff

dβ

(
β, xP,Q2)

= Sp
αemNc

2πβ2
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)
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(√
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Q2
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Q2 r̄2
)

,

where IT contains K1 and J1 Bessel functions and IL contains
K0 and J0. So, another signature of the saturation regime of
QCD should then be the geometric scaling of the diffractive
cross-section at fixed β and small xP:

dσ
γ ∗p→Xp
diff

dβ

(
β, xP,Q2) = dσ

γ ∗p→Xp
diff

dβ
(β, τd),

(18)τd = Q2/Q2
s (xP).

Figure 11. Illustration of geometrical scaling: the total cross section �

�

⇤
p!X

tot

, which
depends a priori on the independent variables x and Q

2 is seen to be a function only
of ⌧ ⌘ ln(Q2

/Q

2

s

(x)). Figure taken from Ref. [60].

This phenomenon of geometrical scaling provides perhaps the best experimental
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3.6. Phenomenological dipole model

The previous discussion has revealed that the strength of the interaction between a

dipole and a target is determined by the product of the dipole size and the saturation

momentum. The saturation momentum characterizes the change of regime between the

dilute regime (r? ⌧ 1/Q
s

) and the saturated one (r? � 1/Q
s

), and is proportional

to the gluon density of the target. Assuming that all the energy dependence can be

absorbed in the saturation momentum, via its dependence on the gluon density, Golec-

Biernat and Wüstho↵ (GBW) [51] have proposed the following parameterization for the

DIS dipole cross section

�

GBW

(x, r?) = �

0

h

1 � e

� 1
4Q

2
s(x)r

2
?

i

, Q

2

s

(x) ⌘ Q

2

0

(x
0

/x)� . (28)

Quite remarkably, this led to a good description of early HERA data at x < 10�2 and

moderate Q

2, including di↵raction data [55]. Typical values of parameters are �

0

' 23

mb, � ' 0.288, and x

0

' 3⇥ 10�4, while Q
0

= 1 Gev fixes the dimension. The fact that

the x dependence of the cross section enters only through the saturation momentum

has been dubbed ‘geometrical scaling’ [55]. This is illustrated in Fig. 11 where the total

cross section �

�

⇤
p!X

tot

is plotted as a function of the scaling variable ⌧ ⌘ ln(Q2

/Q

2

s

(x)).

(For more recent fits of HERA data that take into account latest advances in non linear

evolution equations, see [52, 53, 54]. For a thorough and critical discussion of the dipole

model see Ref. [56]. See also [57] and [58, 59] for calculations of NLO corrections. )
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function of a priori the two variables r and x, Tqq̄(r,b ≃ 0;x) is
actually a function of the single variable r2Q2

s (x) up to inverse
dipole sizes significantly larger than the saturation scale Qs(x).
In formulae, one can write

(12)Tqq̄(r,b;x) = S(b)T
(
r2Q2

s (x)
)
,

where we have introduced the impact parameter profile S(b).
Typically, S(b) = e−b2/R2

p where Rp is the transverse radius
of the proton. When performing the b integration in formulae
(6), (7) or (10), this contributes only to the normalization via a
constant factor

∫
d2b S(b) = Sp , characterizing the transverse

area of the proton. If r2Q2
s > 1 then T = 1 and the scaling is

obvious. We insist that the scaling property (12) is a non-trivial
prediction for r2Q2

s ≪ 1, when T is still much smaller that 1. Of
course the geometric scaling window has a limited extension: at
very small dipole sizes, deep into the leading-twist regime, the
scaling breaks down. Universal scaling violations [20] due to x

not being small enough have also been derived. Recently, a new
type of scaling violations has been predicted [8,21], this one
eventually arising when x becomes even smaller, transform-
ing the geometric scaling regime into an intermediate energy
regime.

In this Letter, we shall consider the case of exact scal-
ing (12). As already mentioned, the resulting prediction for the
DIS total cross-section is in very good agreement with experi-
mental measurements [3] (see also [22]). Our goal is to further
test the geometric scaling regime by considering its predic-
tion for diffractive observables. But, as a reminder, let us start
with the total cross-section. Neglecting quark masses, one can
rewrite the cross-section (6) as
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,

where we have introduced the functions fL(z) = 4z2(1 − z)2

and fT(z) = (z2 + (1 − z)2)z(1 − z) and rescaled the size vari-
able |r| to the dimensionless variable r̄ = Q|r|. We obtain the
geometric scaling of the total cross-section at small x:
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x,Q2) = σ
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tot (τ ), τ = Q2/Q2

s (x).

This has been seen confirmed by experimental data [3] with
Qs(x) given by

(15)Qs(x) = Q0

(
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)−λ/2

, Q0 ≡ 1 GeV

and the parameters λ = 0.288 and x0 = 3.04 × 10−4 taken
from [4]. In order to illustrate it, Fig. 1 is an update of the origi-
nal plot which shows the cross-section σ

γ ∗p→X
tot as a function of

τ with the latest data of the different experiments which provide
measurements at x < 0.01: the H1 [23], ZEUS [24], E665 [25]
and NMC [26] Collaborations. Except for one E665 point, the
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data are the most recent by the H1, ZEUS, E665 and NMC Collaborations. Only
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data do lie on the same curve. This is even true at low values of
Q2, for which one could have expected scaling violations do to
the charm quark mass, but one can see on Fig. 1 that these are
not sizable (see also [27]).

Let us now consider the diffractive cross-section (7). It can
be rewritten
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where IT contains K1 and J1 Bessel functions and IL contains
K0 and J0. So, another signature of the saturation regime of
QCD should then be the geometric scaling of the diffractive
cross-section at fixed β and small xP:
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The McLerran-Venugopalan (MV) model

Dipole-nucleus interaction 

Average over the (random) color field of the target

Assume small x gluons dominate, and are represented by a classical (random) field

Assume Gaussian distribution W[A] for the  random field

This allows for simple and explicit (non perturbative) calculations of the gluon distribution
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Figure 9. DIS viewed in a frame where the lifetime of the fluctuation of the virtual
photon into a qq̄ pair is enhanced by Lorentz time dilation. In this frame, the
interaction of the virtual photon with the hadron is visualized as the interaction of
the qq̄ pair, a color dipole, with the color field of the hadron.

the invariant mass Q2 of the virtual photon, on the transverse distance r between the

quark and the antiquark, and on the fraction z of the photon longitudinal momentum

taken by the quark. The other factor in this formula, the dipole cross section �

dip

(r),

summarizes the QCD interaction of the dipole with the hadronic target. It can be

calculated in terms of the (forward) S-matrix element

S(b, r) ⌘ 1

N

c

htr (U
x

U

†
y

)i (14)

where the two Wilson lines U

x

and U

†
y

describe the propagation of the quark (at

transverse position x) and the antiquark (at y) in the field of the target, and the

brakets indicate an averaging over the color field of the target, which will be specified

shortly. We have set b = (x + y)/2, representing the impact parameter of the dipole

and r = x � y, and we shall use interchangeably the notations S
xy

and S(b, r) for the

S-matrix. The dipole cross section can then be obtained from the general relation, in

the eikonal approximation, between the S-matrix and the total cross section, namely

�

dip

(r) = 2

Z

d2

b (1 � ReS(b, r)). (15)

The formula (13) exhibits a factorization into a product of probabilities: the square

of the light-cone wave function of the virtual photon �

⇤, giving the probability that �⇤

splits into a qq̄ pair of a given transverse size, and the probability that this color dipole

interacts with the target, represented by the dipole cross section. This factorization

relies, as emphasized before, on the existence of well separated time scales: a long time

scale associated with the fluctuation of the virtual photon into a qq̄ pair (this time scale

is magnified by Lorentz time dilation in the dipole frame), and the short time scale of

the interaction of the dipole with the target color field. During the short duration of

the interaction, the dipole transverse coordinates may be considered as frozen.
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x

y

Ux

U†y

Figure 12. Illustration of the Gaussian averaging over the random field. Light-cone
time x

