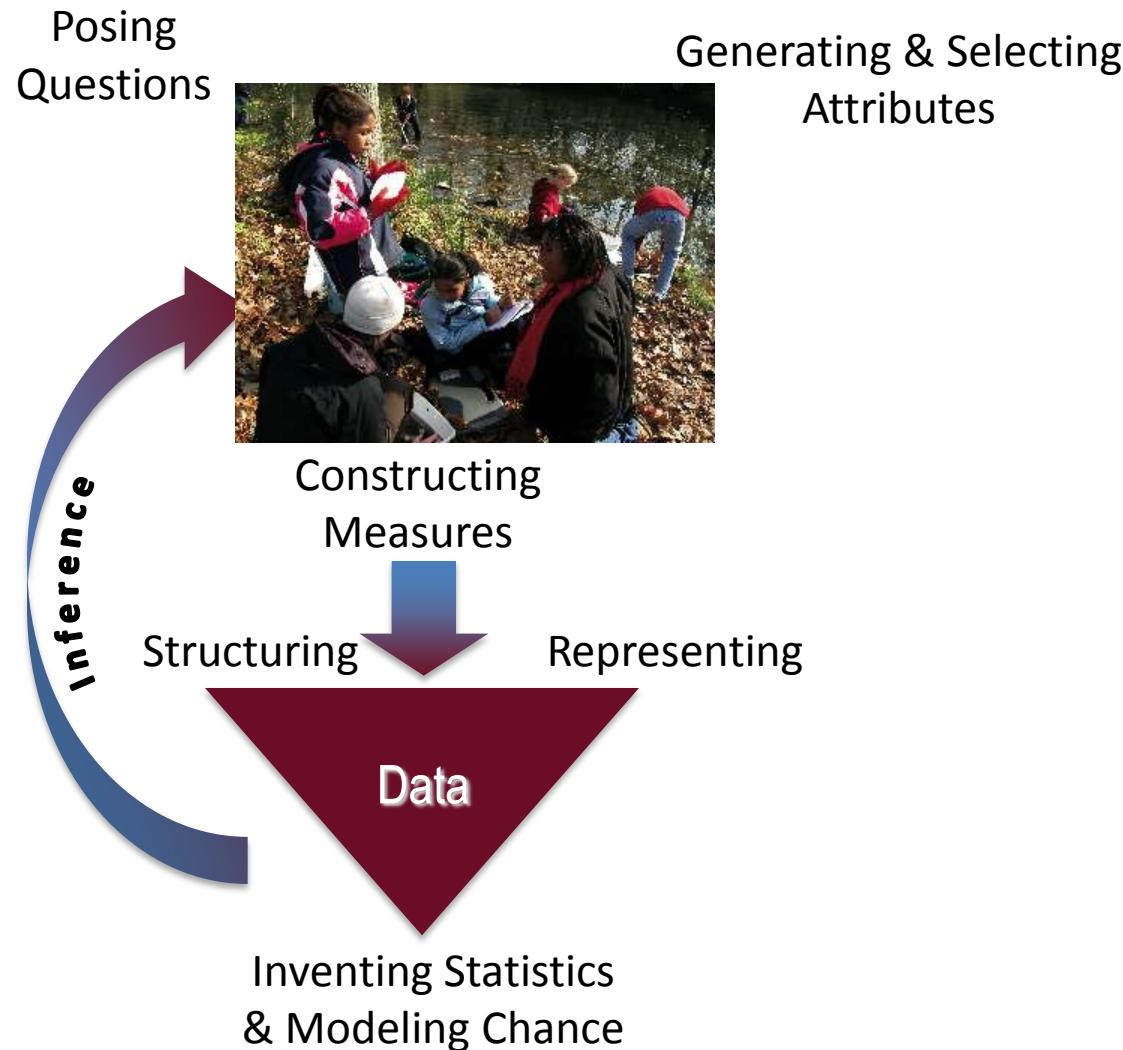


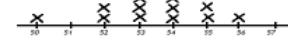
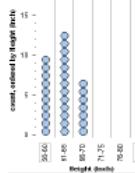
Assessment of Developing Scientific Practices

