Envisioning the **DATA SCIENCE DISCIPLINE**
The Undergraduate Perspective

Webinar Series
Fall 2017
Envisioning the
DATA SCIENCE DISCIPLINE
The Undergraduate Perspective

Building Data Acumen

Nicole Lazar, University of Georgia
Professor, Department of Statistics

Mladen Vouk, North Carolina State University
Distinguished Professor of Computer Science,
Associate Vice Chancellor for Research
Development and Administration

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Envisioning the DATA SCIENCE DISCIPLINE

The Undergraduate Perspective

Building Data Acumen

Capstone Courses

Nicole Lazar, University of Georgia
Professor, Department of Statistics

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
History of Capstone at the University of Georgia

- First offered in AY 2007–2008, 10 students
- Part of UGA’s Writing Intensive Program since AY 2008–2009
- Required from AY 2010–2011 for all statistics majors
- Poster session introduced in AY 2010–2011
- Enrollment has grown steadily, tracking growth of major;
 - 46 students in current offering

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Goals of Capstone at the University of Georgia

- Exposure to advanced statistical techniques
- Practice communication of statistical ideas, in writing and orally
- Group work
- Vertical integration of learning
 (faculty → graduate assistants → students)
- Consulting/work with client
- Work with real data
- Professional development

With growth, challenging to maintain all of these. Current offering: relaxing client and group work.

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Capstone at the University of Georgia: Project Formats

- Typically, find projects from researchers around campus; scope and scale have increased dramatically over time.
- Also projects from government offices (e.g., USDA, CDC).
- When class size was smaller, community-based survey projects incorporated (e.g., Nuci’s Space, Campus Transit).

Current offering:
- Experimental individual and group ("data repository") options.
- More public outreach projects (Humane Society, United Way).
Essential Components for Building Data Acumen: The Data

- Moving beyond t-tests and ANOVA (topics covered have included bootstrap, classification and regression trees, survival analysis, multiple testing, issues of reproducibility in science ...)
- Hands-on practice beyond the project
- Real data (all projects involve real, often large, data sets)
- Messy data (students are not guaranteed to receive clean data sets from clients)
Essential Components for Building Data Acumen: The Student

- Building awareness of a professional identity as statisticians and (more recently) data scientists
- Communication! Much resistance on this at the time; benefits are seen later (in graduate school, in the work force)
- Building a sense of community among students and instructors, TAs (how to scale up from 10 to ~50 students?)
- Challenge students to go above and beyond their intellectual comfort zones
Looking to the Future

Conflicting directions

- Can expect continued growth in statistics and data science programs
- Hands-on practical experience with real data is essential

How to scale and still provide a useful experience to students?

- Need for innovative approaches (e.g. team “competitions”, smaller workshop groups . . . others?)

- Any such course will be a constant work in progress: don’t fall into a routine of “We’ve always done it this way” – that is no longer sufficient

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
How Do We (Can We) Know It’s Working?

- Internal assessments: Quality of projects; client satisfaction (repeat participants); poster session checklist (completed by attendees – statistics faculty and graduate students, clients)
- Feedback from graduates: What’s useful when they get to the next stage?
- What are employers and graduate schools looking for?
Envisioning the DATA SCIENCE DISCIPLINE
The Undergraduate Perspective

Building Data Acumen

Capstone Courses
Q&A

Nicole Lazar, University of Georgia
Professor, Department of Statistics

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Envisioning the DATA SCIENCE DISCIPLINE
The Undergraduate Perspective

Building Data Acumen

NC State University Data Science Initiative (dis.ncsu.edu)

Mladen Vouk, North Carolina State University
Distinguished Professor of Computer Science, Associate Vice Chancellor for Research Development and Administration

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Context

- Understanding, managing, and using data — often large amounts of unstructured data — is becoming increasingly important in nearly every industry, government sector, and academic domain.

- Not having the skills and infrastructure to apply data science and analytics reliably and correctly has become a major risk for all sectors.

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Data (and) Science Literacy

A good data scientist does not have to be a computer scientist, a mathematician, or a statistician.

But
Education?

- What should be included in data science curriculum, both now and in the future?
- How to prioritize or best convey for differing types of data (science programs)?
- How can opportunities to enhance data acumen (i.e., the ability to make good judgments and decisions with data) be integrated into data science educational programs?
- How can data acumen be measured or evaluated?
- etc.
Disruptive?

Largest taxi companies may not own taxis? (e.g., Uber)

Largest accommodation providers may not own any accommodations? (AirBnB)

etc.
The Five V-s of (Big)Data*

- **Velocity**
 - (How fast is data arriving?)

