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Abstract 
 
 

The title of this paper, “Why Models Don’t Forecast”, has a deceptively simple 
answer:  models don’t forecast because people forecast. Yet this statement has significant 
implications for computational social modeling and simulation in national security 
decision making. Specifically, it points to the need for robust approaches to the problem 
of how people and organizations develop, deploy, and use computational modeling and 
simulation technologies.  

In the next twenty or so pages, I argue that the challenge of evaluating 
computational social modeling and simulation technologies extends far beyond 
verification and validation, and should include the relationship between a simulation 
technology and the people and organizations using it.  This challenge of evaluation is not 
just one of usability and usefulness for technologies, but extends to the assessment of 
how new modeling and simulation technologies shape human and organizational 
judgment.   The robust and systematic evaluation of organizational decision making 
processes, and the role of computational modeling and simulation technologies therein, is 
a critical problem for the organizations who promote, fund, develop, and seek to use 
computational social science tools, methods, and techniques in high-consequence 
decision making. 
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Introduction 
 
 

The title of this paper, “Why Models Don’t Forecast”, has a deceptively simple 
answer:  models don’t forecast because people forecast. Yet this statement has significant 
implications for computational social modeling and simulation in national security 
decision making. Specifically, it points to the need for robust approaches to the problem 
of how people and organizations develop, deploy, and use computational modeling and 
simulation technologies.  

In the next twenty or so pages, I argue that the challenge of evaluating 
computational social modeling and simulation technologies extends far beyond 
verification and validation, and should include the relationship between a simulation 
technology and the people and organizations using it.  This challenge of evaluation is not 
just one of usability and usefulness for technologies, but extends to the assessment of 
how new modeling and simulation technologies shape human and organizational 
judgment.   The robust and systematic evaluation of organizational decision making 
processes, and the role of computational modeling and simulation technologies therein, is 
a critical problem for the organizations who promote, fund, develop, and seek to use 
computational social science tools, methods, and techniques in high-consequence 
decision making. 

 
Computational Social Science in the Post 9/11 World 

 
Computational social science is a diverse, interdisciplinary field of study whose 

practitioners include (but are not limited to) computer scientists, physicists, engineers, 
anthropologists, sociologists, physicists, and psychologists. Computational social 
modeling and simulation has lineages in computer science, mathematics, game theory, 
sociology, anthropology, artificial intelligence, and psychology dating back to the 1950s.  
However, the application of computational simulation to social phenomena exploded in 
the 1990s due to a number of intellectual, social and technological trends. These included 
the popularization of complexity studies (Gleick, 1987; Wolfram, 2002); the rapid spread 
of personal computing throughout multiple facets of work and social life; the rise of 
electronic communications technologies, including the Internet, email, and cellular 
telephony (Eagle, 2010; Eagle et al., 2009; Eagle and Pentland, 2004);  the subsequent 
explosion of interest in social networks (Watts, 2003a, 2003b, 2004; Watts and 
Strogtaz,1998; Barabasi, 2003); and the development of object-oriented programming. 
Together, these generated new sources of data about social phenomena, democratized 
computational simulation for researchers, and opened the door for a creative explosion in 
modeling methodologies and techniques (Macal and North, 2006; White, 2003).  

Researchers in a range of fields see tremendous promise for computational social 
modeling and simulation as technology for producing knowledge about human behavior 
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and society.  Modeling usefully supports development and refinement of hypothesized 
causal relationships across social systems in ways that are difficult to achieve in the real 
world (Gilbert and Terna, 1999).  For example, agent models allow researchers to 
develop artificial societies in which “social scientists can observe emergent behaviors in 
terms of complex dynamic social interaction patterns among autonomous agents that 
represent real-world entities” (Yilmaz, 2006). Moreover, researchers can and do use 
simulated data instead of, or in addition to, real-world data (Defense Science Board, 
2009). Researchers in a range of fields are using these new modeling techniques to 
explore phenomena that are difficult to study in the real world because of ethical, 
temporal, or geographical constraints; and to implement conceptual models or theoretical 
abstractions and simulate outcomes using the computer as a kind of “in silico” laboratory 
(Tesfatsion, 2002; Epstein, 2006). 