Richard Lehrer

Vanderbilt University's Peabody College


Phenomena

Modeling

Constructing and Modeling Data

Construct	Initial Performance	Intermediate Performance	Highest Performance
<i>Data Display (DaD)</i>	DaD1(a): Create or interpret displays without relating to the goals of the inquiry.	DaD4(a): Display data in ways that use its continuous scale (when appropriate) to see holes and clumps in data.	DaD6(a): Discuss how general patterns or trends are either exemplified or missing from a subset of cases.
<i>Meta Representational Competence (MRC)</i>	MRC1(a): Recognize that displays represent data, but misinterpret one or more elements of the display.	MRC3(a): Compare displays by indicating what each shows about the structure of the data.	MRC5(b): Coordinate different display types and formats to strengthen an argument.
<i>Conceptions of Statistics (CoS)</i>	CoS1(a): Use visual qualities of the data to summarize the distribution.	CoS3(d): Predict how a statistic is affected by changes in its components or otherwise demonstrate knowledge of relations among components.	CoS4(d): Predict and justify changes in a sampling distribution based on changes in properties of a sample.
<i>Chance (Cha)</i>	Cha1(a): View chance as being under the control of an agent.	Cha4(c): Recognize that an “unlikely” string of outcomes is possible and even expected over many repetitions of the event. (e.g., 3H run in 10 coin tosses)	Cha6(b): Use sample space to estimate probability and/or relative frequency of a compound (aggregate event).
<i>Modeling Variability (MoV)</i>	MoV1(a): Attribute variability to specific sources or causes.	MoV3(a): Use chance devise to represent variability.	MoV5(a): Judge model fit in light of variability across repeated simulation with the same model.
<i>Informal Inference (InI)</i>	InI1(a): Make a judgment or prediction according to personal experience or beliefs.	InI4(a): Make predictions based on regions of values such as clumps or holes, sometimes identified by particular values.	InI 7(b): Compare two objects (conditions, etc.) by considering the variations in the sampling distributions of their statistics.

Data Display: Case ->Aggregate

				Level	Performances	Examples
D a D 3	Notice or construct groups of similar values.	DaD3 A	Notice or construct groups of similar values from distinct values.	DaD6 A	Integrate case with aggregate perspectives.	<ul style="list-style-type: none"> Relate qualities of a case as an example of general qualities of a region of data (case as typical of data region). Notice that a subset of cases does not seem to fit the trends observed or conjectured.
D a D 2	Interpret and/or produce data displays as all collections of individual cases.	DaD2 B	Construct/interpret data by considering ordinal properties.	DaD5 B	Consider the data in aggregate when interpreting or creating displays.	<ul style="list-style-type: none"> "I found out that measurements between 45 and 55 were 70% of our measurements. So, I guess the true height is somewhere between 45 and 55." Students annotate their display to show percentages within particular regions.
D a D 2	Interpret and/or produce data displays as all collections of individual cases.	DaD2 A	Concentrate on specific data points without relating these to any structure in the data.	DaD5 A	Recognize that a display provides information about the data as a collective.	<ul style="list-style-type: none"> "The distribution of the data is wider for rounded-nosecone rockets than for pointed-nosecone rockets. Maybe that's because pointed rockets flights are more consistent." "When we measure different things, we keep getting a bell shape. That's because we tend to get around the real measure most of the time, but sometimes we make big mistakes."
D a D 1	Create displays or interpret displays without reference to goals of data creation.	DaD1 A	Create or interpret data displays without relating to the goals of the inquiry.	DaD4 B	Recognize the effects of changing bin size on the shape of the distribution.	<ul style="list-style-type: none"> "If we make bin size wider, the tower in the center will pop up."
D a D 1	Create displays or interpret displays without reference to goals of data creation.	DaD1 A	Create or interpret data displays without relating to the goals of the inquiry.	DaD4 A	Recognize or apply scale properties to the data.	<ul style="list-style-type: none"> "Number line" display: "Bin" display:

Summative Item Design

Logits Respondents Item Steps

2

1

0

-1

-2

3
2.3
17.2
16.3
X 14.2 16.2
X 2.2
XX 15.2
XX 0.4
XX 2.1
XX
XX 12.2
XXXX
XXXX 13.2 16.1
XXXXXX 5 13.1 8.3
XXXXXX 7.3
XXXXXX 17.1
XXXXXXX 1.3 7.2 12.1
XXXXXXX 14.1 15.1
XXXXXXX 7.1
XXXXXXX 1.2
XXXXXXX 6
XXXXXXX 4
XXXXXX XXX
XXXXX XXX
XXXX XXX
XXX XXX
XX XX
X X
X X
X X

8.4
8.3
8.2
8.2

16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

11-25 26-28 29-30

19
25
26
27
28
29
30

8.1 9.1 10.1 10.2 11.1 11.2 9.1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.25 16.50 16.75 17.00 17.25 17.50 17.75 18.00 18.25 18.50 18.75 19.00 19.25 19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25 22.50 22.75 23.00 23.25 23.50 23.75 24.00 24.25 24.50 24.75 25.00 25.25 25.50 25.75 26.00 26.25 26.50 26.75 27.00 27.25 27.50 27.75 28.00 28.25 28.50 28.75 29.00 29.25 29.50 29.75 30.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.25 16.50 16.75 17.00 17.25 17.50 17.75 18.00 18.25 18.50 18.75 19.00 19.25 19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25 22.50 22.75 23.00 23.25 23.50 23.75 24.00 24.25 24.50 24.75 25.00 25.25 25.50 25.75 26.00 26.25 26.50 26.75 27.00 27.25 27.50 27.75 28.00 28.25 28.50 28.75 29.00 29.25 29.50 29.75 30.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00 13.25 13.50 13.75 14.00 14.25 14.50 14.75 15.00 15.25 15.50 15.75 16.00 16.25 16.50 16.75 17.00 17.25 17.50 17.75 18.00 18.25 18.50 18.75 19.00 19.25 19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 21.75 22.00 22.25 22.50 22.75 23.00 23.25 23.50 23.75 24.00 24.25 24.50 24.75 25.00 25.25 25.50 25.75 26.00 26.25 26.50 26.75 27.00 27.25 27.50 27.75 28.00 28.25 28.50 28.75 29.00 29.25 29.50 29.75 30.00

An Example Item Testing Students' Conceptions of Data Display Construct

Jumping Rope

Dora counted how many rope jumps she can do in one minute. Here is the number of jumps she did in 20 trials of one minute each.

25, 26, 27, 27, 26, 28, 30, 26, 27, 28, 26, 25, 27, 29, 28, 19, 26, 25, 28, 29

Given this sample, make a display that helps you think about how you expect Dora to perform in general.

