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SMAP RFI

SMAP (Soil Moisture Active Passive) was launched by NASA
January 31, 2015 to measure soil moisture of the Earth’s land
surface

The SMAP radiometer operates in the L-band protected spectrum
(1400-1427 MHz) that is known to be vulnerable to radio frequency
interference (RFI)

— SMOS and Aquarius provided a good indication of the RFI environment at L-
band

On orbit results show that RFI is indeed a problem
— RFI increases brightness temperatures
— Can lead to dry biases in soil moisture retrievals if undetected

SMAP radiometer includes a digital backend enabling multiple RFI
detection and mitigation capabilities; detection and mitigation
processing performed on ground
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RFI Probablility Map

% of time SMAP detects RFI of 5 K or more in H-pol. April 2015 to March 2016




Weekly Peak Hold RFI Maps: H-pol
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Subband Kurtosis H-pol
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TA unfiltered
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Spectra measured by SMAP over the main
Japanese cities

Stop-band of channel Channels 19 and 21 of the BSAT system
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Every data point is the average of the sub-band Ta measured within a circle of
50 km radius, centered approximately at the center of the city. Similar spectra
seen over Nagoya and Hiroshima. 9



Spectra over Japan
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CubeRRT: CubeSat Radiometer Radio Frequency Interference
Technology Validation
PI: Joel T. Johnson, Ohio State University

Objective

» Demonstrate wideband radio frequency interference (RFI)
mitigating backend technology for future spaceborne
microwave radiometers operating 6 to 40 GHz

* Crucial to maintain US national capability for spaceborne
radiometry and associated science goals

» Demonstrate successful real-time on-board RFI detection and
mitigation in 1 GHz instantaneous bandwidth

« Demonstrate reliable cubesat mission operations, include tuning
to Earth Exploration Satellite Service (EESS) allocated bands

6U CubeSat layout of CubeRRT

RFT sources in Europe at 10.7 GHz

in the 6 o 40 GHz region observed by GPM Microwave Imager components
Approach Key Milestones
* Build upon heritage of airborne and spaceborne (SMAP) digital * Requirements definition and system design 03/16

bGCITe“dS: for RFI mitigation in microwave radiorge‘rry - Instrument engineering model subsystem tests 4/17
dpph xiting L mitgionstateies nboud spocereft | sytrument engineringmodel tegrtinard est  6/17
algorithm performance + Instrument flight model subsystem tests 8/17
* Integrate radiometer front end, digital backend, and wideband * Instrument flight model integration and test 9/17
antenna systems into 6U CubeSat - Spacecraft integration and test 12/17
 CSLI launch from ISS into 400 km orbit; ~ 120-300 km Earth . CubeRRT launch readiness 02/18

C. Chen, M. Andrews, OSU; S. Misra, S. Brown, J. Kocz, R. Jarnot,

footprint for RFI mitigation validation

Operate for one year at 25% duty cycle to acquire adequate
RFI data

Co-Is/Partners:

JPL; D. Bradley, P. Mohammed, J. Lucey, J. Piepmeier, GSFC

* On-orbit operations completion

L+12 months

TRL, =5 TRL, =7

12/16 InVEST-15-0020
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GMI

A
 The GMI earth-view data is contaminated by RFI in the 10 and 18
GHz channels, at both polarizations

— 10 GHz RFI is mostly due to fixed earth emitters
— 18 GHz low-level RFI is observed from fixed earth emitters

— 18 GHz high-level RFI is observed from reflections off ocean and land
surfaces from Geosynchronous satellites around the continental United
States and Hawaii.

10.7 GHz

il -

L&

60

18.7 GHz

A

Picture 60k
courtesy

. 5018
David 5ol
Draper and 15 &
David 3 219
Newell &40 12 5

(%)
L]

(>1) 10443 aunjeiadwal ssaulysdliq
(>1) 10413 aunjesadwa) ssauiysiiq

[ae]
(=]

0 0 40 420 -100 80
Longitude Longitude 13



Motion Detector Units

Mkr1 10.522 36 GHz
1o gBId Ref 0.00 dBm -31.28 dBm
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* Modules similar to these operate at 10.687 GHz designated for indoor use
in the UK
» Likely offenders of GMI RFlI
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Wideband RFI Mitigation Subsystem for Microwave
Radiometers

Technical objectives
— Develop a wideband (> 200 MHz) digital detector subsystem

— Demonstrate innovative RFI detection and removal techniques for
microwave radiometers

» The proposed techniques are the complex values kurtosis detector and blind
source separation methods. Both have the potential to improve the radio
frequency interference (RFI) detection rate in high frequency bandwidth.

