

Rethinking science learning, a needs assessment

Diane Jass Ketelhut
Temple University
djk@temple.edu

5 There has been much discussion about the narrowing pipeline in science, both from the
6 perspective of cause and solution. A number of well-publicized documents have drawn attention
7 to this problem nationwide with varying frames of reference: business, research, development etc
8 (National Science Foundation, 2001; Grigg, Lauko, and Brockway, 2006; Committee on
9 Prospering in the Global Economy, 2007). Due to the technological bent of today's children, the
10 over-used "digital natives", one approach has been to investigate the potential for simulations
11 and games to engage and teach this 21st century, tweeting and facebooking student.

12 In their white paper for this meeting, Clark, Nelson, Sengupta and D'Angelo have created
13 a very comprehensive review of what simulations and games can do in education. Using the
14 NRC publication, Taking science to school, Clark et al created a framework for categorizing the
15 current development and research on simulations and games based on four themes: conceptual
16 understanding, process skills, epistemological understanding, and attitudes and identity. Their
17 definition of those categories, examples of simulations and games within each, and identification
18 of empirical research is thorough. Their approach is similar to many innovators in that they
19 present strong evidence to why we need to rethink how we conduct science education. Their
20 argument is persuasive.

21 However, let me approach this differently. If simulations and games are a tool as Clark, et
22 al state, then before we know whether we need that tool we need to know what is the task in
23 front of us. Clark et al rightfully recognize that historically, technology has been touted as a
24 panacea for educational ills, the next best thing to the proverbial sliced white bread, but they do
25 not pursue how we should evaluate the appropriateness of current technology tools or where we
26 should concentrate future research. I would like to reframe the question from “what can
27 simulations and games do” to “what do we **need** simulations and games” in science education?
28 This keeps the emphasis on how we can best improve science education, and helps the larger
29 community decide whether to implement or not.

30 In this paper, I step back from simulations and games as the starting point and instead,
31 begin instead listing two of the major known problems in science education and then discuss

1 what research can tell us about possible ways to address those problems. I will then look back at
2 Clark et al's paper to see how simulations and games might or might not provide unique
3 solutions to those problems, based on the current evidence and where we need more research.

4 **Methodology**

5 A cautionary note about data seems appropriate at this point since this is the response
6 paper to the evidence white paper. Clark et al do a thorough job of outlining the research in each
7 section, but do not evaluate the validity of that research. It is crucial that we do so, in order to
8 learn what works and does not work. This is particularly important for a field emerging from
9 entertainment and trying to set standards for rigor. I'm not suggesting that there is a proper
10 methodology for this research, only that our conclusions should reflect our questions and design.
11 Arguing over whether simulations and games can do something better than we are doing now
12 requires that we define "better". For example, while little of the research on games presented in
13 the white paper is comparative, approximately one-third of the reported controlled studies used a
14 comparison group of vastly different pedagogy (e.g., inquiry-based technology versus lecture), or
15 compared environments based on different theories of learning. This makes one wonder whether
16 the results are due to the technology or to the design theory in which the curricula are embedded
17 or even more likely, to some combination of theory and technology. I do want to underscore the
18 comment in the white paper, echoed in other papers, on the importance of a balance between
19 exploratory and large scale implementations, and add to it the need for meta-analyses that would
20 synthesize and compare results of small and large studies.

21 One issue that the emerging field of game-based curricula faces is that of understanding
22 what to assess and how to assess it. I've been in classrooms where students and teachers are
23 engaged with scientific games. I have felt the engagement, the 'minds-on' attitude and the
24 interest of the participants. There is something real here. But what is it? That is what we, as a
25 field, are still struggling to understand. I have also been in a presentation where the speaker
26 exhorted the audience to "just use second life" – the reason wasn't important. We must move
27 beyond that to investigating not what games can do, but how, when, to whom and even where
28 they *should* do it.

