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Computer Architecture = Mediator
between Technology & Applications

Application Trends
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Application Trends:
Sensory Swarm to Cloud Infrastructure
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Technology Trends 1
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Technology Trends 2 (The bad news...)

For many years, technology was enabler.
But now... Moore'sLaw & Dennard Scaling slowing =>

Power constraints limit single-core performance scaling.
et
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Upshot

 Application challenges & opportunities:

— Demand for ever-increasing compute, storage, and
communication capabillities...

e Power and thermal challenges:

— Greatly constrain hardware design alternatives...
— Direct us to exploit on-chip parallelism.

e Result: Many parallelism techniques researched
decades ago for HPC or “niche” applications are
becoming widely-commercialized and
mainstream.




A Timeline of Power & Parallelism
Research




Power Is not a new problem, but...
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Fipure 1 The chronological evolation of module level
heat flux in mainframe computers.

Chu et al. SEMITHERM 1999

Computers built from
different building blocks over
the decades:

— Vacuum tube... relays... Bipolar
transistors...
Older technologiesall
reached points where their
power was excessive.

Previous response: Find a
new technology and switch
to It.

But now, we don’t have
something new to switch to!




Architecture’s Power Response

(late 1990’s)
Dynamic Voltage Scaling
(Infopad)

Per-Module Approaches:

Bitwidth Optimization,
Speculation Control...

Technology,
Circuits layers...

(~2005)
On-Chip Parallel.
“Right-Hand Turn”

Heterogeneity,
Specialization

(~2000)
Power Models:
Wattch,
PowerTimer...




Parallelism Timeline Snippets

Late 1980’s-early 90’s:

e Stanford, Wisc, MIT...

« Shared-Memory
Cache Coherence
(Wisc)

 Scalable Protocols:
(Stanford DASH,
FLASH, etc.)

 Weak Memory
Consistency Models

e Sun Niagara.

(~2002-2005) Commercial CMPs:

 Intel “Right-Hand Turn”

/

Early Parallelism:
e.g. llliac (1975)

1996: Hydra Chip Multiproc.
(Stanford)

Now Wide
Use:
Servers,
Network
Processors,
Phones, ...




Parallel Architecture Success Stories

Shared Memory Parallelism with Cache Coherence
Weak Memory Consistency Models

Stanford (DASH,FLASH, ...) scalable shared memory->
SGI Origin -> Many Today...

On-Chip Parallelism Hydra -> Sun Niagara -> many.

Distributed Shared Memory -> Many
— MIT Raw -> Tilera, ...
— Cavium network processors

MIT/Stanford Multithreading -> NVIDIA GPUSs
Simultaneous Multithreading -> Intel Hyperthreading.

Speculative Lock Elision (Wisconsin) -> Intel
Transactional Memory




Power-Aware Architecture Research:

Success Stories

Power/Thermal Modeling (Wattch, HotSpot, ...):

— Early-stage design insights: Princeton Wattch-> IBM PowerTimer -> Shaped
choice of IBM pipeline depth
— Enabled Power/Performance Pareto frontier analysis -> drove single-1SA
heterogeneity (e.g. UCSD) -> ARM big.Little approach.
Dynamic Voltage Scaling: Berkeley Infopad (DARPA-funded) -> thousands
of other techniques -> Industry approaches ACPI and others.

Thermal-aware research: Academic research on Dynamic Thermal
Management -> mechanisms like Intel TurboBoost, allowing thermally
constrained systems to extract more performance fora given thermal
budget Module-Level Optimizations:

— Narrow bitwidth optimization (and other value-based power optimizations) ->
Intel ALUs

— Cache Memory Leakage Energy Management -> Intel, ARM
Specialization: Reconfigurable computing research in 90’s (DARPA ACS)->

— Accelerator designs in today’s mobile SoCs
— Microsoft Catapult specialization in datacenters.




Converging Trends + Research Payoffs

Architecture-
Level Power
Research

Parallelism
Research



Whichprjng‘s us here...
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~6 or more ISAs on-chip
Complex storage hierarchy
Multiple memory
consistency models . Android runs on 4000 distinct models
Multiple bus protocols ~ of hardware...

.....

_Vast code changes for each different
. model.

LA [TI OMAP4 SoC]



Computer Architecture =
Hardware + HW/SW Abstraction
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Entering A Post-ISA World

ISAs still useful operationally, but have little/no relevance as an abstraction layer.

— Due to Power/performance constraints, chips like the Apple A8 devote ~half their area
to accelerators that have no ISA.

— Vendors increasingly hide their ISAs under other abstraction layers: NVIDIA PTX vs.
SASS.

Disruptive moment: HW/SW interface on which our whole computer systems
Infrastructure is based, is undergoing a seismic change.

Why won’t industry solve this?

— Modest abstractions... But messy and short-term: TI OMAP4 software manual >5000
pages long. SW changes required to map to OMAPS5.,

P Software dev costs €, and software reliability/security &

— Software and hardware vendors are often separate companies.
» Even within a single processor, IP from several companies.
» Programmers and compilers face this Tower of Babel completely unshielded.

Consider DoD:
— Military systems compose many heterogeneous parts from many vendors.
— Without portable abstractions, DoD is beholden to single vendors...
— Extreme difficulties of creating a system or requalifying it for a different platform.
— Likelihood of correct and high-performance code?



Going Forward

1. Managing heterogenelity for a Post-ISA World

— New Abstractions for portable and nimble,
reliable software systems.

— Multi-ISA, multi-chip, multi-location!

2. Communication as First-Class Partner with
Computation

3. Maintain and expand architect’s role as
mediator between application and
technology trends.
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Stanford Dash Multiprocessor
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Figure 1. The Dash architecture consists of a set of clus-
ters connected by a general interconnection network. Di-
rectory memory contains pointers to the clusters currently
caching each memory line.




Architecture’s Power Response: SW View

(late 1990’s)
Per-Module Approaches:
Bitwidth Optimization,
Speculation Control...

Technology,
Circuits layers...

(~2005)

On-Chip Parallel.
“Right-Hand Turn”

(~2000)

Power Models:

Wattch,

PowerTimer...

Heterogeneity,
Specialization




How old is the power problem?
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/I The ENI AC consunes 150 kil owatts... The power

-~ -1 consunption may be broken up as follows; 80

~ifsl kil owatts for heating the tubes 45 kilowatts for
/ol generating d.c. voltages, 20 kilowatts for driving

_,j:;_the ventilator blower and 5 kilowatts for the

47wl auxiliary card machines.

Source: Original ENIAC press release. Feb, 1946