Perhaps not surprisingly, a kind of revolutionary excitement and anticipation 
permeates much of the interdisciplinary literature on computational social science 
(Koehler, 2000; Ormerod, 1995). For example, David Levin, professor of public policy at 
Harvard’s Kennedy School recently argued that “social science will/should undergo a 
transformation over the next generation, driven by the availability of new data sources, as 
well as the computational power to analyze those data”.1  Many computational social 
scientists believe that we are on the brink of a computationally-driven paradigm shift that 
will change social science permanently (Epstein, 2006; Koehler, 2000; Ormerod, 1995).   
For example, political economist Joshua Epstein has argued that agent-based modeling 
and complexity thinking are driving a broader conceptual shift to an explanatory or 
generative social science in which the ability to computationally generate social 
phenomena becomes a standard for evaluating truth claims (Epstein, 2006, 1999).  

A number of practitioners in computational social science not only see a 
promising future for computationally-enabled social research, but also believe that policy 
and decision makers would benefit from using computational modeling and simulation 
technologies to understand the complicated social, political, and economic events, and 
perhaps support the formation of more effective policies.  For example, in the wake of the 
recent financial crisis, physicist J. Doyne Farmer and economist Duncan Foley argued in 
Nature that econometric and general equilibrium models are inadequate for 
understanding our complicated economic system, that agent-based models can help 
decision makers formulate better financial policies, and that an ambitious goal would be 
to create an “agent-based economic model capable of making useful forecasts of the real 
economy” (Farmer and Foley, 2009; p.686).   Similarly, Joshua Epstein opined that 
policy and decision makers would benefit from using agent-based modeling techniques to 
understand the dynamics of pandemic flu and make appropriate interventions (Epstein, 
2009).  
 This brings us to the issue of computational social science in national security 
policy and decision making. It is worth noting that as the Cold war was coming to an end 
in the late 1980s and early 1990s, computational social science was experiencing 
explosive growth. This confluence perhaps explains why so many decision makers in 
federal departments and agencies are looking to computational social science to meet 
some of these new technological needs.  In particular, the 9/11 attacks mark an important 
turning point in the relationship between the computational social science community and 
                                                
1 http://www.iq.harvard.edu/blog/netgov/2009/02/paper_in_science_tomorrow_on_c.html 
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national security decision makers.  The reader may recall how several observers working 
with open-source information (i.e., newspapers and the Internet) developed retrospective 
(and I emphasize the word retrospective since so much of the national security discussion 
in this regard is focused on forecasting) social network analyses that very clearly 
“connected the dots” among the attackers (Ressler, 2006). One highly publicized example 
came from organizational consultant Vladis Krebs who spent weeks combing through 
newspapers to find information about the hijackers, piecing together a sociogram that 
mapped relationships among the participants.  Krebs argued that the Qa’ida network was 
optimally structured to address competing demands of secrecy and operational efficiency, 
and pointed out that social network might be useful as a diagnostic tool to identify and 
interdict criminal activities.  Soon after, Krebs was asked to brief intelligence experts on 
the analysis and detection of covert networks (Krebs, 2002; Keefe, 2006; Bohannon, 
2009).  
 Of course, the idea that analysts should have been able to forecast the 9/11 events 
using signs that are retrospectively obvious is a case of hindsight bias (MITRE, 2009; 
Heuer, 1999).  Moreover, the government’s failure to interdict the 9/11 plot before the 
attacks involved multiple failures beyond simply connecting the proverbial dots with or 
without a sociogram (National Commission on Terrorist Attacks Against the United 
States, 2004). Nevertheless, analyses like Krebs’ drew both popular and government 
attention to the idea that arcane research areas like graph theory, social network analysis, 
and agent-based modeling might be predictive at a time when terrorism research was 
undergoing “explosive growth” as measured by publications, conferences, research 
centers, electronic databases, and funding channels (Reid and Chen, 2005).  Over the past 
decade, a number of computational social scientists have argued that modeling and 
simulation techniques are uniquely suited to understanding the dynamics of emerging 
threats at a time when national security decision makers are urgently looking for new 
frameworks, data sources and technologies for making sense of the post 9/11 world 
(Silverman et al., 2007; Carley, 2003; Carley et al., 2004; Kuznar et al., 2009). Indeed, 
within the computational social science literature, there is a significant sub-category of 
post 9/11 academic and policy writing that examines how computational social modeling 
and simulation, particularly agent-based simulations in combination with social network 
analysis techniques, might enhance understanding of a wide range of national security 
problems, including state stability, insurgency warfare, bioterrorism, flu pandemics, and 
terrorist network detection (Krebs, 2010; Keefe, 2010; Bohannon, 2009; Weinberger, 
2010; Gilbert, 2009; Sageman, 2004; and many others).   

