
RADIO FREQUENCY INTERFERENCE 
DETECTION AND MITIGATION IN 

MICROWAVE RADIOMETERS 
 

Priscilla N. Mohammed(1, 2) 

 
(1) NASA’s Goddard Space Flight Center 

(2) Morgan State University 



SMAP RFI  

• SMAP (Soil Moisture Active Passive) was launched by NASA 
January 31, 2015 to measure soil moisture of the Earth’s land 
surface  
 

• The SMAP radiometer operates in the L-band protected spectrum 
(1400-1427 MHz) that is known to be vulnerable to radio frequency 
interference (RFI) 

– SMOS and Aquarius provided a good indication of the RFI environment at L-
band 

 
• On orbit results show that RFI is indeed a problem 

– RFI increases brightness temperatures 
– Can lead to dry biases in soil moisture retrievals if undetected 

 
• SMAP radiometer includes a digital backend enabling multiple RFI 

detection and mitigation capabilities; detection and mitigation 
processing performed on ground 
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and flag RFI; also flag adjacent 
channels: Kurtosis, T3/T4, Cross 
frequency 

Drop all flagged data and 
average remaining clean 
pixels of subband data to get 
RFI free footprint, TA 

Time domain detectors 
detect and flag RFI; MPD 
flags corresponding time 
slice in subband data: 
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RFI Probability Map 

3 % of time SMAP detects RFI of 5 K or more in H-pol. April 2015 to March 2016 



Weekly Peak Hold RFI Maps: H-pol 
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• 0.25° grid 
• December 

2016 to 
May 2017 

• V-pol show 
similar 
results 



-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Fullband Kurtosis H-pol  

• 0.25° grid 
• October 
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show 
similar 
results 
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Max and Min kurtosis for a week 5 
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TA unfiltered TA filtered 

TA filtered 

Discarding measurements 
flagged by  TB quality flag; 
residual RFI could still be in 
product 

• 0.25° grid 
• Peak hold, 

October 1-7, 
2016 

• TA < 100 K 
omitted 
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RFI Sources Localized by SMAP over China 
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Spectra measured by SMAP over the main 
Japanese cities 

Osaka Tokyo 

Every data point is the average of the sub-band Ta measured within a circle of 
50 km radius, centered approximately at the center of the city.  Similar spectra 
seen over Nagoya and Hiroshima. 
 

Channels 19 and 21 of the BSAT system 

Additional interferer 
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Spectra over Japan 

• 0.25° grid 
• Middle channels 

less corrupted 
by RFI 

• TA < 125 K 
omitted 

TA (Kelvin) 
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For detailed information 
on the SMAP RFI 
algorithm and results 
from the first year on 
orbit. 



Objective 

Key Milestones Approach 

InVEST-15-0020 

CubeRRT: CubeSat Radiometer Radio Frequency Interference 
Technology Validation 

PI: Joel T. Johnson, Ohio State University 

Co-Is/Partners:  

• Demonstrate wideband radio frequency interference (RFI) 
mitigating backend technology for future spaceborne 
microwave radiometers operating 6 to 40 GHz 

• Crucial to maintain US national capability for spaceborne 
radiometry and associated science goals 

• Demonstrate successful real-time on-board RFI detection and 
mitigation in 1 GHz instantaneous bandwidth 

• Demonstrate reliable cubesat mission operations, include tuning 
to Earth Exploration Satellite Service (EESS) allocated bands 
in the 6 to 40 GHz region 

 

• Requirements definition and system design 03/16 
• Instrument engineering model subsystem tests 4/17 
• Instrument engineering model integration and test 6/17 
• Instrument flight model subsystem tests 8/17 
• Instrument flight model integration and test 9/17 
• Spacecraft integration and test 12/17 
• CubeRRT launch readiness 02/18 
• On-orbit operations completion L+12 months 

 

TRLin = 5   TRLout = 7 
C. Chen, M. Andrews, OSU; S. Misra, S. Brown, J. Kocz, R. Jarnot, 
JPL; D. Bradley, P. Mohammed, J. Lucey, J. Piepmeier, GSFC 