29 **Science Education Needs**

30 Science educators have become very good at teaching the 'formalized knowledge
31 structures' (e.g, in chemistry, the organization of the periodic chart) as Clark et al state, and very

1 good at assessing those, but what do we do poorly? I want to concentrate on two areas: career
2 interest and conceptual understanding. We interest far too few students (hence the narrowing
3 pipeline analogy) in scientific careers, and we produce adults with poor conceptual
4 understanding of science (Committee on Prospering in the Global Economy of the 21st Century,
5 2007). As a result, we live in a society of individuals with naïve understandings of science (Pew
6 Research Center and AAAS, 2009). This has wide-reaching implications for business success
7 and for our country's global relationships as detailed in numerous reports in the last five years
8 ((Business Higher Education Forum, 2005; Coble and Allen, 2005). For example, the McKinsey
9 Company (2009) suggests that achievement gaps in education have a direct negative impact on
10 our GDP.

11 **Science education need: Career interest in science**

12 Interest in a scientific career starts early and clearly is an important precursor for
13 improving the number of scientists we produce. Students who do not view themselves as
14 interested in science in middle school begin to opt out of science classes as early as high school,
15 thus effectively limiting their career options in their early teens. Tai, Liu, Maltese and Fan (2006)
16 found a strong correlation between 8th graders who wanted a science career and those that
17 graduated with a college degree in science. We need therefore to think carefully of the early
18 years in considering how to improve the number of scientists we produce.

19 Research indicates several factors that are associated with increasing students' career
20 interest in science. First, students with higher self-efficacy, belief in their abilities to do the work,
21 are more likely to pursue a career in that field (Lopez and Lent, 1992). Second, students who
22 participate in scientific inquiry, whether in formal or informal learning environments, appear to
23 improve their interest in science as a career (Gibson and Chase, 2002; Ketelhut, Savage,
24 Varnum, and Stull, in preparation). Clark et al note the importance of scientific inquiry but imply
25 that scientific inquiry is a new standard to science education and therefore requires new
26 pedagogies to address. While I do not disagree that new pedagogies might be needed, the call,
27 indeed the clarion call, for scientific inquiry in the classroom is nearly as old as the field of
28 science education. For example, Herbert Spencer in 1860 wrote: "Children should be led to make
29 their own investigations and to draw their own inferences" (Spencer, 1860/1896). The fact that
30 we are still 'calling' for it as if it were a new idea indicates how difficult it is to recognize and
31 apply in the classroom.

Science education need: Conceptual understanding in science

2 Conceptual understanding in science, the second science education need, refers to
3 students' ability to understand the big cross-cutting ideas in science, such as evolution and
4 energy. While we organize science courses generally around these issues, the day to day lessons
5 tend to focus more on the facts (e.g., the structure of the earth) that come together to describe the
6 big ideas and less on the synthesis of those facts into the big ideas (e.g., geological change). As a
7 result, we delude ourselves into thinking that good grades on tests indicate students' conceptual
8 understanding. Physicist Eric Mazur of Harvard University (personal communication, 2009)
9 states that students' intuitive understanding of physics based on their interactions in the real
10 world is often in opposition to the physicist's understanding of the model- and formula-based
11 world. This disconnect inhibits students' ability to learn the science behind their real world
12 experiences.

13 How does a student move from their naïve or pre-science conceptions of the world to one
14 that is governed by a conceptual understanding of science? Studies indicate again that exposure
15 to scientific inquiry can help mediate this transformation (Bybee 2000). Scientific inquiry
16 experiences allow students to create and examine ‘discrepant events’ in which their expectation
17 based on their private theories are called into question by experiments they themselves have
18 designed and run. These powerful contradictions force students to rethink their understanding of
19 the topic (Piaget, 1985).

Scientific Inquiry as a problematic solution

21 Thus, both career interest and conceptual understanding in students are enhanced by
22 having scientific inquiry experiences. This need for emphasizing scientific inquiry is recognized
23 by various groups such as the AAAS, NSTA and NRC plus many state policy makers in their
24 standards documents where scientific inquiry permeates the recommendations. Clark et al make
25 this case well in their paper.