From Research to Decision Making 
 

With this confluence, it is not surprising that agencies like the Department of 
Defense have made substantial dollar investments in social science including 
computational modeling and simulation for understanding human social, behavioral, and 
cultural patterns (US House of Representatives, 2008, p.5).  National security decision 
makers, including those in the Department of Defense, can highlight a number of ways in 
which they would like to use computational social science techniques, including training 
simulations, characterization of adversary networks, and situational awareness.  Among 
these, the ability to forecast is an implicit goal of many projects (Hayden, 2009, p. 25). 
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The expectation is that social science-based modeling and simulation tools can be used to 
forecast future social, political, and cultural trends and events; and that these forecasts 
will improve decision making.    

Computational modeling and simulation technologies have played an important 
role in a wide range of human knowledge activities from academic research to 
organizational decision making.   The utility of these technologies has been demonstrated 
over several decades of development and deployment in multiple fields from weather 
forecasting to experimental physics to finance. However, it is important to remember that 
computational modeling and simulation tools are ultimately human artifacts, and like all 
human artifacts they come with very real limitations.   How we recognize and deal with 
these limitations depends very heavily on the context in which we are using models and 
simulations. After all, models and simulations have different lifecycles in scientific 
research contexts than they do in decision making contexts.  Generally speaking, 
researchers use computational modeling and simulation to support knowledge-producing 
activities such as to refine conceptual models, examine parameter spaces, and identify 
data needs and possible sources to address knowledge gaps.  Moreover, models and 
simulations that are embedded in ongoing cycles of scientific knowledge production 
benefit from continuous comparisons between empirical data/observations and model 
outputs as well as peer review.   

Unlike researchers, decision makers often look to modeling and simulation 
technologies to help refine courses of action that may have very high public 
consequences.  They are frequently dealing with problems characterized by high levels of 
epistemic uncertainty – i.e., lack of knowledge and data – and are addressing problems 
for which scientific and expert consensus may be neither mature nor fixed (Jasanoff, 
1987).   For decision makers, modeling and simulation technologies may be seen as 
useful “what if” tools to help them evolve their understanding of a problem space 
(Bankes, 1993, 2002).  However, decision makers are probably not focused on improving 
the model’s correctness or assessing how well it corresponds to a real-world phenomenon 
of interest. Decision makers tend to be more focused on identifying courses of action and 
moving forward and, in doing so, they typically face legal, economic, and political 
motivations and constraints that researchers do not.  In the context of the national security 
community, decision makers may be addressing problems that involve high resource 
commitments or even human lives.   

The contextual difference between research environments and decision making 
environments is a critical one that carries significant implications for the design, 
implementation, and evaluation of computational models and simulations. The decision 
to employ computational modeling and simulation technologies in high-consequence 
decision making implies a responsibility for evaluation, not just of the models themselves 
but assessments of how these technologies fit into, shape, and affect outcomes in the real 
world.  Higher consequence decision spaces require proportionally greater attention to 
assessing the quality of data, methods, and technologies being brought to bear on the 
analysis as well as the analytic and decision making processes that rely on these 
technologies.  

In this regard, I briefly highlight three areas of evaluation that I believe require 
careful attention for computational social science.  These include verification and 
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validation (V&V), human-computer interaction, and forecasting as an organizational (not 
computational) challenge.   