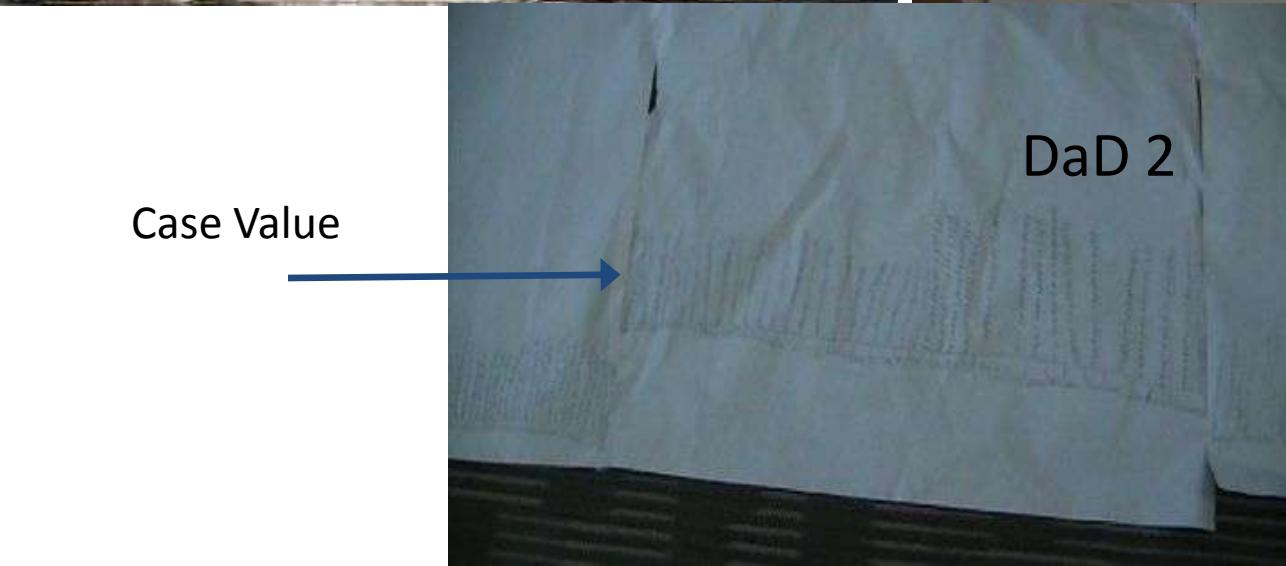
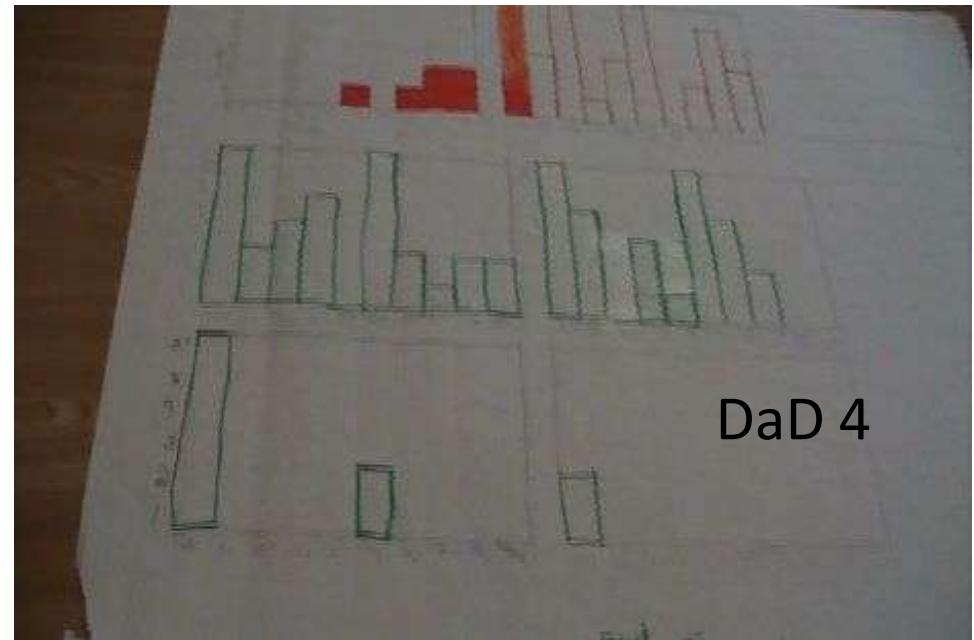
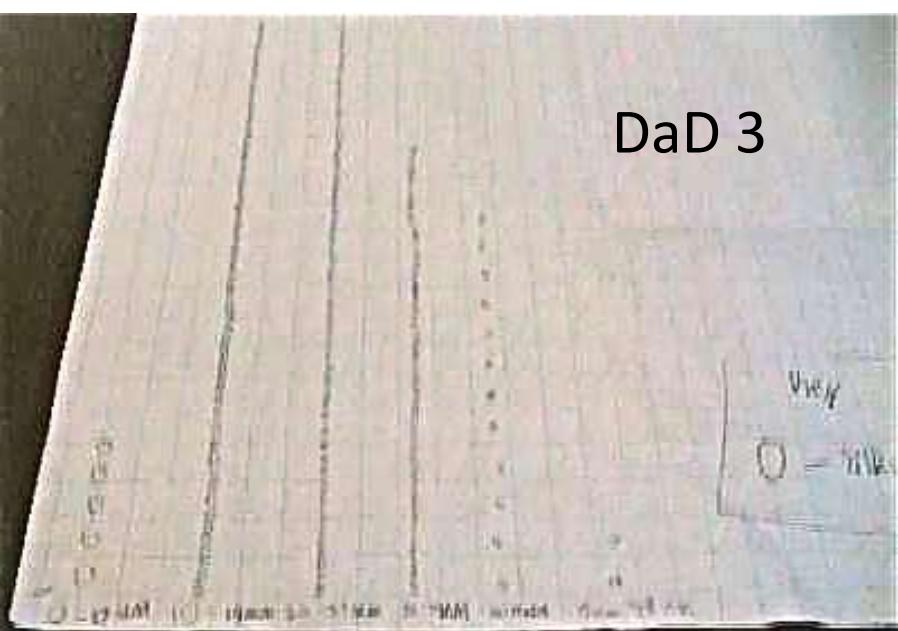
•Data Display