26 However, simply concluding that we all agree that science education needs to be more
27 fully organized around scientific inquiry is not enough (for that matter, we do not all agree with
28 this as I will discuss later). If it were, then I would argue that there would be little need for games
29 and simulations because scientific inquiry has no intrinsic reason for being conducted through
30 computers. Indeed if we define it as the work of scientists, then scientific inquiry has been going
31 on for as long as there have been scientists, far longer than we have had computers.

1 Instead, various groups, scientists and educators have seen a need to improve science education
2 by continually suggesting for the last 150 years that scientific inquiry needs to play a larger role
3 in science education (DeBoer, 1991). Even now, new reports (for example, the National Science
4 Education Standards, Project 2061, and America's Lab Report) continue to call for integration of
5 scientific inquiry into the classroom as if this were a new idea.

6 Why is integrating scientific inquiry into the classroom such a tough assignment? I
7 suggest that the reasons for this center first, on poor understanding of what inquiry is and second,
8 on who should do it. This is the arena in which I believe simulations and games could play a
9 substantial role. In the following sections, I will discuss the obstacles, the possible role that
10 simulations and games might play and then indicate where more research is needed.

11 **Obstacle to scientific inquiry: what is scientific inquiry?**

12 The first issue is in understanding exactly what constitutes scientific inquiry. Various
13 groups seem to define this differently (Nelson & Ketelhut, 2007). For example, many high stakes
14 tests classify this as being able to define 'hypothesis' or 'scientific method' (NRC, 2005). As a
15 result, in some situations the advent of high stakes tests has caused a documented move away
16 from inquiry as experimentation (Falk and Drayton, 2004). In contrast, Duvall (2001) describes
17 the inquiry-based scientific classroom as including both student-designed investigations into
18 their own questions as well as learning content in service to understanding their investigations.
19 This description mirrors that in both the National Science Education Standards (NSES; NRC,
20 1996) and Project 2061 (AAAS, 1993) of scientific inquiry.

21 One possible role of simulations and games, therefore, can be to provide models for
22 teachers of scientific inquiry, as described in Duvall, the NSES and Project 2061. Using the four
23 strands from the NRC report, Taking Science to School (NRC, 2007), Clark et al thoroughly
24 outline the various simulations and games that could model scientific inquiry as so defined.
25 However, as can be seen in their report, simulations do not always provide an opportunity for
26 student-based questions or student-designed experiments, what they refer to as 'targeted
27 simulations.' The PhET simulations provide a good example. These are identified as targeted
28 simulations in Clark et al, but with the potential for inquiry. A quick perusal of the PhET website
29 shows that for middle school students about 50% of the teacher-designed lesson plans do not use
30 PhET in an inquiry-based manner. These simulations then have a role in helping students
31 understand difficult concepts, but are not strong models of scientific inquiry experiences for

1 inexperienced teachers. To contrast this, the game, Quest Atlantis, has modeling scientific
2 inquiry for teachers as one of its goals. I suggest that the emphasis needs to be placed on
3 designing scientific inquiry-based simulations and games with more research into whether
4 simulations or games can impact teacher pedagogy long term.

5 **Obstacle to scientific inquiry: Equity of access**

6 The second issue with implementing scientific inquiry is that of access. Students in low-
7 level science classes or attending schools with high percentages of non-Asian minorities have far
8 fewer opportunities to engage in scientific inquiry (NRC, 2005). The reasons for this are
9 complicated, and include limited resources, a view of students as needing basic content first, and
10 high percentages of inexperienced teachers (Marshall and Dorward 2000; National Research
11 Council, 2005; Windschitl 2004; Roehrig and Luft 2004).