 
Verification and Validation 

 
Verification and validation (V&V) are processes that assess modeling and 

simulation technologies for internal correctness (verification), and external 
correspondence to real-world phenomena of interest (validation). There is an enormous 
body of literature dating back to the 1970s that addresses methods, techniques, tools, and 
challenges for V&V (Aigner, 1972; Sargent, 1985).  Most of this research has been done 
in fields like computational engineering, artificial intelligence, and operations research. 
However, in the computational social science community, there is an emerging body of 
literature addressing the challenges of verifying and validating computational social 
science models and simulations (Yilmaz, 2006; Hayden, 2007; Turnley, 2004, p.8; Axtell 
et al., 1996; Fagiolo et al., 2006; Yahja, 2006; Wilenski and Rand, 2007; Windrum et al., 
2007; McNamara et al., 2008; Moss, 2008; Carley, 1996; see also Breiger et al., 2003 and 
National Research Council, 2007.   

I am not going to review the voluminous V&V literature here except to make two 
points: firstly, computational social modeling and simulation raises specific V&V issues 
that are probably unique to the social sciences.  Secondly, despite the marked epistemic 
differences between computational social science and computational physics, 
engineering, or even operations research, the broader V&V literature does have lessons 
for organizations investing in predictive computational social science.  

Verification and validation in computational physics and engineering is both 
similar to and divergent from computational social science. For example, in 
computational science and engineering, determining whether a software tool is accurately 
solving a set of partial differential equations (verification) is a logically internal process: 
when large systems of partial differential equations are typically in play, “correct” in the 
context of verification means a “mathematically accurate solution”.  It says nothing about 
whether or not that solution adequately captures the behavior of a real world 
phenomenon.  As such, verification requires no engagement with the world of 
observation. Similarly, in the context of agent-based modeling, assessing whether or not 
an agent-based model accurately executes a conceptual model requires the ability to 
rigorously assess the mathematics, algorithms, and software engineering of the system.  
That may require the development of agent-specific verification techniques but does not 
require engagement with the external world.  

On the other hand, determining whether a partial differential equation is correctly 
representing a real world phenomenon of interest – that is, performing validation –  
does require engagement with the external world. Correctness in the context of validation 
must be centered on observations derived from valid sources, i.e., systematic 
observational data or controlled experiments. Along those lines, assessing whether an 
agent-based model is built on correct requirements, implementing an appropriate 
conceptual model, and producing outputs that correspond to the real world requires 
comparison with observation.  

How we perform a meaningful and objective comparison among the conceptual 
model, the simulation, and the real world is a critical challenge in the computational 
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social sciences.  For one thing, it is difficult to escape the problem of 
explanatory/theoretical contingency and plurality in the social sciences, in which cross-
disciplinary challenges to explanatory frameworks are common and demonstrable 
certainty is rare. Although some might see quantitative modeling as a way of introducing 
rigor into the social sciences, it is not clear that modeling helps researchers get around 
this problem.  In the realm of the physical sciences, models derive from stable 
epistemology rather than vice versa.  In the social sciences, there are basic debates about 
the role of theory as a descriptive, explanatory, or causal framework, and whether or not a 
nomothetic enterprise is even possible (i.e., the generation of broadly applicable, 
generalizable explanatory theories for human behavior).  As anthropologist Jessica 
Turnley points out, evaluation techniques that rest on a logical positivist philosophy that 
a) assumes the existence of objective data, and that b) presumes stable relationships 
between data and theory, are a poor fit for the social sciences where multiple frameworks 
can be evoked with equal credibility, depending on one’s discipline, to explain similar 
phenomena (Turnley, 2004). Indeed, evoking computational modeling and simulation to 
assert epistemological rigor is highly problematic in areas where theoretical consensus is 
lacking.   In particular, confirmation bias is a well-recognized form of cognitive bias in 
which people subconsciously put greater emphasis on information that is consonant with 
their reasoning, while simultaneously discounting disconfirming evidence.  Insofar as 
computational models and simulations reify and help us visualize our conceptual models, 
they can make those models seem more credible than they perhaps are as critics of 
computational social modeling projects have pointed out (see Andrew Vayda’s discussion 
of Stephen Lansing’s work (Vayda, 2009)).  