• Build upon heritage of airborne and spaceborne (SMAP) digital 
backends for RFI mitigation in microwave radiometry 

• Apply existing RFI mitigation strategies onboard spacecraft; 
downlink additional RFI data for assessment of onboard 
algorithm performance 

• Integrate radiometer front end, digital backend, and wideband 
antenna systems into 6U CubeSat 

• CSLI launch from ISS into 400 km orbit; ~ 120-300 km Earth 
footprint for RFI mitigation validation 

• Operate for one year at 25% duty cycle to acquire adequate 
RFI data 

12/16 

RFI sources in Europe at 10.7 GHz 
observed by GPM Microwave Imager 

6U CubeSat layout of CubeRRT 
components 



GMI 

• The GMI earth-view data is contaminated by RFI in the 10 and 18 
GHz channels, at both polarizations 
– 10 GHz RFI is mostly due to fixed earth emitters 
– 18 GHz low-level RFI is observed from fixed earth emitters 
– 18 GHz high-level RFI is observed from reflections off ocean and land 

surfaces from Geosynchronous satellites around the continental United 
States and Hawaii. 
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10.7 GHz 18.7 GHz 
Picture 
courtesy 
David 
Draper and 
David 
Newell 



Motion Detector Units 
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• Modules similar to these operate at 10.687 GHz designated for indoor use 
in the UK 

• Likely offenders of GMI RFI 



Wideband RFI Mitigation Subsystem for Microwave 
Radiometers 

• Technical objectives 
– Develop a wideband (> 200 MHz) digital detector subsystem  
– Demonstrate innovative RFI detection and removal techniques for 

microwave radiometers 
• The proposed techniques are the complex values kurtosis detector and blind 

source separation methods.  Both have the potential to improve the radio 
frequency interference (RFI) detection rate in high frequency bandwidth.   

• 800 MHz sample-rate (200 MHz bandwidth) polarimetric radiometer 
test-bed was developed using the Reconfigurable Open Architecture 
Computing Hardware (ROACH2) system from the Collaboration for 
Astronomy Signal Processing and Electronics Research (CASPER) 
group at the University of California Berkeley 

• Both the real and complex signal kurtosis algorithms were 
implemented in hardware and the outputs were compared to that of 
simulations developed in python 
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Wideband RFI Telemetry 
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Additional Moments 
for Complex Signal 
Kurtosis 

Moments m1-m4 used to 
compute Real Kurtosis 

Used to produce 
3rd and 4th Stokes 
parameters 

• +4 moments per Polarization 
• Extension on moments for real 

kurtosis 

H and V Cross-Correlation 



Complex Kurtosis Hardware Results 

17 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability False Alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

D
et

ec
t

Hardware ROC, Wideband RFI, N = 20000

Full Band - RSK , INR = -7 AUC = 0.917

Full Band - CSK , INR = -7 AUC = 0.951

Sub Band - RSK , INR = -7 AUC = 0.686

Sub Band - CSK , INR = -7 AUC = 0.713

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability False Alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

D
et

ec
t

Hardware ROC, Narrowband RFI, N = 20000

Full Band - RSK , INR = -10 AUC = 0.658

Full Band - CSK , INR = -10 AUC = 0.695

Sub Band - RSK , INR = -10 AUC = 0.942

Sub Band - CSK , INR = -10 AUC = 0.983

Narrowband CW RFI QPSK signal 
 

CSK (Complex Signal Kurtosis) provides a better detection performance than real signal kurtosis.  
 
Interference becomes detectable at an INR (Interference to Noise Ratio) of 2 dB lower than what can 
be detected using RSK (Real Signal Kurtosis). 
 