12 Clearly, simulations and games can provide access to scientific inquiry for all if the only
13 problem were lack of resources as most simulations and games only require a computer interface
14 which is available throughout schools today. Where issues of equity of access stem from reasons
15 beyond resources as identified above, the solution is less clear. For example, in my own work on
16 the game, River City, my colleagues and I have seen traditionally poorly performing students
17 equal and indeed sometimes exceed their traditionally more successful and more content
18 knowledgeable peers on selected measures of performance (Ketelhut, Dede, Clarke and Nelson,
19 2007). Whether this would change teacher and popular view of what these students are capable
20 of is unknown. Perhaps the new research into using games as a 21st century assessment, as
21 outlined in Clark et al, will create a platform to showcase the understanding of students who do
22 not perform well on current assessments, allowing us to refrain from wide-sweeping
23 categorization of students. Much work, however, needs to be done in this area, thinking through
24 how to provide validity for these assessments as traditional validity measures will not work if the
25 purpose of the game-based assessment is to uncover different patterns of understanding from
26 traditional tests.

27 **Obstacle to scientific inquiry: Teacher education**

28 The last obstacle to providing students with access to scientific inquiry is the teacher.
29 Current research indicates that the number of inquiry experiences that a student has is associated
30 with their teacher's knowledge of content and experiences with inquiry (Windschitl 2004;
31 Roehrig and Luft 2004). This becomes a vicious cycle: if teachers are not trained with both

1 content and inquiry, then their students will not be educated with both and when some of them
2 become teachers, the cycle repeats. Unfortunately, too often only the need for content knowledge
3 is heard, not the concomitant need for inquiry. Can games play a role in interrupting this pattern?
4 The answer is a tentative yes. Projects like WISE, one example outlined in the white paper,
5 create scaffolds for both students and teachers for scientific inquiry embedded with content.

6 But, we also need to consider the preservice teacher. Use of simulations and games in the
7 science and science education classroom could provide a venue to improve both the content
8 understanding of pre-service teachers and the level of scientific inquiry experiences they so
9 badly need. For example, Zacharia (2007) used inquiry-based physics simulations with
10 undergraduates. In comparison to those that did the same experiments physically, those in the
11 simulation group exhibited fewer scientific misconceptions on the post test. In a case study of
12 preservice teachers using Whyville as part of their science methods course, I have found that the
13 impact of the game varies based on expertise levels. Students with an experience and expertise in
14 science, teaching, or technology appear to favor the use of Whyville, while those who were
15 novices in these areas were less likely to see the value for it as a science learning environment
16 (Ketelhut, 2009). This is still a burgeoning area and more research into understanding this is
17 needed.

Discussion

19 Based on this analysis, it would seem that there is a role for simulations and games in the
20 classroom in providing models of good scientific inquiry, equity of access, and improved teacher
21 education. However, the white paper indicates that simulations and games encompass a much
22 wider arena than this. For example, games can be categorized into a spectrum of student-centered
23 design. Some games offer interactivity that masquerades as inquiry. The game, Wonderville
24 (<http://www.wonderville.ca>), advertises as an engaging interactive science environment.
25 However, as players investigate the town, much of what they discover are textbook-like snippets
26 about various structures in the game. Given that science textbooks already confuse hands-on with
27 ‘minds-on’ inquiry, adding a game that mimics this confusion hardly seems necessary. To
28 contrast this to another internet-based game, Whyville offers players a stronger inquiry
29 experience in exploring whypox as detailed in the white paper. During an epidemic, players must
30 figure out how to protect themselves and others from the spread of the disease (Galas, 2006).
31 There is an added impact for students to conducting scientific inquiry in an environment such as

1 Whyville as these environments allow students not only to conduct scientific inquiry but also to
2 take on the role of a scientist, a powerful overlay to scientific inquiry. Beginning research into
3 this role play seems to indicate a strong impact on students (Ketelhut, Clarke, Nelson, & Dukas,
4 2008). More research into whether this impacts career interest is needed.