Issues with theory and conceptual validity are intertwined with the problem of 
data validity, a second challenge for verification and validation in computational social 
science. In computational physics and engineering, validation depends on two things: 
identifying a validation referent, or a known point of estimated “truth” for comparison 
that enables one to evaluate the validation correctness or accuracy of the model vis-à-vis 
reality; and the ability to generate valid observational data around that referent.  In the 
social sciences, this requirement for known points of truth to act as referents – and the 
associated need for high-quality empirical validation data – are serious challenges.  

In this regard, data will probably be a major, ongoing problem for the verification 
and validation of computational social models and simulations, since it is impossible to 
assess the value of a model or simulation without systematic ways to tie the model to 
observed reality. For one thing, some forms of social knowledge simply resist 
quantification.  At a deeper level, the issue of how evaluate the “objectivity” of data in 
the social sciences is a long-standing epistemological debate. This is because social 
scientists are embedded in the very social matrices they are studying: we cannot speed up 
or slow down society, or miniaturize it in relation to our senses, to observe the manifold 
and multilevel dynamics that interest us.  As Lucy Resnyansky points out, “Data that are 
used for understanding the threat of political violence, extremism, instability and conflict 
are essentially different from what is considered to be data in natural sciences.  The 
former kinds of data have a representational nature and are sociocultural constructs rather 
than results of objective observation and measuring” (Resnyansky, 2009, p.42).  Lastly, 
empirical data that are used to develop a model cannot be used to rigorously validate it, 
which means that validation requires investment in the systematic collection of additional 
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validation quality data.  This can be challenging if the phenomenon of interest involves 
the dissemination of an idea through a large population or assessing the causes of 
intergroup violence in a particular region of the world, in which case data collection 
could easily span many countries and several decades.  

This brings me to my second point: the computational physics and engineering 
literature that deals with verification and validation is relevant and important for 
computational social science models and simulations intended for application in real-
world decision making contexts. This literature emphasizes that the main benefit of V&V 
is not (perhaps counter-intuitively) increased focus on the model but the contextual issue 
of how the model will be used and, therefore, how the organization and its members 
identify what decisions they are responsible for making and how they negotiate 
acceptable levels of risk. This is because verification and validation emphasize whether 
or not a software application is credible for an intended area of use.  These discussions 
force clarification about the decisions, tradeoffs, and risks across stakeholder 
communities, and what is required for a model to be considered credible and appropriate 
in relation to a decision. In this regard, I have come to view verification and validation as 
a form of sensemaking through which stakeholders in a decision space negotiate the 
benefits and limitations of modeling and simulation technology.  

 
Forecasting, Simulation, and Decision Making 

 
A great deal of the literature on computational social science in national security 

decision making focuses on challenges of theory, methods, and data to support 
computational modeling and simulation for a range of problems ranging from training to 
forecasting.  What this focus misses is that forecasting is not a technological problem, 
and that no model or simulation ever makes a prediction or develops a forecast.  Models 
and simulations generate information. People make predictions and develop forecasts.   
Whether or not a simulation is actually “predictive” of something is always human 
judgment, not a technological one, and humans are always in the loop.  