+ runs from left to right. The horizontal line oriented to the right (left) represents
the Wilson line U (U †). The vertical dashed line (at a given x

+) corresponds to the
correlator �(x+

,x � y). The dashed circle represents the correlator �(x+

, 0). The
final result, given by Wick’s theorem as the exponential of the leading order result,
g

2

C

R

[�(x+

, 0) � �(x+

,x � y)], finds its origin in the fact that the interactions (field
correlations) are instantaneous (in the language of multiple scattering this is equivalent
to having independent successive collisions) and that the color singlet structure of the
dipole is una↵ected by each interaction. The dashed semi-circles at the left and right
ends indicate the color flow. More details on this graphical notation can be found in
Ref. [43].

with as before, r = x � y, b = (x+ y)/2, and (see Eq. (12))

U

x

= Texp

✓

ig

Z 1

�1
dz

+

A

�
a

(z+,x)ta
◆

. (43)

Note that S, as written, depends on the choice of a gauge. It can be made gauge

invariant, if desired, by closing the two Wilson lines into a (gauge invariant) loop, that

is, by adding two gauge links connecting x and y at z+ = ±1. In the covariant gauge,

where A

i = 0, these contribute unit factors. This is the gauge in which we shall pursue

the calculation. In this gauge, A� = ↵, and the Gaussian average over ↵ is easily done

using Wick’s theorem and Eq. (37). This automatically leads to the exponentiation of

the leading order result (see for instance [67, 68, 69] for examples of such calculations).

An illustration of the procedure, together with the relevant diagrams, is provided in

Fig. 12. One finds [70]

S

R

(r) = exp
�

�µC

R

g

2

I(r)
 

, I(r) ⌘
Z

k

1 � eik·r

k

4

?
⇡ r

2

?
16⇡

ln
r

2

0

r

2

?
, (44)

with µ given in Eq. (38). The integral I(r) is logarithmically divergent. As observed

already for the integral (41), it should be cut o↵ at the lower end at k? & ⇤
QCD

⇠ 1/r
0

.

At the upper end, the natural cuto↵ is provided by the dipole size, k? . 1/r?. Hence

our final estimate in Eq. (44). We may then write

S

R

(r?) ⇡ exp

⇢

�1

4
r

2

?Q
2

s

�

, Q

2

s

= ↵

s

C

R

µ ln
r

2

0

r

2

?
⌘ Q

2

0

ln
r

2

0

r

2

?
, (45)

a form reminiscent of the phenomenological dipole cross section, Eq. (28), with the

saturation momentum estimated in the MV model. Note that Q

s

is not a constant,

Average over the field fluctuations of the target



MV model
How does a dipole sees a nucleus

Saturation in the MV model
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but retains a weak (logarithmic) dependence on a scale, that of the largest momenta

(⇠ 1/r?) that contributes to it. An illustration of the r? dependence of S(r?) is given
in Fig. 13.
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Figure 13. The behavior of the dipole S-matrix as a function of the dipole size r

(measured in units of Q

�1

0

, with Q

0

defined in Eq. (45)). The small size dipoles are
little a↵ected by the target field (S . 1), a reflexion of “color transparency”. Large
dipoles however have large cross sections, they undergo multiple scattering, and the
S-matrix eventually reaches the black disk limit (S ⇡ 0) for large sizes.

We can express Q
s

in terms of the gluon density of the target, thereby recovering

Eq. (26). Recalling the expression (2) for the gluon density of a single valence quark,

we see that

Q

2

s

=
4⇡2

↵C

R

N

2

c

� 1
L⇢ xG

N

(x, 1/r2?), (46)

where we have set xG
N

(x,Q2) = N

c

xG

q

(x,Q2) and, in Eq. (46), we may use Q2

s

in place

of 1/r2? in the argument of the gluon density. (The conventional notation xG(x,Q2)

suggests an energy dependence which is however not present in the MV model.) This

result indicates that the integrated gluon density is additive in the MV model. It is also

easily verified that Eq. (45) is compatible with the multiple scattering calculation that

leads to Eq. (25). Finally, after Fourier transform, and assuming Q

s

to be constant,

one recovers Eq. (27). Ignoring the mild r? dependence of Q
s

is a good approximation,

except at large momentum where the true decay is a power law rather than a Gaussian.

The correct estimate (obtained by properly keeping the r? dependence of Q
s

) yields

S

R

(k? � Q

s

) ⇡ C

R

2

g

4

k

4

?
L⇢ ⇡ 4⇡

Q

2

0

✓

Q

2

0

k

2

?

◆

2

, (47)

as expected from perturbation theory.

Integrated gluon density is additive 

xG

A

(x,Q2) = A xG

N

(x,Q2)
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where S(r?) = exp {�µC

A

g

2

I(r?)} is the dipole S-matrix in the adjoint representation,

given in Eq. (44). An illustration of the momentum dependence of '
A

(x,k) is given in

Fig. 14, left. The integrated gluon distribution function is obtained from '

A

(x,k) by

integration over momentum, according to Eq. (3). When Q

2 � Q

2

s

, this is easily done.

One gets
Z

Q

2

⇤

2
QCD

dk2

?
'

A

(x,k)

k

2

?
⇡ N

val

↵

s

C

F

⇡

ln
Q

2

⇤2

QCD

. (52)

where we have set r

2

? ⇠ 1/Q2 as the lower cuto↵ on r?. The right hand side of

this equation is nothing but N

val

xG

q

(x,Q2) : as we anticipated, when Q

2 � Q

2

s

,

the integrated gluon distribution of the nucleus, xG

A

(x,Q2), is just the sum of the

corresponding distributions of its Nval valence quarks.

The limiting behaviors of '
A

(x,k) at small and large momenta are interesting (see

[155] for a detailed analysis). The large k? limit is the weak field limit, with the integral

in Eq. (51) dominated by small r?. The leading behavior is captured by expanding

S(r?) in Eq. (44) to linear order, which is equivalent to ignoring the e↵ect of multiple

scattering. One gets

'

A

(x,k) ⇡ k

2

?
4⇡3

⇡R

2

↵C

A

(N2

c

� 1)

Z

r

eik·r

r

2

?

✓

C

A

g

2

16⇡
µr

2

? ln
1

r

2

?⇤2

◆

⇡ A

(N2

c

� 1)↵

2⇡
= A'

N

(x,k), (53)

where '

N

(x,k) = ↵CF
⇡

N

c

is the unintegrated gluon distribution for a nucleon, treated

here as a collection of three independent valence quarks. We recover the additive

property of the weak field limit.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-2 10-1 100 101 102

φ A
(k

) /
 (N

va
l  φ

q)

k / Q0

Figure 14. Left: The unintegrated gluon distribution '

A

(k) in the MV model,
normalized to N

val

'

q

, with '

q

the unintegrated distribution of a single valence quark.
Multiple scattering e↵ects cause a redistribution of the momenta, keeping the total
number fixed. At large momenta, '

A

(k) is just the sum of the uncorrelated valence
quark contributions. The low momentum behavior can be understood as a correlation
between e↵ective color charges, on a scale of order Q

s

� ⇤
QCD

. Right: The quantity
'

A

(k)/k representing the number of gluon in the interval k, k + dk.
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Nval'q

r?Qs

S (r?)
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kQs

Low momentum modes are 

suppressed (screening, saturation)

(Q2 � Q2
s)

(k2 . Q2
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Non linear evolution equations

Boosting a "bare" dipole, 

keeping the target untouched
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Figure 16. Evolution of a right moving dipole, following an increase dY = dk

+

/k

+ in
rapidity, with k

+ ⌧ p

+ the plus component of the emitted gluon, and p

+ that of the
parent quark or antiquark. The diagram on top represents the bare dipole interacting
with the field of the target, indicated by the shaded area. The diagrams in the second
row represent “virtual” corrections, which may be interpreted here as corrections to
the wave function of the dipole. Such corrections are essential to obtain a probabilistic
interpretation of the process. The three diagrams where these corrections take place on
the right of the target are not drawn. The diagrams in the last line represent genuine
interactions of the dressed dipole with the target. The propagator of the soft gluon is
an eikonal Wilson line.