Blind Source Separation 

• Objective 
– Extract 𝑁𝑁 unknown sources from 𝑃𝑃 observations with weak assumption about 

sources 

• Applications 
– Audio source separation, communications, … 

• Mixture Models 
– Linear instantaneous mixture    

• Questions  
– Can 𝑨𝑨 be identified from 𝒙𝒙(𝑡𝑡) alone up to scaling of columns? (identifiability) 
– Can 𝒔𝒔 𝑡𝑡  be separated? (separability) 
– What algorithm can be used to perform these tasks? 

• Ambiguity 
– Scaling 
– Permutation 

• Methods 
– Independent Component Analysis: 𝑃𝑃 ≥ 𝑁𝑁, sources are independent  
– Sparse Component Analysis: 𝑃𝑃 < 𝑁𝑁, sources have disjoint supports 18 

mixing matrix 
(unknown) 

sources 
(unknown) 

observations 
(known) 

𝒙𝒙 𝑡𝑡 = 𝑨𝑨𝑨𝑨 𝑡𝑡 ,         𝑡𝑡 = 1, … ,𝑇𝑇 
 



Independent Component Analysis 

• Can RFI be separated from noise using blind source separation; this 
work focuses on independent component analysis (ICA) 

• Assume noise and RFI are statistically independent sources, mixing 
model is linear, sources are non Gaussian. 

• Model:  x = As, Observe x.  Sources s and mixing matrix A are 
unknown. 

• 𝒔𝒔� = Wx,  𝒔𝒔� is the estimated independent components (source 
estimates). 
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Observation vector 
x 

Linear Mixing 
Matrix 

A 

Linear  
Un-mixing 

Matrix  
W 

Source vector s 

Original 
sources/signals 

 𝑠𝑠�1(𝑛𝑛)  

 𝑠𝑠�2(𝑛𝑛)  

 𝑠𝑠�3(𝑛𝑛)  

 𝑠𝑠�4(𝑛𝑛)  

𝑠𝑠1(𝑛𝑛) 

𝑠𝑠2(𝑛𝑛) 

𝑠𝑠3(𝑛𝑛) 

𝑠𝑠4(𝑛𝑛) 

𝑥𝑥3(𝑛𝑛) 

𝑥𝑥4(𝑛𝑛) 

𝑥𝑥2(𝑛𝑛) 

𝑥𝑥1(𝑛𝑛) 

Estimated vector  𝒔𝒔�  

Estimated 
sources/signals 



ICA Algorithm 
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𝑥𝑥HI  0 𝑥𝑥HI 1 … 𝑥𝑥HI 𝑁𝑁 − 1
𝑥𝑥HQ 0 𝑥𝑥HQ 1 … 𝑥𝑥HQ 𝑁𝑁 − 1
𝑥𝑥VI  0 𝑥𝑥VI  1 … 𝑥𝑥VI  𝑁𝑁 − 1
𝑥𝑥VQ 0 𝑥𝑥VQ 1 … 𝑥𝑥VQ 𝑁𝑁 − 1

 = 

𝑎𝑎00 𝑎𝑎01 𝑎𝑎02 𝑎𝑎03
𝑎𝑎10 𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎20 𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎30 𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

 

𝑠𝑠0,0 𝑠𝑠0,1 𝑠𝑠0,2 𝑠𝑠0,3 … 𝑠𝑠0,𝑁𝑁−1 
𝑠𝑠1,0 𝑠𝑠1,1 𝑠𝑠1,2 𝑠𝑠1,3 … 𝑠𝑠1,𝑁𝑁−1 
𝑠𝑠2,0 𝑠𝑠2,1 𝑠𝑠2,2 𝑠𝑠2,3 … 𝑠𝑠2,𝑁𝑁−1 
𝑠𝑠3,0 𝑠𝑠3,1 𝑠𝑠2,2 𝑠𝑠3,3 … 𝑠𝑠3,𝑁𝑁−1  

 

Independent 
Components 

Observations Mixing Matrix 

Are components 𝒔𝒔𝒊𝒊�  
in 𝐒𝐒�   independent? 