5 Therefore in terms of evidence for the use of simulations and games in science education,
6 we need to carefully consider what is needed in the classroom, whether a simulation or game
7 could provide this, and how to gather evidence towards that claim. In this paper, I have
8 suggested that any poorly resourced classroom could benefit from simulations and games to
9 improve what they do. Beyond that, we should focus on simulations and games that center on
10 scientific inquiry as the proper tool to address the issues of career interest and conceptual
11 understanding. We need to more fully identify when a simulation or a game is more appropriate,
12 what design factors are associated with increased outcomes, and how they are integrated in the
13 classroom.

14 However, I caution that this discussion is embedded deeply in one about the purpose of
15 science education for which there is little agreement. The researchers that find evidence
16 promoting didactic teaching over scientific inquiry would be uninterested in simulations and
17 games that are based on inquiry as they have different goals from mine for science education.
18 Until the field determines whether the purpose of science education should be, for example, to
19 create a citizenry that knows the structures of the discipline or to produce large numbers of
20 scientists, then discussing what we are doing poorly or well is meaningless as we have no firm
21 goal towards which to measure progress. Until we agree on the overarching purpose, we are
22 unlikely to agree either on the methods for achieving our goals or our process for assessing how
23 well we are doing. Perhaps, children can see through this larger debate more clearly. A third
24 grader states that the way we can help her learn science better is by making sure she has good
25 science teachers and working computers (Netday, 2006). I would concur that both are needed.

26 References

27 American Association for the Advancement of Science (1993). *Project 2061: Benchmarks for*
28 *science literacy*. New York: Oxford University Press.

29 Business Higher Education Forum (2005). A commitment to America's future: Responding to
30 the crisis in mathematics and science education. Available:
31 <http://www.bhef.com/MathEduReport-press.pdf> [2005, July].

32 Bybee R. (2000) Teaching science as inquiry. In *Inquiring Into Inquiry Learning and Teaching*

1 *in Science* (eds J. Minstrel & E.H. Van Zee), pp. 20–46. American Association for the
2 Advancement of Science (AAAS), Washington, DC.

3 Coble, C., and Allen, M. (2005). *Keeping America competitive: Five strategies to mathematics*
4 *and science education*. Denver: Education Commission of the States.

5 Committee on Prospering in the Global Economy of the 21st Century: An Agenda for American
6 Science and Technology, National Academy of Sciences, National Academy of Engineering,
7 Institute of Medicine. (2007). *Rising Above the Gathering Storm: Energizing and Employing*
8 *America for a Brighter Economic Future*. Washington, DC: The National Academies Press.

9 DeBoer, G. E. (1991). A History of Ideas in Science Education: Implications for Practice. New
10 York, Teachers College Press.

11 DuVall, R. (2001). Inquiry in science: From curiosity to understanding *Primary Voices K-6*, 10,
12 3–9.

13 Falk, J., and Drayton, B. (2004). State Testing and Inquiry-based Science: Are they
14 Complementary or Competing Reforms? *Journal of Educational Change*, 5, 345-387.

15 Galas, C. (2006). Why Whyville? *Learning and Leading with Technology*, 34(6), 30–33.

16 Gibson, H., and Chase, C. (2002). Longitudinal Impact of an Inquiry-Based Science Program on
17 Middle School Students' Attitudes Toward Science. *Science Education*, 86(5), 693-705.

18 Grigg, W., Lauko, M., and Brockway, D. (2006). *The Nation's Report Card: Science 2005*
19 (*NCES 2006-466*). U.S. Department of Education, National Center for Education Statistics.
20 Washington, D.C.: U.S. Government Printing Office.

21 Ketelhut, D.J. (2009, April 13-17). Developing Technological Pedagogical Content Knowledge:
22 Developing a model of the impact of experience and science expertise. Paper presented
23 within a Symposium entitled 'Bridging New Literacies and Technological Pedagogical
24 Content Knowledge (TPCK): Theoretical and Research Perspectives' at the American
25 Educational Research Association, San Diego.