It is important to understand where the rapidity dependence of S
Y

comes from.

The direct calculation of the diagrams displayed in Fig. 16 yields divergent expressions,

the divergence coming from the integration over the longitudinal momentum (k+) of the

emitted gluon, and is generically of the form
R

dk+

/k

+. Cuto↵s need to be introduced

at both ends of this logarithmically divergent integral. What is assumed in writing

Eq. (59) is that this cuto↵ on the phase-space for soft emission grows as dY . (Recall

that k

+ = k?ey/
p
2, and the rapidity y of the emitted gluon lies somewhere between

that of the projectile and that of the target.) The presence of this logarithmic diver-

gence in the calculation of radiative corrections plays a crucial role in this entire section.

While Eq. (59) has been obtained as a result of a bona fide quantum field theoretical

calculation (and there are indeed subtle aspects in this calculation), the right hand

Note that K
xyz

= 2K̃
xyz

� K̃
xxz

� K̃
yyz

.
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Figure 15. Basic process leading to the “evolution” of the interaction of a dipole with
the field of a nucleus (represented by the “Lorentz contracted” shaded area). There
is another diagram, not drawn, where the gluon is emitted from the antiquark at y.
An increase of the rapidity gap between the dipole and the target by an amount dY

increases the phase space for the emission of one gluon. This extra gluon modifies the
e↵ective interaction of the dipole as it traverses the color field of the nucleus. Right:
In the large N

c

limit, a gluon can be represented by an overlapping quark-antiquark
pair, indicated by the double line. The interaction with the target of the dipole-gluon
system is then equivalent to that of a pair of independent dipoles, with endpoints x, z

and z,y respectively. Note that the three coordinates x,y, z do not change during
the interaction (eikonal approximation). The dashed lines indicate the color flows,
exhibiting the two color singlets that emerge from the emission of a gluon.

the target. The basic process is depicted in Fig. 15. After the emission of a gluon, the

original dipole turns into a dipole-gluon system, whose propagation in the field of the

hadron di↵ers from that of the original dipole. The complete leading order calculation

is illustrated by the diagrams in Fig. 16. Since the emitted gluons are soft, the process

can be treated in the eikonal approximation (this includes both the vertex coupling the

emitted gluon to the members of the dipole, as well as the propagation of the emitted

gluon in the field of the target). The calculation of the diagrams in Fig. 16 lead to the

following equation (see e.g. [13] for an elementary derivation)

@

Y

S

Y

(x,y) = �↵

s

N

c

2⇡2

Z

d

2

z K
xyz

{S
Y

(x,y) � S

Y

(x, z)S
Y

(z,y)} , (59)

where (↵̄/2⇡)K
xyz

d

2

z dY , with

K
xyz

⌘ (x � y)2

(x � z)2(y � z)2
, (60)

gives the probability that the dipole with two color charges located at positions x and

y emits a gluon located at z [74]¶ . It is the coordinate space version of the kernel of

the BFKL equation (7).

¶ The kernel K
xyz

, sometimes denoted M
xyz

[10], di↵ers from the corresponding kernel that apperas
in the JIMWLK equation (see Eq. (86) below), which is of the factorized form

K̃
xyz

⌘ (x � z) · (z � y)

(x � z)2(y � z)2
.
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Figure 15. Basic process leading to the “evolution” of the interaction of a dipole with
the field of a nucleus (represented by the “Lorentz contracted” shaded area). There
is another diagram, not drawn, where the gluon is emitted from the antiquark at y.
An increase of the rapidity gap between the dipole and the target by an amount dY

increases the phase space for the emission of one gluon. This extra gluon modifies the
e↵ective interaction of the dipole as it traverses the color field of the nucleus. Right:
In the large N

c

limit, a gluon can be represented by an overlapping quark-antiquark
pair, indicated by the double line. The interaction with the target of the dipole-gluon
system is then equivalent to that of a pair of independent dipoles, with endpoints x, z

and z,y respectively. Note that the three coordinates x,y, z do not change during
the interaction (eikonal approximation). The dashed lines indicate the color flows,
exhibiting the two color singlets that emerge from the emission of a gluon.

the target. The basic process is depicted in Fig. 15. After the emission of a gluon, the

original dipole turns into a dipole-gluon system, whose propagation in the field of the

hadron di↵ers from that of the original dipole. The complete leading order calculation

is illustrated by the diagrams in Fig. 16. Since the emitted gluons are soft, the process

can be treated in the eikonal approximation (this includes both the vertex coupling the

emitted gluon to the members of the dipole, as well as the propagation of the emitted

gluon in the field of the target). The calculation of the diagrams in Fig. 16 lead to the

following equation (see e.g. [13] for an elementary derivation)

@

Y

S

Y

(x,y) = �↵

s

N

c

2⇡2

Z

d

2

z K
xyz

{S
Y

(x,y) � S

Y

(x, z)S
Y

(z,y)} , (59)

where (↵̄/2⇡)K
xyz

d

2

z dY , with

K
xyz

⌘ (x � y)2

(x � z)2(y � z)2
, (60)

gives the probability that the dipole with two color charges located at positions x and

y emits a gluon located at z [74]¶ . It is the coordinate space version of the kernel of

the BFKL equation (7).

¶ The kernel K
xyz

, sometimes denoted M
xyz

[10], di↵ers from the corresponding kernel that apperas
in the JIMWLK equation (see Eq. (86) below), which is of the factorized form

K̃
xyz

⌘ (x � z) · (z � y)

(x � z)2(y � z)2
.

Probabilistic interpretation

High Gluon Density and Heavy Ions 37

side of this equation can be given a probabilistic interpretation. The basic stochastic

mechanism is the splitting of the dipole, which occurs, as we have seen, with a probability

dP = (↵̄/2⇡)K dY . It is convenient, at least in the limit of large number of colors, i.e,

large N

c

, to look at this splitting as producing two new dipoles (see Fig. 15), thus

promoting color dipoles to basic degrees of freedom [75, 74]. The equation (59) can

be written as S
Y+dY

= (1 � dP )S
Y

+ dPS

2

Y

. The change dS
Y

= S

Y+dY

� S

Y

has two

contributions: either the dipole splits, with probability dP , and then the S-matrix is

that of the two resulting dipoles scattering independently o↵ the colour field A

� of the

target; this is the origine of the term ⇠ S

2 in the rhs of Eq. (59). Or it does not split,

which occurs with probability 1� dP , in which case the S-matrix is that of the original

dipole.

Based on this probabilistic interpretation, one may develop a picture of the

projectile wave function as a cascade of dipoles [74] that interact independently of each

other with the target (see also [76, 77]). Thus, for instance, the evolution of the inclusive

one body distribution (dipole density) is given by [78]

@

Y

n

Y
xy

=
↵̄

s

2⇡

Z

z

�

K
xzy

n

Y
xz

+ K
zyx

n

Y
zy

� K
xyz

n

Y
xy

�

, (61)

where n

Y
xy

is the density of dipoles with end points x and y, at rapidity Y . This

equation has an obvious probabilistic interpretation: in the step dY , the dipole {xz}
has a chance to split into two dipoles {xy} and {zy}, thereby increasing the density n

xy

(the dipole {zy} is not counted in the inclusive density). The same reasoning applies

to n

zy

. The last term is the loss term corresponding to the splitting of the dipole {xy}.
This equation is formally identical to the BFKL equation. It predicts in particular an

exponential growth with increasing rapidity of the number of dipoles in the projectile

wave function.