- **Veracity**
 - (Uncertainty, Trust, Source, Information Density, Intent, …)

- **Value**
 - (Economics, Health, Security, …)

- **Volume**
 - (How much data is arriving?)

- **Variety**
 - (Range of Data - text, visual, numerical, location…)

How much is needed?

- KB/sec
- MB/sec
- GB/sec
- TB/sec

- MB, 6
- GB, 9
- TB, 12
- PB, 15
- XB, 18
- ZB, 21
- YB, 24

Errors: Epistemic Aleatoric

Working with an AI

(*) www.ibmibigdatahub.com/infographic/four-vs-big-data

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Value Path

(Data Science & Analytics) -> (People) -> (Applications)

(Big) Data -> Knowledge & Valaue -> Wisdom & Value Added, Impact

- Data Science & Analytics
- People
- Applications

- Data
 - e.g., Extract, Verify, Transform, Load, Organize, ...
 - e.g. curation

- Technology
 - Provenance, Compliance, Security, Usability, Privacy, Ethics, Reliability, Trustworthiness, Sense of Impact, ...

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Imagine being able to hold a geographic information system (GIS) in your hands, feel the shape of the earth, sculpt its topography, and direct the flow of water. Researchers at NC State’s Center for Geospatial Analytics have made this novel idea a reality with Tangible Landscape, an open source tangible interface powered by GRASS GIS that physically and interactively manifests geospatial data so that users can naturally feel it, shape it, and immediately see results projected onto the 3-D model. This makes GIS far more intuitive and accessible for beginners, empowers geospatial experts, and creates exciting new opportunities for data scientists and developers alike – like gaming with GIS. Tangible Landscape is now being applied to tackle complex real world problems, from controlling the spread of wildfire or emerging infectious diseases to understanding the impacts of storm hazards.
Citizen Scientists are comparing nearly 300,000 satellite images with these examples to help improve the global record of hurricanes and tropical cyclones. See how you can help improve our understanding of tropical cyclones.

Crowd-sourcing.

https://ncics.org/events/cics-nc-leads-the-launch-of-cyclonecenter-org/
Framework

Data Interaction Models:
- Total Isolation
- Compute-to-Data
- Data-to-Compute
- Open model

Data

People

Provenance,
Compliance,
Security,
Usability,
Privacy,
Etc. ...

Technology

Data and Analytics Literacy
- Computational Thinking
- Math, modeling, software, data management, methods
- Communications
- Domain view & relevancy
- Ethics, sense of Integrity & Confidentiality (security)

Education

Users/Actors
- Naïve 2 advance user
- Concierge
- Content/App developer
- Data manager and Admin
- Tools and system dev.

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
NC State has Extensive Visualization Facilities

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
NC State University Data Science Initiative

Goals

- Coordinate data science activities
- Establish an interdisciplinary data science curriculum to further data science education
- Foster research collaboration, both internal and external
- Increase research funding and competitiveness
- Build industry partnerships
- Provide services & infrastructure to faculty
- Raise visibility & increase reputation
- ...

Institutionalize Data Science
Analytics & Data Science Programs

• Undergraduate
 - General Education thematic track
 - Co-taught Computer Science/Statistics undergraduate electives
 - Poole College of Management (PCOM) Undergraduate 15-hour Data Analytics Honors Program
 - Some of the Executive Education and “Data Matters” offerings
• Graduate
 - Institute for Advanced Analytics (IAA) – Professional MS (analytics.ncsu.edu)
 - Data Science Graduate Certificate and MS (CSC/Stat)
 - CSC and Stat graduate tracks in Data Science
 - Poole College of Management – Digital Analytics Certificate within MBA program, CSC/Stat/PCOM executive education for companies
 - Data Matters courses (https://research.ncsu.edu/dsi/data-matters/)
• Other ... (e.g., Library offerings)
For Example:
NCSU End-to-End Data Science Curriculum*

- Domain-Focused Data Science (security, supply chain, economics, ...)
- Story Telling and Visualization
- End-to-end Data Science
- Statistics
- Machine Learning
- Applied Machine Learning
- Foundation: Algebra, Calculus, Optimization, and Probability
- Big Data

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Data Science (DS) Mastery Levels

• Core (C):
 o Able to master individual core concepts within the Bloom’s taxonomy*: Knowledge, Comprehension, Application, Analysis, Evaluation, and Synthesis
 o Able to adapt previously seen solutions to data science problems for target domain-focused applications utilizing these core concepts