𝐒𝐒� = 𝐖𝐖�𝒙𝒙 

Update 𝐖𝐖�  
No 

Yes 

Use 𝐒𝐒� 

Measured 𝒙𝒙 

 𝒙𝒙 =As 
 𝑾𝑾 = 𝑨𝑨−𝟏𝟏 
 𝐬𝐬 = 𝐖𝐖𝐖𝐖 

• Actual Signals, S , are 
mixed by mixing 
matrix, A, and 
observed as X 
 

• We pick a matrix , 𝐖𝐖�  , 
that gives us back our 
estimated signals, 𝐒𝐒� 

ICA 
Input 

ICA 
Output 

Find A matrix to transform X into S 



RFI Detection 
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𝑠𝑠0 0  𝑠𝑠0 1  … 𝑠𝑠0 N − 1  

𝑠𝑠1 0  𝑠𝑠1 1  … 𝑠𝑠1 N − 1  

𝑠𝑠2 0  𝑠𝑠2 1  … 𝑠𝑠2 N − 1  

𝑠𝑠3 0  𝑠𝑠3 1  … 𝑠𝑠3 N − 1  

max
𝑘𝑘

{ABS(RSKk –  3)} 

ICA 
Detector 
Output 

Kurtosis 

Kurtosis 

Kurtosis 

Kurtosis 

RSK0 
RSK1 
RSK2 
RSK3 

Step 1: Take Kurtosis of each 
estimated independent component 
vector 

Step 2: Select the kurtosis value 
that deviated the furthest from 3 

ICA Output 



AUC Results – ICA Performance – Wide Band 
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+2dB INR Gain, 
Complex Signal Kurtosis 
with Complex ICA 
Algorithms Performs Best 
on DVB-S2 
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RSK = Real Signal Kurtosis 
CSK = Complex Signal 
Kurtosis 



ICA 

• CSK provides better detection over RSK  
• ICA assumes a critically or over determined system of 

independent components 
• Using existing V/H polarimetric instrument architecture 

we are limited to two observations but there are a 
minimum of three independent components in the event 
that RFI is present 

• Hence 3 or more observations are needed; current 
problem is therefore an under determined case for which 
ICA does not work well 
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Sparse Component Analysis 

• Application 
– BSS for  
𝑃𝑃 < 𝑁𝑁  
(under-determined) 

• Assumption 
– Sources have disjoint  

supports    
• Model  

– 𝒙𝒙 𝑡𝑡 = 𝑨𝑨𝑨𝑨 𝑡𝑡 = 𝑨𝑨1, … ,𝑨𝑨𝑁𝑁
𝑠𝑠1 𝑡𝑡
⋮

𝑠𝑠𝑁𝑁 𝑡𝑡
,  𝑡𝑡 ∈ {1, …𝑇𝑇} 

• Least squares: 𝑠̂𝑠𝑛𝑛 𝑡𝑡 = �
<𝒙𝒙 𝑡𝑡 ,𝑨𝑨�𝑛𝑛>

𝑨𝑨�𝑛𝑛
2           𝑡𝑡 ∈ Λ�𝑛𝑛  

0                      𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
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SCA In Practice 
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• In practice sources are not disjoint in time! 
• Method: change the representation of the observations so that in 

the new representation, the sources are disjoint 

Algorithms I 
• Dictionary 

• Dictionary learning 
• Structured dictionary 

• Joint sparse representation 
• Global optimization 
• Greedy algorithm 

• Mixing matrix estimation 
• Global clustering  
• Local scatter plots  

• Separation 
• Binary masking 

Algorithms II 
• Dictionary 

• Structured dictionary- 
different set of dictionaries 

• Joint sparse representation 
• Global optimization- exact 

sparse coding 
• Mixing matrix estimation 

• Global clustering – Weighted 
histogram  

• Separation 
• Local separation 



Sparse Signal Representation 

• Satisfying the SCA Assumption 
– Represent each source by a linear combination of a few 