The equation (59) for S (a complex quantity) is a closed equation, and one coud

imagine solving it for a given realization of the random field. But perhaps this is

not very useful, for a number or reasons (see however [79]). We have just remarked

that this equation describes the interaction of a cascade of independent dipoles with a

given color field. It ignores possible interactions among the dipoles. Such interactions

would be visible if we were to consider the evolution of a pair of dipoles, initially of

the form S

x1y1
S

x2y2
. The evolution of this object would involve, in addition to the

evolution of each independent dipoles, also contributions coming from interactions due

to gluon exchanges between the two dipoles. In short, [S
x1y1

S

x2y2
]Y 6= S

Y

x1y1
S

Y

x2y2
.

These interactions lead to more complex color structures than dipoles or product of

dipoles (commonly referred to as quadrupoles, or sextupoles – see for instance [10, 80]

for the explicit form of the corresponding equations).

Another issue is that the physical interpretation of S is easier after one takes the

expectation value over the target field (in particular this turns S into a real quantity).

In doing so, one introduces correlations that are due in particular to the fact that the

two o↵springs propagate in the same color field, with additional correlations coming

possibly from radiative corrections. It follows that after taking the average over the
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possibly from radiative corrections. It follows that after taking the average over the

(Leading order correction)

bare dipole

radiative corrections

High Gluon Density and Heavy Ions 35

x x

y y

z

Figure 15. Basic process leading to the “evolution” of the interaction of a dipole with
the field of a nucleus (represented by the “Lorentz contracted” shaded area). There
is another diagram, not drawn, where the gluon is emitted from the antiquark at y.
An increase of the rapidity gap between the dipole and the target by an amount dY

increases the phase space for the emission of one gluon. This extra gluon modifies the
e↵ective interaction of the dipole as it traverses the color field of the nucleus. Right:
In the large N

c

limit, a gluon can be represented by an overlapping quark-antiquark
pair, indicated by the double line. The interaction with the target of the dipole-gluon
system is then equivalent to that of a pair of independent dipoles, with endpoints x, z

and z,y respectively. Note that the three coordinates x,y, z do not change during
the interaction (eikonal approximation). The dashed lines indicate the color flows,
exhibiting the two color singlets that emerge from the emission of a gluon.
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original dipole turns into a dipole-gluon system, whose propagation in the field of the

hadron di↵ers from that of the original dipole. The complete leading order calculation

is illustrated by the diagrams in Fig. 16. Since the emitted gluons are soft, the process

can be treated in the eikonal approximation (this includes both the vertex coupling the

emitted gluon to the members of the dipole, as well as the propagation of the emitted

gluon in the field of the target). The calculation of the diagrams in Fig. 16 lead to the
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the BFKL equation (7).

¶ The kernel K
xyz

, sometimes denoted M
xyz

[10], di↵ers from the corresponding kernel that apperas
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analysis we shall obtain non linear evolution equations, a determination of the energy

dependence of the saturation momentum Q

s

, a new perspective on the phenomenon of

saturation, a microscopic understanding of the phenomenon of geometrical scaling, as

well as a new vision on the wave function of a hadron at high energy.

We shall gain insight into the role of these radiative corrections by considering the

radiated gluons as either corrections to the wave function of the dipole, or as fluctuations

of the color field of the target. Both point of views are a priori equivalent, but lead

to di↵erent descriptions. When boosting the projectile, we shall be led to picture the

evolution of the dipole wave function as a cascade of dipoles, representing successive soft

gluon emissions. On the other hand, boosting the target is a complicated operation,

which is a priori di�cult, if not impossible, to implement. We shall not attempt to

do it directly. In line with the previous section, we shall view the target as a random

color field, with some probability W [A] that a given field configuration A(x) be realized

in a given event. We shall then assume that the change of the target under a boost

is entirely captured by the change in W [A], and determine that change of W [A] by a

self-consistency argument. In contrast to the first approach, which relies on well defined

techniques of perturbative QCD, there is a fair amount of interpretation, and modeling,

in the second approach.

5.1. Evolution of the dipole operator in a fixed background

We start by considering the forward S-matrix element of a right moving color dipole

S(x,y) =
1

N

c

Tr
�

U

x

U

†
y

�

, (57)

where

U

x

= Pexp

✓

ig

Z 1

�1
dz+↵

a

(z+,x)ta
◆

, ↵

a

(z+,x) = A

�
a

(z+,x), (58)

and the field of the target, A�
a

(z+,x), is at this point considered as a fixed background

field (i.e., no average over the field of the target is performed yet). Recall that ↵
a

(z+,x)

has a finite extension in z

+, and is (nearly) independent of x�. We use a gauge with

A

+ = 0 and A

� 6= 0.

We assume that the nucleus is moving with rapidity Y

0

< 0, and call Y the rapidity

interval between the dipole and the nucleus, so that the rapidity of the dipole is Y +Y

0

.

We assume, to simplify the discussion, that the dipole rapidity is large, but not so large

(typically ↵

s

Y ⌧ 1), so that we can describe the interaction as that of a “bare dipole”

with the target. We want to study the e↵ects of radiative corrections that occur when

we increase the rapidity interval: S will then depart from its simple expression in terms

of Wilson lines given by Eq. (57), in particular it will acquire a dependence on rapidity.

To emphasize this dependence it will be denoted by S

Y

(x,y), or by S

Y

xy

, with Y the

rapidity of the dipole relative to that of the target.

When we boost the dipole by a certain rapidity amount dY , we increase, by an

amount dP ⇠ ↵dY , the probability that a gluon be emitted in the interaction with
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the S-matrix acquires a dependence 

on the rapidity interval Y

and obeys a non-linear evolution equation



The Balitsky-Kovechegov equation
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target field, Eq. (59) is not closed anymore since hS2i 6= hSi2. It becomes in fact the

first equation of an infinite hierarchy of equations that couple correlators of arbitray

numbers of Wilson lines [81]. We shall return to this hierarchy later in this section.

In the next two subsections, we focus on the approximate form of the first equation

obtained by forcing factorization.

5.2. The BK equation

The Balitsky-Kovchegov (BK) equation [81, 82] is the equation that results when taking

the expectation value of Eq. (59) over the field of the target (at a fixed rapidity Y

0

) and

assuming factorization of the term quadratic in S (see also [83]). That is

@

Y

hSY

x,y

iY0
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s
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Z

z

K
xyz

�

hSY
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iY0
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. (62)

The factorization, viz. hSY

x,z

S

Y

z,y

i = hSY

x,z

ihSY

z,y

i, neglects the correlations that arise in

particular from the fact that the two dipoles that emerge from a splitting propagate

in the same background field. Such correlations are generically suppressed at large

N

c

, by powers of 1/N
c

. Note that the average done here does not necessarily involve

correlations in the target, beyond those taken into account, for instance, in the MV

model averaging. As we have already indicated, Eq. (62), prior to factorization, is the

first in an infinite hierarchy of equations for the correlators of an arbitrary number of

Wilson lines. The factorization of the non linear terms allows to close that hierarchy at

the level of the 2-point function. Since from now on we shall mostly deal with average

S-matrix elements, we shall drop the angular brakets in order to alleviate the notation

(they will be reinstated later when they will be explicitly needed to avoid confusion).

Equation (62) is a non linear equation with two easily identified fixed points.

Writing schematically this equation as @
Y

S = �S(1 � S), the two fixed points appear

at S = 0 and S = 1. Small deviations �S from these fixed points are controlled by the

linearized equation, @
Y

(�S) = �(1 � S)�S + S�S, which suggests that the fixed point

S = 1 is unstable, while S = 0 is stable. This observation will guide our forthcoming

qualitative discussion, deferring a more quantitative analysis to the next subsection.