800 MHz sample-rate (200 MHz bandwidth) polarimetric radiometer
test-bed was developed using the Reconfigurable Open Architecture
Computing Hardware (ROACH2) system from the Collaboration for
Astronomy Signal Processing and Electronics Research (CASPER)
group at the University of California Berkeley

Both the real and complex signal kurtosis algorithms were
implemented in hardware and the outputs were compared to that of
simulations developed in python
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Wideband RFI Telemetry
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Complex Kurtosis Hardware Results
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CSK (Complex Signal Kurtosis) provides a better detection performance than real signal kurtosis.

Interference becomes detectable at an INR (Interference to Noise Ratio) of 2 dB lower than what can

be detected using RSK (Real Signal Kurtosis). 17



-]

Blind Source Separation

Objective
— Extract N unknown sources from P observations with weak assumption about
sources
Applications
— Audio source separation, communications, ... x(t) = As(t), t=1,..

Mixture Models observations mixing matrix ~ sources
— Linear instantaneous mixture (known) (unknown) (unknown)

Questions
— Can 4 be identified from x(t) alone up to scaling of columns? (identifiability)
— Can s(t) be separated? (separability)
— What algorithm can be used to perform these tasks?
Ambiguity
— Scaling
— Permutation

Methods

— Independent Component Analysis: P > N, sources are independent
— Sparse Component Analysis: P < N, sources have disjoint supports

18



Independent Component Analysis

S a
« Can RFI be separated from noise using blind source separation; this
work focuses on independent component analysis (ICA)

« Assume noise and RFI are statistically independent sources, mixing
model is linear, sources are non Gaussian.

« Model: x = As, Observe x. Sources s and mixing matrix A are
unknown.

e §=WYX, sis the estimated independent components (source
estimates).

Source vector s Observation vector Estimated vector ‘s

S, ()

$,(n)

s1(n)

Original s2(1)

sources/signals

$3(n)
s3(n)

Estimated

$4(n) sources/signals
s4(n)
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Observations
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Mixing Matrix

Find A matrix to transform X into S

« Actual Signals, S, are
mixed by mixing
matrix, A, and
observed as X

« We pick a matrix , W ,
that gives us back our
estimated signals, S

x =As
w=A41
s = Wx

ICA====p

Input

Measured x

Are components §;
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@ RFI Detection

1B
ICA Qutput
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Output

Step 1: Take Kurtosis of each
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vector that deviated the furthest from 3
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C Results — ICA Performance — Wide Band
N
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ICA

CSK provides better detection over RSK

ICA assumes a critically or over determined system of
Independent components

Using existing V/H polarimetric instrument architecture
we are limited to two observations but there are a
minimum of three independent components in the event
that RFI is present

Hence 3 or more observations are needed: current
problem is therefore an under determined case for which
ICA does not work well

23



- Application W! - m
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SCA In Practice

* In practice sources are not disjoint in time!
 Method: change the representation of the observations so that in
the new representation, the sources are disjoint

Mixture Sources
0, EXCER o ®) 10
%, (t) voc, (k) , o ¢, (k) 5,(t)
Joint; sparse : " bopz‘frauon n thg i Reconstruction "
______ - representation K ) -Lp transformed domain o T
x,(t) ! ‘r,(h) - cs (k) . sy(t)
I‘\ _ ‘1‘ [}
Algorithms | Scatter plot l
» Dictionary Algorithms Il
« Dictionary learning A »  Dictionary
*  Structured dictionary Mixing matrix . S_tructured dicti(_)ngry- .
. Joint sparse representation estimation . different set of d!CtIOﬂarleS
«  Global optimization +  Joint sparse representation
«  Greedy algorithm *  Global optimization- exact

sparse coding
e Mixing matrix estimation
. Global clustering — Weighted
histogram
e  Separation
. Local separation

*  Mixing matrix estimation
*  Global clustering
*  Local scatter plots
» Separation
*  Binary masking
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@ Sparse Signal Representation

o Satisfying the SCA Assumption

— Represent each source by a linear combmatlon of a few
elementary signals (atoms): s(t) = YXX_; cs(k) @y (t)

 Measure of sparsity
1/t
- legll; = {(211;1 |cs(R)[F) >0 quantifies the sparsity

of ¢ num of nonzero coefficients 7 = 0
S

— ldeal 7 for sparsity is 0
* Dictionary
— Dictionary: set of atoms

— Consider dictionaries that span CT
e K > T:redundant dictionary, infinite representation

e Synthesis
- §=¢c;P
e Effective Dictionary: enables a sparse representation

26
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CA Example: Sources with non disjoint supports
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Sparse Representation and
Estimating Mixing Matrix

coefficients of observations

10 scatter plot in Cartesian coordinates scatter plot in Polar coordinates
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coefficients of sources (binary masking)
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Simulation Results — Estimating Noise
N D |

Measure of performance: correlation between original noise and reconstructed noise

E[|corr. coeff. btw ny and g | E[|corr. coeff. btw n, and ny|]
INR (dB)
Greedy Algorithm 4 Rfy 25 20 15 10
100% 0.982, 0.978, 0.972, 0.965,
duty-cycle 0.985, 0.977 0.975 0.970 0.958
1% 0.979 0.983, 0.978, 0.970, 0.953,
0.978 0.975 0.966 0.946