DaD

Level	Performances	
Integrate case with aggregate perspectives.	<i>DaD6</i> A	Discuss how general patterns or trends are either exemplified or missing from subsets of cases.
Consider the data in aggregate when interpreting or creating displays.	<i>DaD5</i> B	Quantify aggregate property of the display using one or more of the following: ratio, proportion or percent.
	<i>DaD5</i> A	Recognize that a display provides information about the data as a collective.
Recognize or apply scale properties to the data.	<i>DaD4</i> B	Recognize the effects of changing bin size on the shape of the distribution.
	<i>DaD4</i> A	Display data in ways that use its continuous scale (when appropriate) to see holes and clumps in the data.
Notice or construct groups of similar values.	<i>DaD3</i> A	Notice or construct groups of similar values from distinct values.
Interpret and/or produce data displays as all collections of individual cases.	<i>DaD2</i> B	Construct/interpret data by considering ordinal properties.
	<i>DaD2</i> A	Concentrate on specific data points without relating these to any structure in the data.
Create displays or interpret displays without reference to goals of data creation.	<i>DaD1</i> A	Create or interpret data displays without relating to the goals of the inquiry.

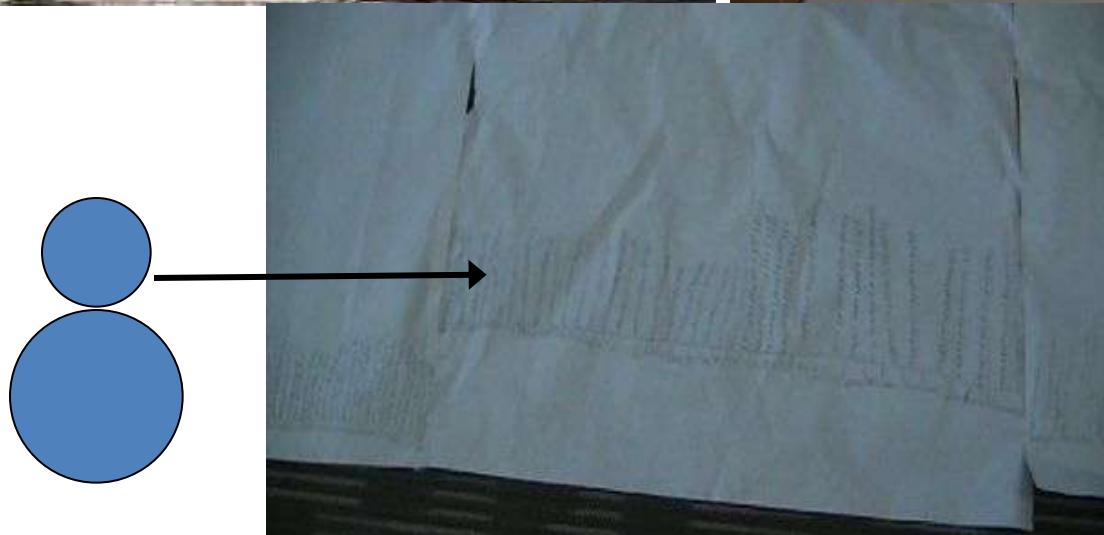
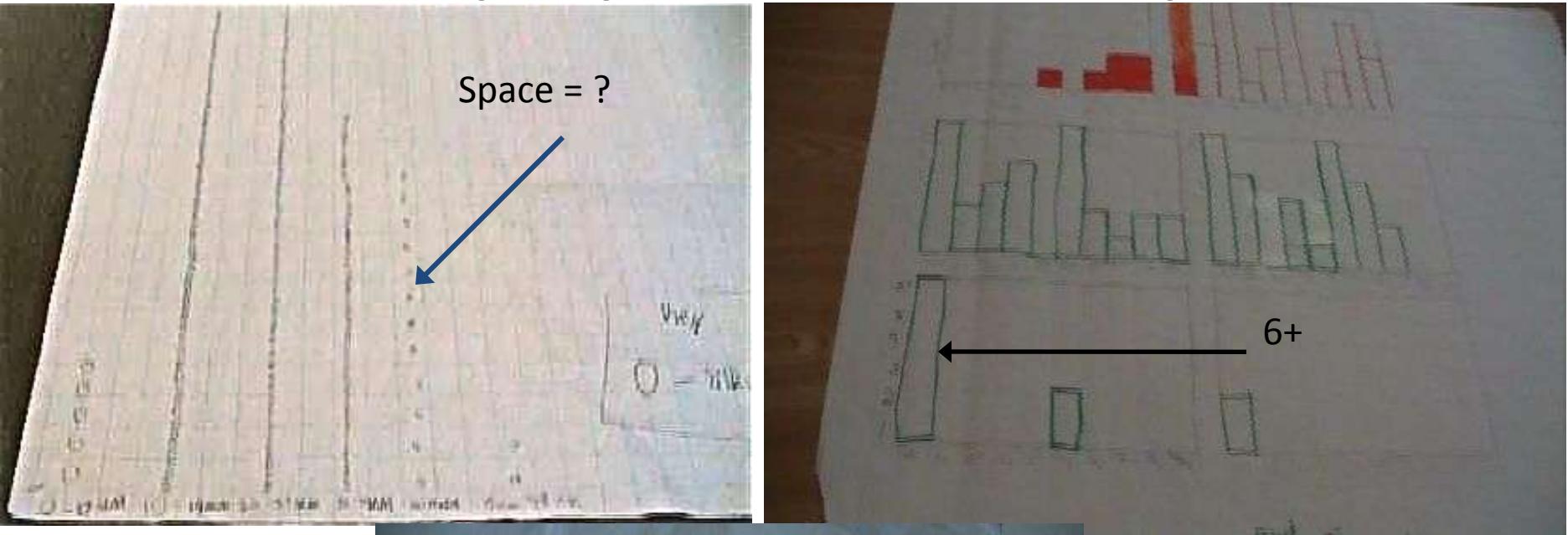
Each 'X' represents 3.1 cases.

The labels for thresholds show item number and step, respectively (e.g., 8.1 indicates Item #8, Step 1.)




Data Display as a Scientific Practice

- Grade 3 Investigations of Organism Growth
- Context: Social Studies, Role of Silkworms
 - Students investigations of
 - Conditions for Hatching Eggs
 - Growth
 - Structure-function (mouthparts)
 - Indicators of growth (measure length)
 - Challenge: For a day of growth, create a display of the data that shows something that you noticed about the measurements—some pattern or trend—so that someone else looking at your display can see what you notice. ($n = 241$ larvae)
 - Display review. Class compares displays re show and hide.

Knowledge Practice



- Shape of Data as bridge between organism and population levels of thinking, a key to reasoning about evolution.
- Shape of data may provoke new forms of inquiry.