For analyzing the vicinity of the fixed point S = 1, it is convenient to write

S = 1�T . Here T denotes the imaginary part of the scattering amplitude (the scattering

amplitude is purely imaginary, as already mentioned). The equation for T reads
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Y
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xy

=
↵̄

s
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Z

z

K
xyz

[T
xz

+ T

zy

� T

xy

� T

xz

T

zy

] . (63)

In the vicinity of the fixed point, we can drop the last term, quadratic in T . The

resulting equation is the coordinate space version of the BFKL equation, written here

as an equation for the scattering amplitude instead of an equation for the unintegrated

distribution function, as in Eq. (7). We have already seen that the solution of the

BFKL equation grows exponentially as one increases the rapidity interval. A natural

interpretation is to relate this growth of the scattering amplitude to the growth of the

dipole density in the projectile, which e↵ectively increases the probability of interaction
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but retains a weak (logarithmic) dependence on a scale, that of the largest momenta

(⇠ 1/r?) that contributes to it. An illustration of the r? dependence of S(r?) is given
in Fig. 13.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

10-2 10-1 100 101 102

S(
r)

Q0 r

Figure 13. The behavior of the dipole S-matrix as a function of the dipole size r

(measured in units of Q

�1

0

, with Q

0

defined in Eq. (45)). The small size dipoles are
little a↵ected by the target field (S . 1), a reflexion of “color transparency”. Large
dipoles however have large cross sections, they undergo multiple scattering, and the
S-matrix eventually reaches the black disk limit (S ⇡ 0) for large sizes.

We can express Q
s

in terms of the gluon density of the target, thereby recovering

Eq. (26). Recalling the expression (2) for the gluon density of a single valence quark,

we see that

Q
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s

=
4⇡2
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R
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2

c

� 1
L⇢ xG

N

(x, 1/r2?), (46)

where we have set xG
N

(x,Q2) = N

c

xG

q

(x,Q2) and, in Eq. (46), we may use Q2

s

in place

of 1/r2? in the argument of the gluon density. (The conventional notation xG(x,Q2)

suggests an energy dependence which is however not present in the MV model.) This

result indicates that the integrated gluon density is additive in the MV model. It is also

easily verified that Eq. (45) is compatible with the multiple scattering calculation that

leads to Eq. (25). Finally, after Fourier transform, and assuming Q

s

to be constant,

one recovers Eq. (27). Ignoring the mild r? dependence of Q
s

is a good approximation,

except at large momentum where the true decay is a power law rather than a Gaussian.

The correct estimate (obtained by properly keeping the r? dependence of Q
s

) yields
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k

2

?

◆

2

, (47)

as expected from perturbation theory.

The solution interpolates between the two fixed points, 

without much change in shape (geometrical scaling)

S = 1

S = 0

(unstable)

(stable)

S Y

S Y+�Y

rY
srY+�Y

s
r

1/2

The dipole knows (almost) nothing 
about the target. But the result 
can be interpreted as the 
scattering of a bare dipole on a 
target with an increased gluon 
density:

QY+�Y
s > QY

s



B-JIMWLK, Color Glass Condensate, etc

This observation is central to many developments, where one interpret the radiative 
correction to the dipole S-matrix as a modification of the target. 

The target is characterised by a distribution of "classical" fields, and this distribution 
evolves with rapidity (or energy):

W[A]! WY [A]
The evolution equation for          is the B-JIMWLK equation (with the structure of a  
functional Fokker-Planck equation)

The B-JIMWLK equation summaries an infinite hierarchy of equations that describe the 
interactions of arbitrary products of Wilson lines with a dense target. 

WY [A] plays a role somewhat similar to that of pdf 

(although theoretical status is less solid)

WY [A]
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Fig. 1. Typical diagrams contributing to the BK equation. The thick vertical line stands for the hadronic target, depicted as a
shockwave. Left: LO terms. Middle: NLO terms involving a quark loop. Right: NLO terms involving a gluon loop.

the transverse scale of the target: rQ0 ⌧ 1, or Q

2 � Q

2
0, with r ⌘ |x � y| ⌘ 1/Q. Indeed, this regime

is characterized by the existence of large radiative corrections, enhanced by the transverse (or ‘collinear’)
logarithm ⇢ ⌘ ln(Q2/Q2

0). These corrections come from gluons emissions which occur far outside the
original dipole, such that r ⌧ |x � z| ' |z � y| ⌧ 1/Q0. Such gluons look soft compared to their parent
dipole but still hard compared to the target, so they scatter only weakly: T (z) ⌧ 1. In this regime, T (z) ⇠ z

2,
hence the (linear) ‘real’ terms in Eq. (1) dominate over the ‘virtual’ one:

@

@Y

T (r,Y)
r

2 ' ↵̄
Z 1/Q2

0

r

2
dz

2 r

2

z

2
T (z,Y)

z

2 . (2)

The solution to this equation resums powers of ↵̄Y⇢ to all orders. This double logarithmic enhancement —
an energy logarithm and a collinear one — reflects the soft and collinear singularities of bremsstrahlung.
But Eq. (2) is not yet the correct double-logarithmic approximation in QCD at high energy, as we shall see.

The next-to-leading order (NLO) corrections to Eq. (1) arise from 2-loop diagrams which involve at least
one soft gluon (see Fig. 1). The maximal contribution a priori expected for such a diagram (after subtracting
the respective LLA piece, if any) is of order (↵̄Y⇢) ⇥ (↵̄⇢) = ↵̄2

Y⇢2; such a contribution would provide a
NLO correction ⇠ ↵̄⇢ to the BFKL kernel which is enhanced by a collinear log. Yet, the explicit calculation
of all such 2-loop graphs in Ref. [3] reveals the existence of even larger corrections, of relative order ↵̄⇢2,
which are enhanced by a double collinear logarithm. The complete result at NLO appears to be extremely
complicated [3], but it drastically simplifies if one keeps only the terms which are enhanced by at least one
transverse logarithm in the regime where Q

2 � Q

2
0. Then it reads (at large N

c

)

@T (r,Y)
@Y

' ↵̄
Z 1/Q2

0

r

2
dz

2 r

2

z

4

(
1 � ↵̄

 
1
2

ln2 z

2

r

2 +
11
12

ln
z

2

r

2 � b̄ ln r

2µ2
!)

T (z,Y) , (3)

which exhibits 3 types of NLO terms: the double-collinear log previously mentioned, a single collinear log
which can be recognized as part of the DGLAP evolution (see below), and the one-loop running coupling.
(b̄ = (11Nc � 2Nf )/12Nc is the first coe�cient of the QCD �-function, and µ is a renormalization scale at
which the coupling is evaluated.) The NLO corrections enhanced by collinear logs are negative and large and
lead to numerical instabilities which render the NLO BK equation void of any predictive power [4, 5]. The
main source of this di�culty is the double-collinear logarithm (DCL) ↵̄⇢2, whose origin and resummation
will be discussed in the next sections.