elementary signals (atoms):  𝑠𝑠 𝑡𝑡 = ∑ 𝑐𝑐𝑠𝑠 𝑘𝑘 𝜑𝜑𝑘𝑘 𝑡𝑡𝐾𝐾
𝑘𝑘=1  

• Measure of sparsity 

– 𝒄𝒄𝑠𝑠 𝜏𝜏 = � ∑ |𝑐𝑐𝑠𝑠 𝑘𝑘 |𝜏𝜏𝐾𝐾
𝑘𝑘=1

1/𝜏𝜏                    𝜏𝜏 > 0
               num   of nonzero coefficients  𝜏𝜏 = 0

 quantifies the sparsity 
of 𝒄𝒄𝑠𝑠 

– Ideal 𝜏𝜏 for sparsity is 0 
• Dictionary 

– Dictionary: set of atoms 
– Consider dictionaries that span 𝐶𝐶𝑇𝑇 

• 𝐾𝐾 > 𝑇𝑇: redundant dictionary, infinite representation  
• Synthesis  

– 𝒔𝒔 = 𝒄𝒄𝒔𝒔𝚽𝚽  
• Effective Dictionary: enables a sparse representation 
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SCA Example: Sources with non disjoint supports 
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Sparse Representation and  
Estimating Mixing Matrix  
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Separation and Reconstruction 
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Simulation Results – Estimating Noise 
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Greedy Algorithm 

INR (dB) 
no RFI -25 -20 -15 -10 

 
duty-cycle 

100%  
0.985, 
0.979 

0.982, 
0.977 

0.978, 
0.975 

0.972, 
0.970 

0.965, 
0.958  

1% 0.983, 
0.978 

0.978, 
0.975  

0.970, 
0.966 

0.953, 
0.946 

 
Global Optimization  

INR (dB) 

no RFI -25 -20 -15 -10 

 
duty-cycle 

100%  
0.988, 
0.986 

0.987, 
0.987 

0.984, 
0.981 

0.981, 
0.974 

0.977, 
0.973 

1% 0.987, 
0.981 

0.984, 
0.980 

0.976, 
0.970  

0.961, 
0.949 

Measure of performance: correlation between original noise and reconstructed noise  
 

E[|corr. coeff. btw 𝑛𝑛𝐻𝐻 and 𝑛𝑛𝐻𝐻� | ] E[|corr. coeff. btw 𝑛𝑛𝑉𝑉 and 𝑛𝑛𝑉𝑉� |] 



Simulation Results – Estimating Noise Power 

• Requires scale estimation  
• Scale = median(reconstructed noise / original noise)  
• In practice, scale can be estimated by exploiting neighbors scale 

• Measure of performance: relative error between power of reconstructed noise and power of 
original noise 
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Greedy Algorithm 

INR (dB) 
no RFI -25 -20 -15 -10 

 
duty-cycle 

100%  
1.9, 2.5 

4.7, 4.5 3.2, 4.0 5.9, 5.7 6.1, 6.5 

1% 2.3, 3.5 3.1, 3.9 4.8, 5.5 8.2, 10.0 

 
Global Optimization  

INR (dB) 
no RFI -25 -20 -15 -10 

 
duty-cycle 

100%  
0.6, 2.6 

1.1, 1.7 1.9, 4.1 3.5, 7.8 4.9, 6.7 

1% 0.9, 5.2 1.6, 4.2 2.8, 5.9 6.0, 8.8 

𝐸𝐸
𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑙𝑙𝐻𝐻 ∗ 𝑛𝑛𝐻𝐻)� − 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛𝐻𝐻

𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛𝐻𝐻
× 100% 𝐸𝐸[

𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑙𝑙𝑉𝑉 ∗ 𝑛𝑛𝑉𝑉)� − 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛𝑉𝑉
𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛𝑉𝑉

] × 100% 

 



RFI Detection 
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SCA Classifier 
(median, kurtosis) 

Correlation to 
solve scaling 

ambiguity 

Inputs, x 

Outputs:  
separated  
signals, 𝑠̂𝑠 

Detector 

RFI 
signal: 