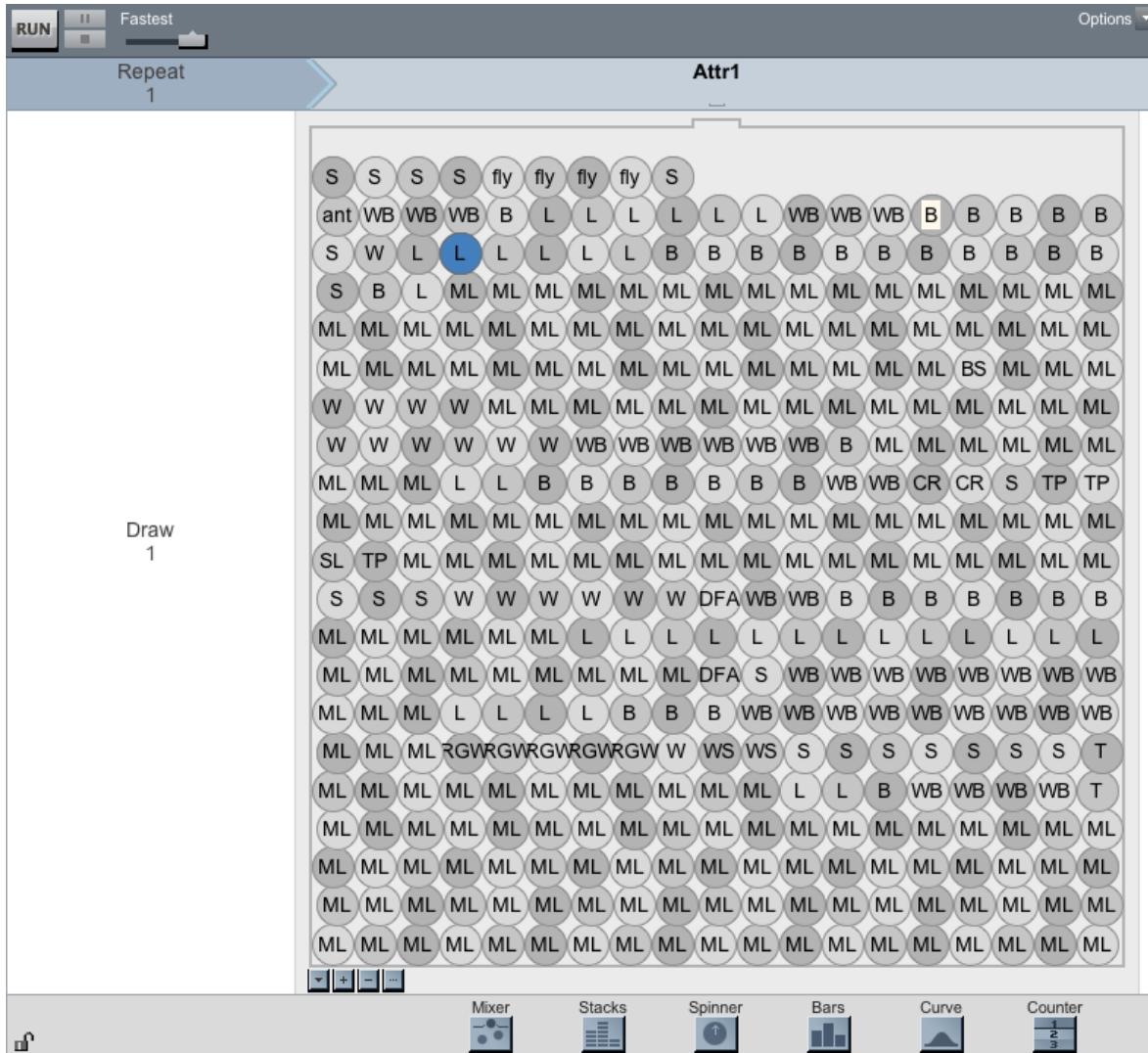
Invented Displays

Representational Competencies

Display Review Critique

Display-based Reasoning

What about the tail?



They all want the
food

Some Tentative Conclusions

- Constructs describe and make conjectures about the order of states of learning—what is worth assessing—an outcome space.
- Theories of learning guide conjectures about supporting transitions between states.
- Formative assessment is the union of ways to support transitions (invention, talk) guided by images of outcome progression.

Modeling Natural Systems (G6)

Conjectures about diversity and partitions of a pond.

Difference or chance?

Bootstrap samples.