2. Time ordering and double-collinear logarithms

The NLO correction ⇠ ↵̄⇢2 to the kernel arises from a particular 2-loop contribution of order ↵̄2
Y⇢3,

which looks anomalously large: it involves a total of 4 (energy or transverse) logarithms, like the respective
LLA contribution ⇠ (↵̄Y⇢)2. As a matter of facts, this particular NLO contribution is generated by the
same 2-loop diagrams (in terms of topology and kinematics) that are responsible for 2 successive steps

E. Iancu, J.D. Madrigal, A.H. Mueller, G. Soyez, D.N. Triantafyllopoulos arXiv:1601.06525

NLO corrections to evolution equations
(present state of the art)

(LO) (NLO)
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Saturation momentum is the unique momentum scale

Q

2
s

/ A

1/3
Q

2
0(x/x0)�

Most gluon taking part in particle production have transverse momenta of order Qs
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6.3. Particle multiplicities in hadronic collisions

Our primary observation concerns the role of the saturation momentum Q

s

and its

energy dependence. This is most clearly seen in bulk properties such as the inclusive

distribution dN/dy of particles produced in a given rapidity bin. That the saturation

momentum plays an important role here is clear from the previous discussion and

the calculation of the inclusive distribution that has been sketched in the previous

subsections: The relevant unintegrated distribution functions are peaked at transverse

momenta of the order of Q
s

(see e.g. Eq. (93), and also Fig. 14). Thus, as a crude

approximation, we may consider that all partons with momenta k? . Q

s

are freed in

the collision. This naturally leads to the following generic behavior for the multiplicity

density [142, 143] (see also [144])

1

⇡R

2

dN

dy

⇠ Q

2

s

↵

s

(Q2

s

)
, (95)

where all dependence on energy or centrality is contained in Q

s

(to simplify the

discussion, we are considering central collisions of two identical nuclei, so there is a

single saturation momentum). In fact, Eq. (95) is nothing but a rewriting of Eq. (11)

that relates Q

s

to the integrated gluon distribution function, xG(x,Q2

s

) = dN
g

/dy,

which illustrates the fact that the gluons that are freed at early times are those present

in the wave function with transverse momenta . Q

s

.

Now, as we have seen in Sects. 3.6 and 5.3, one expects the saturation momentum

to depend on energy. Typically,

Q

2

s

= Q

2

0

(b)

✓

x

x

0

◆

�

, Q

2

0

(b) = Q

2

0

(0)T
A

(b), (96)

where T

A

(b) =
R

dz n(b, z), with n(b, z) the nucleon density. This formula exhibits a

factorization between geometrical e↵ects (essentially the additive increase of the gluon

density proportionally to the density of nucleons at a given point b in the transverse

plane), and the energy dependence captured by the factor x�.

The relations above provide of course only qualitative orientations. Detailed

calculations have been performed, mainly based on the k? factorization [142], including

a proper treatment of the geometry of the collisions. The energy dependence of the

saturation scale has been determined by solving the non linear BK equation, with

corrections taking into account the running of the coupling constant [145, 146, 147].

The initial conditions for the evolution are adjusted so that the resulting unintegrated

distributions yield good fits to HERA data. As can be seen on Fig. 18, a calculation along

the lines just indicated, together with a reasonable adjustments of a few parameters,

is capable of accounting rather well for the ALICE data. In particular it provides a

natural explanation for the similar centrality dependence of the multiplicity distribution

observed at RHIC and LHC. And the power law dependence of the multiplicity density

for central collisions [149], dN/dy / p
s

�

, naturally follows the energy dependence of

the saturation momentum.
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figure with a scale that differs by a factor of 2.1 on the right-hand side. The centrality dependence of the
multiplicity is found to be very similar for

p
sNN = 2.76 TeV and

p
sNN = 0.2 TeV.

Fig. 3: Comparison of (dNch/d�)/
�

hNparti/2
�

with model calculations for Pb–Pb at
p

sNN = 2.76 TeV. Uncertain-
ties in the data are shown as in Fig. 2. The HIJING 2.0 curve is shown for two values of the gluon shadowing (sg)
parameter.

Theoretical descriptions of particle production in nuclear collisions fall into two broad categories: two-
component models combining perturbative QCD processes (e.g. jets and mini-jets) with soft interactions,
and saturation models with various parametrizations for the energy and centrality dependence of the
saturation scale. In Fig. 3 we compare the measured (dNch/d�)/

�

hNparti/2
�

with model predictions. A
calculation based on the two-component Dual Parton Model (DPMJET [10], with string fusion) exhibits
a stronger rise with centrality than observed. The two-component HIJING 2.0 model [25], which has
been tuned [11]1 to high-energy pp [19, 23] and central Pb–Pb data [2], reasonably describes the data.
This model includes a strong impact parameter dependent gluon shadowing (sg) which limits the rise
of particle production with centrality. The remaining models show a weak dependence of multiplicity
on centrality. They are all different implementations of the saturation picture, where the number of soft
gluons available for scattering and particle production is reduced by nonlinear interactions and parton
recombination. A geometrical scaling model with a strong dependence of the saturation scale on nuclear
mass and collision energy [12] predicts a rather weak variation with centrality. The centrality dependence
is well reproduced by saturation models [13] and [14]1, although the former overpredicts the magnitude.

In summary, the measurement of the centrality dependence of the charged-particle multiplicity density at
mid-rapidity in Pb–Pb collisions at

p
sNN = 2.76 TeV has been presented. The charged-particle density

normalized per participating nucleon pair increases by about a factor 2 from peripheral (70–80%) to
central (0–5%) collisions. The dependence of the multiplicity on centrality is strikingly similar for the
data at

p
sNN = 2.76 TeV and

p
sNN = 0.2 TeV. Theoretical descriptions that include a moderation of the

multiplicity evolution with centrality are favoured by the data.
1Published after the most central dNch/d� value [2] was known.
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Figure 18. The multiplicity d/d⌘, with ⌘ the pseudo rapidity, observed by the ALICE
collaboration for Pb-Pb collisions at 2.75 TeV [148] . The calculation by Albacete et
al. provides the best fit to the data [146, 147].

Note that one only predicts here the distribution of ‘initial gluons’, set free

typically at a proper time ⌧ ⇠ Q

�1

s

. Between this early stage and the freeze-out, the

system undergoes several non-trivial steps: kinetic and chemical equilibration (possibly

with additional parton production), hadronization, etc. The fact that the predicted

multiplicity accounts well for the data seems to imply that there is little room left for

the late stages of the collision to contribute significantly to the multiplicity (or, in the

thermodynamical language, to the entropy production).

6.4. Forward rapidity

The presence of high density of gluons can be directly probed by measurements sensitive

to the momentum broadening of the produced particles, and the ensuing redistributions

of produced particles in momentum space (e.g. see Fig. 14, left). By selecting particles

that are produced at high rapidity, one favors situations where these particles propagate

through high density regions, and hence su↵er significant momentum broadening (recall

that the production of a particle with a rapidity y close to that of the projectile involves

partons in the target with momentum fraction x ⇠ e�y, and hence probes the small x,

high density part, of the target wave function ).

One of the early indications of a rapid evolution of particle production with

rapidity was provided by BRAHMS data on d-AU collisions at RHIC, and the rapid

disappearance of the Cronin peak with increasing rapidity [150], as illustrated in Fig. 19.

The quantity plotted there is the so-called nuclear modification factor, a ratio of particle

yields normalized so that it is unity if the deuteron-gold interaction is a superposition

of independent nucleon-nucleon collisions. Both the existence of the Cronin peak (the

Its energy dependence can be controlled from DIS)

(a few illustrative examples)

Charge particle multiplicity
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Forward rapidity (1)
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FIG. 2: Nuclear modification factor for charged hadrons at pseudorapidities � = 0, 1.0, 2.2, 3.2. One standard deviation
statistical errors are shown with error bars. Systematic errors are shown with shaded boxes with widths set by the bin sizes.
The shaded band around unity indicates the estimated error on the normalization to �Ncoll�. Dashed lines at pT < 1.5 GeV/c

show the normalized charged particle density ratio 1
�Ncoll�

dN/d�(Au)
dN/d�(pp) .
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FIG. 3: Central (full points) and semi-central (open points) Rcp ratios (see text for details) at pseudorapidities � =
0, 1.0, 2.2, 3.2. Systematic errors (� 5%) are smaller than the symbols.