 𝑠𝑠� j 
 

<xj,  𝑠𝑠� j> 

ROC  
curves 

• SCA scaling ambiguity is evident from previous simulations 
• Use correlation after classification to minimize scaling 

ambiguity 
 

• Use statistical measures as classifiers 
 
• Use statistical measures such as median, kurtosis, etc. as 

detectors 
• Pass only predicted RFI signal through detector 

 



RFI Detection Using SCA 
• Detection criteria: median(abs(reconstructed sources) ) 
• SCA is capable of detecting RFI with high INR and high duty-cycle 
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• Detector: 
– Prob. Detection:  

• Median of absolute value of 
reconstructed sources H1 > threshold 

– Prob. False Alarm:  
• Median of absolute value of  
• reconstructed sources H0 > threshold 

• ROC thresholds: 0:0.01:1 
 

SCA 
Inputs, x Outputs:  

separated signals, 
𝑠̂𝑠 

Detector 
(Median) 

ROC 
curves 



RFI Detection By Median 
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duty-cycle = 100%

INR=-15

INR=-12.5

INR=-10

INR=-7.5

INR=-5

INR=-2.5

INR=0

INR=2.5

Algorithms I 
• Dictionary 

• Structured dictionary 
• Joint sparse representation 

• Greedy algorithm - OMP 
• Mixing matrix estimation 

• Global clustering – Weighted 
histogram 

• Separation 
• Binary masking 

Algorithms II  
• Dictionary 

• Structured dictionary- 
different set of dictionaries 

• Joint sparse representation 
• Global optimization- exact 

sparse coding 
• Mixing matrix estimation 

• Global clustering – Weighted 
histogram  

• Separation 
• Local separation 



Conclusions 

• SMAP’s current algorithms for RFI detection and 
mitigation are performing well 

• Sources that are wideband and occupy much of the 
bandwidth cannot be corrected by any of SMAP’s RFI 
filtering algorithms 

• Blind source separation results indicate that these type 
of algorithms are not sensitive enough for the RFI 
detection problem and they are also quite 
computationally intensive 

• These results indicate the need for continued protection 
of spectrum  
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ICA Algorithms 

• Fast ICA (FASTICA) 
– A. Hyvärinen. “Fast and Robust Fixed-Point Algorithms for Independent Component 

Analysis”, IEEE Transactions on Neural Networks 10(3):626-634, 1999. 

• Robust ICA (ROBUSTICA) 
– V. Zarzoso and P. Comon, "Robust Independent Component Analysis by Iterative 

Maximization of the Kurtosis Contrast with Algebraic Optimal Step Size", IEEE Transactions 
on Neural Networks, Vol. 21, No. 2, February 2010, pp. 248-261. 

• Non Circular Complex Fast ICA (NCCFASTICA) 
– Mike Novey and T. Adali, "On Extending the complex FastICA algorithm to noncircular 

sources" IEEE Trans. Signal Processing, vol. 56, no. 5, pp. 2148-2154, May 2008. 

• Entropy Rate Bound Minimization (ERBM) 
– X.-L. Li, and T. Adali, "Blind spatiotemporal separation of second and/or higher-order 

correlated sources by entropy rate minimization," in Proc. IEEE Int. Conf. Acoust., Speech, 
Signal Processing (ICASSP), Dallas, TX, March 2010. 

• Complex Quadrature Amplitude Modulation (CQAMSYM) 
– Mike Novey and T. Adali, "Complex Fixed-Point ICA Algorithm for Separation of QAM Sources using 

Gaussian Mixture Model" in IEEE Conf. ICASSP 2007 

• Complex Entropy Rate Bound Minimization (CERBM) 
– G.-S. Fu, R. Phlypo, M. Anderson, and T. Adali, "Complex Independent Component Analysis Using Three 

Types of Diversity: Non-Gaussianity, Nonwhiteness, and Noncircularity," IEEE Trans. Signal Processing, 
vol. 63, no. 3, pp. 794-805, Feb. 2015. 
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