• Intermediate Electives (I):
 o Able to synthesize multiple concepts to solve, evaluate, and validate the proposed data science problem from the end-to-end perspective
 o Able to identify and properly apply the textbook-level techniques suitable for solving each part of the complex data science problem pipeline

• Advanced Electives (A):
 o Able to formulate new domain-targeted data science problems, justify their business value, and make data-guided actionable decisions
 o Able to research the cutting edge technologies, compare them and create the optimal ones for solving DS the problems at hand
 o Able to lead a small team working on the end-to-end execution of the DS project

(*) e.g., https://www.csun.edu/science/ref/reasoning/questions_blooms/blooms.html

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Core Curriculum Courses

Foundations:
- Matrix Algebra
- Calculus
- Optimization
- Probability

Data Science Methods:
- Statistics
- Machine Learning and Data Mining
- Algorithms and Data Structures

Decision Making
- Data-guided Decision Making
- Visualization, Visual Data Exploration, and Story Telling

Infrastructure and Programming Environments
- Scripting Languages for DS: e.g., R, Python
- Database Management and Optimization

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Advanced Elective Curriculum Courses

Data Science Methods
- Deep Learning
- Bayesian Reasoning and Probabilistic Graphical Models
- Process Mining

Data Science Applications:
- Natural Language Processing and Text Analytics
- Graph Data Mining
- Social Network Analytics
- Data Stream Analytics
- Sentiment Analytics and Recommendation Systems
- Supply Chain Data Analytics
- Marketing and Finance Data Analytics

Decision Making
- Discrete Event Simulation and Process Modeling and Control Infrastructure and Programming Environments
- Big Data Middleware: Hadoop, Spark, Graph DB, etc
- Parallel Programming (e.g., with Spark, MPI, etc.)
- IoT
Closing Thoughts

How could these components be prioritized or best conveyed for differing types of data science programs?

• Conference on Undergraduate Research in Data Science
• Senior Design Projects on Data Science
• Internship/job Opportunities in partnership with Data Science and other Industries
• Annual Data Science Hackathons
• Data Science Competitions

How can opportunities to enhance data acumen (i.e., the ability to make good judgments & decisions with data) be integrated into DS educational programs?

• Industry Surveys
• Foundations and Methods: High Priority
• Is data science introduced as an academic enrichment to the existing university curriculum?
 - e.g., Data Science Concentration within the Computer Science Curriculum

How can data acumen be measured or evaluated?

• Individual Course Level Capstone Projects
• Senior Design Project in collaboration with Industry Partners
• Standardized Placement Tests for different Levels of the DS ladder
• Data Science Competition and Contests: perhaps developed in collaboration with industry
• Data Science and DS-related Job Placement Statistics: collected and monitored

Providing input and learn more about the study at www.nas.edu/EnvisioningDS
Acknowledgments

• I would like to thank a number of my colleagues at NC State, UNC-Charlotte, UNC-Chapel Hill and RENCI for discussion and direct or indirect input and contributions as summarized in this presentation. This includes: Alyson Wilson, Nagiza Samatova, Rada Chirkova, Patrick Dreher, Jamie Roseborough, Michael Rappa, Christopher Healey, Dan McGurrin, Trey Overman, Stan Ahalt, Andrew Wilson, Mirsad Hadjikadic, Ashok Krishnamurthy, Raju Varsavai, Otis Brown, Mike Kowolenko, Andy Rindos.

• Support for some of the described activities comes in part from NC State University, UNC General Administration, State of North Carolina, a number of USA federal agencies and a number of industrial partners.
Envisioning the DATA SCIENCE DISCIPLINE
The Undergraduate Perspective

Building Data Acumen – Q&A

Nicole Lazar, University of Georgia
Professor, Department of Statistics

Mladen Vouk, North Carolina State University
Distinguished Professor of Computer Science, Associate Vice Chancellor for Research Development and Administration

Provide input and learn more about the study at www.nas.edu/EnvisioningDS
Envisioning the DATA SCIENCE DISCIPLINE
The Undergraduate Perspective

9/12/17 – Building Data Acumen

9/19/17 – Incorporating Real-World Applications

9/26/17 – Faculty Training and Curriculum Development

10/3/17 – Communication Skills and Teamwork

10/10/17 – Inter-Departmental Collaboration and Institutional Organization

10/17/17 – Ethics

10/24/17 – Assessment and Evaluation for Data Science Programs

11/7/17 – Diversity, Inclusion, and Increasing Participation

11/14/17 – Two-Year Colleges and Institutional Partnerships

Provide input and learn more about the study at www.nas.edu/EnvisioningDS