In this regard, we call the reader’s attention to an extensive body of 
interdisciplinary scholarship – much of it rooted in economics, business, psychology and 
management – that focuses on the topics of forecasting and decision making in 
organizations (Armstrong, 2006, 1985, 2001a; DiLurgio, 1998; Cox and Loomis, 2001).  
This literature highlights a larger family of forecasting approaches that include 
quantitative (statistical), qualitative (judgmental), and integrated quantitative-qualitative 
approaches to developing forecasts. This literature treats modeling and simulation tools 
as technological inputs to forecasting techniques, methods, and principles; and 
emphasizes that tools are only as good as the processes through which they are created 
and used.  In particular, Armstrong identifies eleven different families of forecasting 
techniques (Armstrong, 2006, 1985, 2001a) and suggests principles for a robust multi-
stage forecasting process.  Forecasts, he argues, include multiple stages of activity 
including formulating a problem, obtaining data, selecting and implementing forecasting 
methods, evaluating forecasting methods, using forecasts in planning and decision 
making, and auditing forecasting procedures to ensure that appropriate principles have 
been applied (Armstrong, 2001b; see also Cox and Loomis, 2001; Tashman and Hoover, 
2001).   Armstrong’s principles point to a kind of “verification and validation” for 
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forecasting beyond the correctness of a model and beg the question of whether or not a 
model is actually the best analytic methodology for a particular decision space.  
Moreover, Armstrong’s work highlights forecasting as an organizational problem not a 
technological one, which is a difficult challenge because planning and decision making 
activities tend to be highly distributed within and across stakeholder groups.  

No area of research makes this point more thoroughly than weather forecasting, 
which has been studied extensively by psychologists, decision theorists, and economists 
for six decades as part of an ongoing effort to assess and increase the political, social, and 
economic value of weather forecasts.   Weather forecasting is unique for several reasons:  
first, the United States National Weather Service issues many tens of millions of forecasts 
a year (Pielke, 2000). Second, weather forecasts are highly public with federal, state, and 
local agencies and individual citizens incorporating weather and climate forecasts into a 
wide array of daily activities from purchasing road-clearing equipment to planning 
weddings.  Third, weather forecasters get regular feedback not only on the correctness of 
their predictions but on the value of the forecast information they provide.  As a result, 
weather forecasting has been a subject of intense interdisciplinary study for many 
decades because weather forecasting is one of the few areas where it is possible not only 
to evaluate the correctness of a forecast and to suggest improvements, but also to 
document how forecasts are incorporated into decision making processes. As Pielke 
suggests, weather forecasting “provides some lessons about how we think about 
prediction in general”, not just weather forecasting specifically (Pielke, 2000, p. 67). 

A great deal of this literature is relevant to computational social models and 
simulations being used for predictive purposes.  The weather forecasting literature treats 
modeling and simulation technologies as only one element of a much larger “process in 
which forecasters assimilate information from a variety of sources and formulate 
judgments on the basis of this information” (Murphy and Winkler, 1971).  Moreover, 
forecasting is not just a problem for meteorologists but involves a complex ensemble of 
people, organizations, tools, data sources, and activities through which forecasts are 
developed, disseminated, acted upon, reviewed, and evaluated – what Hooke and Pielke 
call the “symphony orchestra” of the weather forecasting system (Hooke and Pielke, 
2000). The forecasting orchestra includes three principal activities:  forecasting, 
communication, and incorporation, all of which are working in parallel at any particular 
point and each of which can be subjected to rigorous evaluation.  Ensuring that this 
orchestra provides the best public service possible depends on rigorous evaluation of how 
well each of these activities is performed.   

The weather forecasting community not only works to improve the performance 
of its modeling and simulation tools but also the skill of the forecasters who develop and 
disseminate forecasting products.   How to evaluate and improve forecasting skill, 
communicate forecasts, and increase the value of forecasts to decision makers have been 
research challenges for meteorologists, psychologists, statisticians, economists, and 
decision theorists since at least the 1960s (Murphy and Winkler, 1971a and 1971b; 
Murphy and Epstein, 1967a and 1967b; McQuigg and Thompson, 1966). Forecasting is a 
process of continuous learning that demands prompt, clear, and unambiguous feedback in 
a system that rewards forecasters for accuracy (Fischhoff, 2001; p. 543) since they need 
feedback to identify errors and assess cause (Murphy and Epstein, 1967b).  Lacking 
prompt feedback, intermediate-term feedback can help forecasters get a better sense of 
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how well they are doing but only when the forecaster’s predictions are clearly and 
precisely recorded, along with the inputs and assumptions or external considerations that 
went into the forecast. Systematic, regular, comparative evaluation provides more than 
accountability – it improves the forecaster’s skills. 