(⌘ = 3.2) the data show a suppression at all p

T

. The val-
ues of the R

dAu

ratios at low p

T

are observed to be similar
to the ratio of charged-particle pseudorapidity densities
in d+Au [13] and p+p [14] collisions 1

�Ncoll�
dN/d�(Au)

dN/d�(pp)

shown in Fig. 2 with dashed lines at p

T

< 1.5GeV/c .

Figure 3 shows the ratio R

cp

of yields from collisions of
a given centrality class (0-20% or 30-50%) to yields from
more peripheral collisions (60-80%), scaled by the mean
number of binary collisions in each sample. The central-
ity selection is based on charged particle multiplicity in
the range �2.2 < ⌘ < 2.2 as described in [13]. Since the
peripheral collisions are similar to p+p, the R

cp

is domi-
nated by the nuclear e↵ects in the more central collisions,
making the nuclear modification independent of the p+p

reference spectrum. The data from the di↵erent central-
ity classes are obtained from the same collider run. The
ratios shown in Fig. 3 are therefore largely free of sys-
tematic errors associated with run–by–run Collider and
detector performance, and wide ⌘ bins can be used for
each spectrometer setting. In contrast, the ratios shown

in Fig. 2 must be constructed from two collider runs
with di↵erent species. Smaller ⌘ bins must then be used
in order to include detailed acceptance corrections lead-
ing to larger fluctuations. The dominant systematic error
in the R

cp

ratios comes from the determination of hN
coll

i
in the centrality bins. The shaded bands in Fig. 3 indi-
cate the uncertainty in the calculation of hN

coll

i in the
peripheral collisions (12%). We estimate the mean num-
ber of binary collisions in the three centrality classes to
be hN0�20%

coll

i = 13.6 ± 0.3, hN30�50%

coll

i = 7.9 ± 0.4 and

hN60�80%

coll

i = 3.3 ± 0.4.

There is a substantial change in R

cp

between ⌘ = 0
and the forward rapidities. At low pseudorapidity, the
central–to–peripheral collisions ratio is larger than the
semicentral–to–peripheral ratio, suggesting the increased
role of Cronin like multiple scattering e↵ects in the more
violent collisions. Conversely, at forward pseudorapidi-
ties the more central ratio is smallest indicating a sup-
pression mechanism that depends on the centrality of
the collision. In Fig. 4 we show R

cp

for the transverse

Figure 19. The nuclear modification factor R

dA

showing the disappearance of the
Cronin peak in d-Au collisions at RHIC [150].

enhancement above unity for p? & 2 to 3 Gev), as well as its disappearance with

increasing rapidity, are natural consequences of momentum broadening in a dense gluon

system and its evolution with energy [151, 152, 153, 154, 155]. This phenomenon has

been very much discussed as it was hoped that it could constitute the first glimpse of high

gluon density e↵ects. However other competing explanations appear equally plausible,

in particular those involving e↵ects related to the proton constituents, namely large x

partons [156, 157].

Perhaps more conclusive evidence will come from the study of di-hadron production

at forward rapidity. This is indeed a very interesting situation where one can probe the

very small x component of the nucleus: with y

1

and y

2

denoting the rapidities of the

produced hadrons, the x-values that are probed are given by x

p
s = k

1

e�y1 + k

2

e�y2 .

This can be very small if both y

1

and y

2

are large. The forward double inclusive pion

production has been calculated using a mixed formalism in which the wave function

of the projectile is described by a standard parton distribution function, with the

propagation of these partons in the field of the nucleus described by Wilson lines. The

calculation then reduces to the calculation of the average of some products of Wilson

lines in the random field of the target. At present, approximations are used in order to

evaluate the corresponding averages of 4 and 6 point functions. One usually expresses

those in terms of 2-point functions, whose evolution with energy is calculated using

the BK equation (with running coupling) [158]. The physics one expects is somewhat

similar to that of the Cronin e↵ect, namely multiple scattering in the dense gluon

system. Such multiple scattering of partons through the nucleus is expected to wash

out the back-to-back correlations between the produced hadrons, leading eventually to

the disappearance of the away side jet, as was predicted first in [139]. Such an e↵ect

has indeed been observed by STAR (see Fig. 20). Although the final interpretation of

the data is lacking, the phenomenon is very suggestive of an initial state e↵ect that can

finds its natural explanation in terms of the large gluon density of the nucleus.
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Balitsky-Kovchegov (BK) equation [22, 23]. These equa-
tions are renormalization group equations for the x evo-
lution of the unintegrated gluon distribution, and more
generally of n-point correlators, in which both linear ra-
diative processes and non-linear recombination e↵ects. In
this work, we compute the small-x dynamics of the dipole
correlator, and hence that of the ugd, by solving the BK
equation including running coupling corrections (rcBK):

�N (x, r)

� ln(x
0

/x)
=

Z

d

2

r

1

K

run(r, r
1

, r

2

) [N (x, r

1

)

+N (x, r

2

) � N (x, r) � N (x, r

1

)N (x, r

2

)] . (6)

The evolution kernel K

run is evaluated according to the
prescription of [24]. Explicit expressions for the ker-
nel, together with a detailed discussion on the numerical
method used to solve the rcBK equation can be found in
[25]. The only piece of information left to fully complete
all the ingredients in Eq. (2) are the initial conditions
for the rcBK evolution. This non-perturbative input has
been constrained by the analysis of single-inclusive for-
ward hadron production in d+Au collisions at RHIC per-
formed in [10] using an analogous CGC set up: the start-
ing point of the rcBK evolution is x

0

= 0.02, and at that
value of x the initial saturation scale probed by quarks is
Q̄

2

s0

= 0.4 GeV2. Here, we simply take over this informa-
tion. In this respect, the forward di-hadron calculation
presented here is parameter-free.

We will now investigate the process dAu ! h

1

h

2

X,

with
p

s =200 GeV. More specifically, we are interested
in the coincidence probability, an experimental quantity
measured by both the PHENIX and STAR collaborations
at RHIC. It is given by CP (��) = N

pair

(��)/N
trig

with

N

pair

(��) =

Z

yi,|pi�|

dN

dAu!h1h2X

d

3

p

1

d

3

p

2

, N

trig

=

Z

y, p�

dN

dAu!hX

d

3

p

,

(7)
and it has the meaning of the probability of, given a trig-
ger hadron h

1

in a certain momentum range, produce an
associated hadron h

2

in another momentum range and
with a di↵erence between the azimuthal angles of the two
particles equal to ��. In order to study the centrality
dependence of the coincidence probability, we identify
the centrality averaged initial saturation scale Q̄

2

s0

, ex-
tracted from minimum-bias single-inclusive hadron pro-
duction data, with the value of Q

2

s0

at b = 5.47 fm [26],
and use the Woods-Saxon distribution T

A

(b) to calculate
the saturation scale at other impact parameters:

Q

2

s0

(b) =
Q̄

2

s0

T

A

(b)

T

A

(5.47 fm)
, Q̄

2

s0

= 0.4 GeV2

. (8)

Following the experimental analysis by the STAR collab-
oration we set |p

1?| > 2 GeV, 1 GeV < |p
2?| < |p

1?| and
2.4 < y

1,2

< 4, and require both hadrons to be neutral
pions. Single-inclusive hadron production, used to nor-
malize the coincidence probability, is calculated as in [10].
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FIG. 1: The coincidence probability as a function of ��
for central d+Au and p+p collisions. The preliminary data
points by the STAR collaboration have been shifted vertically
by constant amounts. Our results are displayed in solid lines.

We shall also calculate CP (��) in p+p collisions in an
analogous way, with the initial saturation scale Q

2

0

= 0.2
GeV2 for the proton. Even though the applicability of
our approach to the p+p case is questionable, the results
obtained will be useful to interpret the phenomenon of
monojet production observed in d+Au collision.