26 Ketelhut, D. J., Clarke, J., Nelson, B., & Dukas, G. (2008). Using Multi-User Virtual
27 Environments to Simulate Authentic Scientific Practice and Enhance Student Engagement.
28 In L. Annetta (Ed.), *Serious Educational Games: From Theory To Practice*. Rotterdam,
29 The Netherlands: Sense Press. p 25-38.

30 Ketelhut, D. J., Dede, C., Clarke, J., & Nelson, B. (2007). Studying Situated Learning in a Multi-
31 User Virtual Environment. In E. Baker & J. Dickieson & W. Wulfeck & H. O'Neil (Eds.),
32 *Assessment of Problem Solving Using Simulations*: Lawrence Erlbaum Associates. p 37-58.

33 Ketelhut, D.J., Savage, L., Stull, J., & Varnum, S. (in preparation). Raising Interest in Science
34 Careers through Informal After-School Experiences.

35 Lopez, F. G. and R. W. Lent (1992). "Sources of Mathematics Self-Efficacy in High School
36 Students." *The Career Development Quarterly* 41: 3-12.

1 Marshall, J., & Dorward, J. (2000). Inquiry experiences as a lecture supplement for preservice
2 elementary teachers and general ed students. *American Journal of Physics*, 68, S27–S36.

3 Mazur, Eric. (2009). Personal communication to author, Philadelphia.

4 McKinsey and Company. (2009). The economic impact of the achievement gap in America's
5 schools. Retrieved on September 27, 2009 from
6 http://www.mckinsey.com/App_Media/Images/Page_Images/Offices/SocialSector/PDF/achievement_gap_report.pdf.

8 National Research Council. (2005). *America's Lab Report: Investigations in High School
9 Science*. Washington, D.C.: National Academies Press.

10 National Research Council. (1996). *National science education standards: Observe, interact,
11 change, learn*. National Academy Press, Washington, DC.

12 National Science Foundation. (2001). Characteristics of Doctoral Scientists and Engineers in the
13 United States, 2001, [internet]. National Science Foundation. Available:
14 <http://www.nsf.gov/sbe/srs/nsf03310/pdf/tab6.pdf>[2004, March 19].

15 Nelson, B. and D. J. Ketelhut (2007). "Designing for Real-World Inquiry in Virtual
16 Environments." *Educational Psychology Review* 19(3): 265-283.

17 Netday. (2006). Speakup Survey. Retrieved April, 2007, from
18 http://www.netday.org/SPEAKUP/speakup_2006.htm

19 Pew Research Center and American Association for the Advancement of Science. (2009).
20 "Public praises science, scientists fault public, media; a survey." Retrieved September 27,
21 2009, from <http://people-press.org/reports/pdf/528.pdf>.

22 Piaget J. (1985) *The Equilibration of Cognitive Structure*. University of Chicago press, Chicago.

23 Roehrig, G., & Luft, J. (2004). Constraints experienced by beginning secondary science teachers
24 in implementing scientific inquiry lessons. *International Journal of Science Education*,
25 26(1), 3–24.

26 Spencer, H. (1860/1896). *Education: Intellectual, moral, and physical*. New York: D. Appleton
27 and Co.

28 Tai, R., Liu, C., Maltese, A., and Fan, X. (2006). CAREER CHOICE: Enhanced: Planning Early
29 for Careers in Science. *Science*, 312(5777), 1143-1144.

30 Windschitl, M. (2004). Folk theories of "inquiry:" How preservice teachers reproduce the
31 discourse and practices of an atheoretical scientific method. *Journal of Research in Science
32 Teaching*, 41(5), 481–512.

33 Zacharia, Z. C. (2007). "Comparing and combining real and virtual experimentation: an effort to
34 enhance student' conceptual understanding of electric circuits." *Journal of Computer
35 Assisted Learning* 23: 120-132.