At the same time, forecasting skill depends not only on the forecaster’s cognitive 
abilities but also on “the environment about which forecasts are made, the information 
system that brings data about the environment to the forecaster, and the cognitive system 
of the forecaster” (Stewart and Lusk, 1994, p.579; Stewart et al., 1989).    Thomas 
Stewart has argued that the forecasting challenge is best understood as an example of the 
Brunswik lens model, which relates the observed event to the forecast through a lens of 
“cues” or information items that people use to make the forecast.  The quality of a 
forecast depends not only on the ecological validity of the cues – that is, how the cues are 
related to the phenomenon being forecasted and what those cues indicate about the 
phenomenon – but also on the ability of the forecaster to use those cues properly in 
assessing the event of interest (i.e., whether or not the forecaster is using the right 
information and whether she is using that information correctly).  

As complex as this system is, when all these elements come together properly, 
weather forecasters are tremendously accurate and reliable in their predictions.  However, 
good forecasting also involves packaging meteorological expert judgment for non-
meteorologist consumers.  One issue of perennial concern of the forecasting community 
is the communication of uncertainty in weather forecasts.  Forecasting is an inherently 
uncertain process because of the inexactness of weather science and the many sources of 
error that can throw off accuracy including model uncertainty, issues with data, inherent 
stochasticity, and forecaster judgment. Accordingly, the communication of uncertainty is 
a major element in whether or not people can use forecasts. In 1971, Murphy and 
Winkler found that even other scientists had trouble explaining what meteorologists 
meant by “a 40% chance of rain” (Murphy and Winkler, 1971a, 1971b).  More recent 
research in human judgment and decision making indicates that even today, seemingly 
unambiguous probability statements are prone to misinterpretation: as a simple example, 
Gerd Gigerenzer and colleagues found that populations in different metropolises 
interpreted the seemingly unambiguous statement “a 30% chance of rain” in different 
ways depending on the assumptions about the reference class to which the event was 
oriented (Gigerenzer et al., 2005).  Not surprisingly, the National Oceanic and Weather 
Administration (NOAA) continues to invest resources in the development of techniques 
for communicating uncertainty across its stakeholder communities. 

Uncertainty is likely to be a major research challenge for forecasts of social 
phenomena.  Research is likely to focus on methods for quantifying, bounding, 
aggregating, and propagating uncertainty through both models and the forecasts derived 
from models.  Indeed, a National Research Council report on dynamic social network 
analysis identified uncertainty as one of the key under-researched areas in quantitative 
and computational social science (Breiger et al., 2003).  This research is critical for 
developing a decision-oriented computational social science but it is probably not 
sufficient.  If NOAA ’s experience in this regard is any indication, forecasts of social 
processes and phenomena will have to deal not only with multiple sources of uncertainty, 
but also the challenge of representing and communicating uncertainty to consumers with 
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varying levels of skill in interpreting quantitative, graphical, and/or qualitative 
expressions of uncertainty.  

Lastly, it is important to emphasize that forecasting and decision making are two 
different activities.  That improvements in decision making do not necessarily depend on 
improvements in forecasting is illustrated in case studies examining how forecasting 
failures actually lead to better public policy and decision making (see for example, Nigg, 
2000)   All decisions involve both stochastic and epistemic uncertainty. Putting too much 
emphasis on forecasting as a means of improving planning can lead decision makers to 
focus on the correctness of the forecast at the expense of the planning process.  Forecasts 
are helpful as long as they do not divert attention from potentially more robust ways of 
dealing with uncertainty such as flexible resource allocation practices or hedging 
strategies (Armstrong, 2001a, see Introduction pp.1-14.).  

 
Users, Transparency, and Responsibility 

 
Verification and validation techniques assess the goodness of a model/simulation 

from an internal (verification) and external (validation) perspective.  In the context of 
high-consequence decision making, such as that performed in military and intelligence 
contexts, there is another dimension that requires assessment.  This dimension is the 
relationship between the model/simulation technology and the person or people using the 
technology, i.e., the relationship between the human and the computer.  