Our results for CP (��) in central d+Au and in p+p
collisions are displayed in Fig. 1, along with preliminary
data from the STAR collaboration [3]. Several comments
are in order. First, the disappearance of the away-side
peak around �� ⇠ ⇡ in d+Au collisions exhibited by
data is quantitatively well described by our CGC calcu-
lation. In turn our results for p+p collisions, where the
applicability of the CGC formalism is not fully justified
due to the smallness of the proton saturation scale, agree
at a qualitative level with the presence of a well defined
away-side peak in p+p collisions.

Analogous measurements of the coincidence probabil-
ity in d+Au collisions at mid-rapidity, where x

A

is large,
also display a clear back-to-back correlation [12, 19]. We
thus conclude that monojet production is linked to the
presence of a high gluon density in the target or, equiva-
lently, to the fact that its saturation scale is comparable
to the momenta of the produced hadrons. Similar conclu-
sions have been obtained relying on a saturation model
[27] (there, although di↵erent working assumptions are
used, the presence of a saturation scale is also the crucial
ingredient to successfully reproduce data). Our assump-
tion of independent parton fragmentation in Eq. (2) pre-
vents us from extending our calculation to the near-side
�� ⇠ 0 region. This would require the use of poorly con-
strained di-pion fragmentation functions. Moreover, the
di↵erent measurements show little variation in the height
and width of the near-side peak with varying colliding
system or centrality, indicating that the near-side peak
is not sensitive to saturation physics. Finally, since un-
correlated background has not been extracted from data,
we have adjusted the overall normalization of data points

Figure 20. The absence of the ‘away side’ jet observed by the STAR experiment [159].
The (blue) points represent the results of the calculation of Ref. [158], from which the
figure is taken.

6.5. Long range rapidity correlations

An important feature of high density gluon systems is contained in various correlations.

Some of these correlations are generated by the average over the charge distributions,

with a specific pattern emerging when the charges are large [160]; some correlations also

result from the fact that the inclusive distributions are peaked at transverse momenta

of order Q
s

.

The last example that I shall briefly mention may be reflecting some of these

correlations. It concerns the observation of what has been called the “ridge”

phenomenon, and is illustrated in Fig. 21 in the case of p-Pb collisions at the LHC

[161]. This figure suggests indeed the existence of correlations among pairs of not

too soft particles (1 < p? < 3 GeV), the correlation extending over several units of

(pseudo) rapidity and being collimated in azimuthal angles around 0 and ⇡. Analogous

observations were made for nucleus-nucleus collisions both at RHIC and the LHC, while

at the LHC the ridge phenomenon has been observed also in pp collisions. There

is a simple causality argument that indicates that in the rapidly expanding quark-

gluon plasma long range rapidity correlations can only be produced at very short time

[162], where the system is the densest. This, combined with the observation that the

phenomenon occurs in the range of momenta that are of the order of the saturation

momentum, suggests indeed that the observed correlations could be due to the presence

R
dA

=
1

N
coll

dNdA/d2 pT dy
dNpp/d2 pT dy

Growing suppression (with 

increasing rapidity) of low 

momentum particles


Forward rapidity (2)

Suppression of back to 

back correlation
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4 5 Results

|�| < 1 region for pT > 0.6 GeV/c. For the multiplicity range studied here, little or no depen-
dence of the tracking efficiency on multiplicity is found and the rate of misreconstructed tracks
remains at the 1–2% level.

Simulations of pp, pPb and peripheral PbPb collisions using the PYTHIA, HIJING and HYDJET
event generators, respectively, yield efficiency correction factors that vary due to the different
kinematic and mass distributions for the particles produced in these generators. Applying
the resulting correction factors from one of the generators to simulated data from one of the
others gives associated yield distributions that agree within 5%. Systematic uncertainties due
to track quality cuts and potential contributions from secondary particles (including those from
weak decays) are examined by loosening or tightening the track selections on dz/�(dz) and
dT/�(dT) from 2 to 5. The associated yields are found to be insensitive to these track selections
within 2%.
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Figure 1: 2-D two-particle correlation functions for 5.02 TeV pPb collisions for pairs of charged
particles with 1 < pT < 3 GeV/c. Results are shown (a) for low-multiplicity events (Noffline

trk <

35) and (b) for a high-multiplicity selection (Noffline
trk � 110). The sharp near-side peaks from jet

correlations have been truncated to better illustrate the structure outside that region.

5 Results
Figure 1 compares 2-D two-particle correlation functions for events with low (a) and high (b)
multiplicity, for pairs of charged particles with 1 < pT < 3 GeV/c. For the low-multiplicity
selection (Noffline

trk < 35), the dominant features are the correlation peak near (��, ��) = (0, 0)
for pairs of particles originating from the same jet and the elongated structure at �� ⇡ � for
pairs of particles from back-to-back jets. To better illustrate the full correlation structure, the jet
peak has been truncated. High-multiplicity events (Noffline

trk � 110) also show the same-side jet
peak and back-to-back correlation structures. However, in addition, a pronounced “ridge”-like
structure emerges at �� ⇡ 0 extending to |��| of at least 4 units. This observed structure is
similar to that seen in high-multiplicity pp collision data at

p
s = 7 TeV [17] and in AA collisions

over a wide range of energies [3–10].

As a cross-check, correlation functions were also generated for tracks paired with ECAL pho-
tons, which originate primarily from decays of �0s, and for pairs of ECAL photons. These
distributions showed similar features as those seen in Fig. 1, in particular the ridge-like corre-
lation for high multiplicity events.

Figure 21. Two particle correlations (⌘ is the pseudo rapidity and � the azimuthal
angle) measured by CMS in high multiplicity p-Pb collisions, for pairs of charged
particles with 1 < p

T

< 3 GeV [161].

of high gluon densities.

The long range rapidity correlations are perhaps not too surprising. They simply

reflect the boost invariance of the particle production mechanism, a generic feature at

high energy. The azimuthal correlations however, may be more subtle. In nucleus-

nucleus collisions, a natural mechanism involves the collective flow that boosts the

produced particles in the same direction, thereby extending in azimuth the correlations

present in rapidity. But the phenomenon may also reflect correlations that are already

present in the initial wave functions, or that are induced by the way particles are

produced in strong fields. For instance, specific correlations arise when averaging over

strong color sources (⇢ ⇠ 1/g). Then, as already mentioned, a new ordering of the

contributions of various diagrams emerges, which di↵ers from the natural ordering

in powers of the coupling constant [160, 163]. Some azimutal correlations may also

arise from the fact that the transverse momenta of the produced particles are bound

to be close to Q

s

. Explicit calculations that take into account these initial state

correlations are indeed capable of providing a systematic account for the data (see

[164] and references therein). However, the topic is presently very much debated. Its

theoretical aspects are critically reviewed in [165].

7. Conclusion and outlook

We have seen that a striking feature of high gluon density is the phenomenon of

saturation, which manifests itself in various ways: it characterizes the slowing down

of the growth of the gluon distribution function with increasing energy, it ensures

the unitarization of cross sections, it induces specific color correlations. Saturation

sets in at a particular scale, the saturation momentum, which has, correspondingly,

The "ridge"

Effect of collective flow,

or specific correlations in the "initial state" ?



Conclusions

•  Gluon saturation is a subtle phenomenon, with 
many facets, and not fully understood.              
(tames the growth of gluon density with increasing energy, unitarizes the 
cross section, induces specific correlations in wave functions, etc) 


•  Saturation is characterised by one (transverse) 
momentum scale, the saturation momentum      
(separates dense and dilute regimes, threshold for breakdown of 
perturbation theory, momentum broadening, etc) 


•  High gluon densities potentially play an 
important role in heavy ion collisions (most produced 
particles have transverse momentum of order Qs, several phenomena are 
qualitatively (semi-quantitatively ?) understood in terms of high gluon 
densities, gluon densities determine the initial stages of collisions)

Qs