INR (dB)
Global Optimization no REI 5 20 -15 -10

100% 0.987, 0.984, 0.981, 0.977,
duty-cycle 0.988, 0.987 0.981 0.974 0.973

1% 0.986 0.987, 0.984. 0.976, 0.961,
0.981 0.980 0.970 0.949
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Simulation Results — Estimating Noise Power
N

* Requires scale estimation
Scale = median(reconstructed noise / original noise)
In practice, scale can be estimated by exploiting neighbors scale

» Measure of performance: relative error between power of reconstructed noise and power of
original noise

var(scly * ny) — var(n
[ (scly *ny) (V)]x100%

var(ny)

var(scly * ny) — var(n
var(ng)

H)l x 100%

INR (dB)
Greedy Algorithm 1\ "y, g 25 -20 15 10
100% 47,45 3.2,4.0 5.9, 5.7 6.1,6.5
1% 1.9,2.5 23,35 3.1,3.9 4.8,5.5 8.2, 10.0
INR (dB)
Global Optimization no REI o5 20 15 10

100% 1.1, 1.7 1.9, 4.1 35 7.8 4.9 6.7
duty-cycle [EFys 0.6,2.6 0.9, 5.2 1.6, 4.2 238 5.9 6.0 8.8
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RFI Detection

Outputs: RFI

separated _ ROC

signals, $ e _ Correlationto curves
Classifier solve scaling 2 Detector

ambiguity

Inputs, x
—>

(median, kurtosis)

SCA scaling ambiguity is evident from previous simulations
« Use correlation after classification to minimize scaling
ambiguity

Use statistical measures as classifiers

Use statistical measures such as median, kurtosis, etc. as
detectors

» Pass only predicted RFI signal through detector
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RFI Detection Using SCA

» Detection criteria: median(abs(reconstructed sources) )
 SCA is capable of detecting RFI with high INR and high duty-cycle

Outputs: -
separated signals,
S

IM“

e Detector:

Detector ROC
(Median) curves
— Prob. Detection:

 Median of absolute value of
reconstructed sources H1 > threshold

— Prob. False Alarm:
 Median of absolute value of
e reconstructed sources HO > threshold

e ROC thresholds: 0:0.01:1
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RFI Detection By Median
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Algorithms | Algorithms II
« Dictionary » Dictionary
«  Structured dictionary Structured dictionary-
«  Greedy algorithm - OMP * Joint sparse representation
«  Mixing matrix estimation *  Global optimization- exact
: . sparse codin
e Global clustering — Weighted . par ding
histogram *  Mixing matrix estimation
S i *  Global clustering — Weighted
[ ] .
epara l_on . histogram
e Binary masking . Separation
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Conclusions

SMAP’s current algorithms for RFI detection and
mitigation are performing well

Sources that are wideband and occupy much of the
bandwidth cannot be corrected by any of SMAP’s RFlI
filtering algorithms

Blind source separation results indicate that these type
of algorithms are not sensitive enough for the RFI
detection problem and they are also quite
computationally intensive

These results indicate the need for continued protection
of spectrum
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ICA Algorithms

Fast ICA (FASTICA)

— A. Hyvarinen. “Fast and Robust Fixed-Point Algorithms for Independent Component
Analysis”, IEEE Transactions on Neural Networks 10(3):626-634, 1999.

Robust ICA (ROBUSTICA)

— V. Zarzoso and P. Comon, "Robust Independent Component Analysis by Iterative
Maximization of the Kurtosis Contrast with Algebraic Optimal Step Size", IEEE Transactions
on Neural Networks, Vol. 21, No. 2, February 2010, pp. 248-261.

Non Circular Complex Fast ICA (NCCFASTICA)

— Mike Novey and T. Adali, "On Extending the complex FastICA algorithm to noncircular
sources" IEEE Trans. Signal Processing, vol. 56, no. 5, pp. 2148-2154, May 2008.

Entropy Rate Bound Minimization (ERBM)

— X.-L. Li, and T. Adali, "Blind spatiotemporal separation of second and/or higher-order
correlated sources by entropy rate minimization," in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Processing (ICASSP), Dallas, TX, March 2010.

Complex Quadrature Amplitude Modulation (CQAMSYM)

—  Mike Novey and T. Adali, "Complex Fixed-Point ICA Algorithm for Separation of QAM Sources using
Gaussian Mixture Model" in IEEE Conf. ICASSP 2007

Complex Entropy Rate Bound Minimization (CERBM)

—  G.-S. Fu, R. Phlypo, M. Anderson, and T. Adali, "Complex Independent Component Analysis Using Three
Types of Diversity: Non-Gaussianity, Nonwhiteness, and Noncircularity,” IEEE Trans. Signal Processing,
vol. 63, no. 3, pp. 794-805, Feb. 2015.
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