All software projects have various stakeholders including developers, funders, 
and end users.  In the software engineering community, it is generally understood that 
getting end-users involved in the design and development of the tools they will use is 
critical if the software is to be usable, useful, and relevant to real-world problems.  Even 
so, end users tend to be the silent stakeholder in a software project because so many 
software projects begin, progress, and end without much consideration of who will use 
the software or what they will do with it. I think of this as the “over-the-fence” model of 
software development. In my experience, over-the-fence software projects are quite 
common in the national security community, and a key challenge for the applied 
computational social science community is the transition of modeling and simulation 
technologies into usable, useful, and adoptable systems that support analytical reasoning. 

The over-the-fence model of software development may be particularly poor for 
computational social modeling and simulation efforts.  This is because computational 
science projects tend to be complicated interdisciplinary efforts that bring together an 
array of subject matter experts (Resnyansky, 2008).  Very sophisticated models can 
require deep expertise in a number of areas, from computer hardware to uncertainty in 
social science data. The process of developing the model is a critical forum for 
knowledge exchange because model development activities afford developers the chance 
to learn from each other and to develop shared understandings about the technology 
under construction (Barreteau, 2003; Dare and Barreteau, 2003). 

This raises the question of how much of this experiential or contextual knowledge 
is required to effectively use modeling and simulation technology. Because modeling and 
simulation technologies can embody so many layers of expertise, it can be difficult for 
end users who are not subject matter experts to understand what the model is doing or 
how it performs its functions.  Sometimes this is not an issue because the modeling and 
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simulation technology is not going to be used outside the domain in which it was 
developed. It might be a tool that a research or analysis team develops for itself; in this 
case, the developers are the end users for the technology and, because of that, they have a 
rich understanding of the model’s uses, limitations, and biases. Alternatively, the tool 
may not be traveling very far outside the domain of its creation. For example, a 
sociologist might develop an agent-based social network modeling tool and might post it 
on her website so that other sociologists trained in these techniques can apply it to their 
data.   In this case, the domain of use is epistemically adjacent to the domain of 
development so that new users can credibly bring their domain knowledge to bear on the 
software artifact they are using.    

However, when modeling and simulation technologies are going to be transferred 
across epistemic domains, the question of how and if non-subject matter experts can 
engage the technology as a tool becomes more problematic. There is an ethical issue in 
this regard, insofar as users who do not understand the application space, benefits, and/or 
limitations of a modeling and simulation tool are unlikely to use it well.  Fleischmann and 
Wallace have argued that ethically responsible modeling implies three elements: a 
commitment to develop models that a) are faithful to reality, b) reflect the values of 
stakeholders, and c) are maximally transparent so that users and decision makers can 
employ the model appropriately.  This latter property, transparency, is  “the capacity of a 
model to be clearly understood by all stakeholders, especially users of the model” 
(Fleischmann and Wallace, 2009; p.131). Developing processes to deal with epistemic 
gaps will be an important aspect of tool development and deployment in the national 
security community.  This is an organizational problem, not a technological one, and 
addressing it requires careful planning and stakeholder negotiations.  

 
Conclusion 

 
As the computational social science community continues to evolve its techniques 

and approaches, its practitioners may play an important role in shaping our rapidly 
evolving national security community.  In a reflexive way, to the extent that the 
computational social science community attracts and leverages national security 
investments, national security topics like terrorism and insurgency warfare are likely to 
provide major focus areas for the evolution of the field’s techniques and specialty areas.  
In moving computational modeling and simulation technologies out of the realm of 
research and into the realm of policy and decision making, we should perhaps consider 
what is required to develop a realistic, robust understanding of what it means to use 
models and simulations as decision support tools.   I want to re-emphasize a point that I 
made earlier: there is no such thing as a computational prediction.  Computational 
models and simulations provide outputs but predictions are a form of human judgments.  
Computational models and simulations are created by human beings and like everything 
we create, our models and simulations reflect (even reify) our state of knowledge at a 
particular point in time.  Focusing our attention on the limitations of models and 
simulations as tools for human users and investing resources in assessing what those 
limitations imply for real-world decision making, can help us build a stronger 
understanding of how, where, when, and why computational models and simulations can 
be useful to people working in fraught, high-consequence decision making contexts.  
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