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'Social Science ODbjectives

= Population distributions

s Comparative effectiveness

o Well-defined treatment (Hernan, et al)
m Assign a patient to intervention
m A patient actually received intervention
m A patient actually received entire intervention

o Well-defined outcome
m Cholesterol vs. death

o Well-defined population
s Those who would choose an intervention
s Those who are most likely to benefit from intervention



\ Possible Evidence

| Observational RCT

Large sample size X Meta-analysis
Realistic treatment X “practical trials”
and environment (Tunis et al, 2003)
Probability sample X Re-weight and/or
from target population extrapolate
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'Well-Defined Populations
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\ Population: Adjusting Obs. Data
for causal inference

s Methods to reduce treatment selection bias
Influence the inferential population

o Propensity scores (PS) big idea:

m Essentially re-weight the observational data so that the
“‘controls™ are comparable to the “treated”.

o PS population considerations

m  Reweight to those who selected: average treatment effect on
the treated (ATT)

m Poor overlap limits the inference to those who might not
choose treatment

o PS assumptions:
s All important variables are measured



\ Population: Adjusting Obs. Data
for causal inference

s Methods to reduce treatment selection bias
Influence the inferential population

o Instrumental variables (1V) big idea:

m Essentially scales the effect of the instrument on outcome by
the effect of the instrument on treatment selection.

m [reats treatment as a mediator of the instrument

o |V effect on the population:

s The estimand is a “local” average treatment effect (LATE),
where “local” describes people who are influenced by the
Instrument.

o IV assumptions:

s The instrument only affects the outcome via the treatment
selection



'Population: Adjusting RCT Data
for participant representativeness

s RCT population might be:

o Like a SRS from the target population
s No adjustment needed

o Like a weighted sample from the target population

s Use observational data to “standardize” RCT data
o Survey methods like poststratification; Greenhouse, et al (2008)

o Propensity-based standardization; Cole and Stuart (2010), Stuart,
et al (2011)

o Like a weighted sample of a subpopulation from the
target population
s  Sensitivity analyses/Comparisons; Marcus (1997)

m Use observational data to extrapolate from the RCT data
using a model



‘ Overarching models

m Goal: leverage the internal validity of the RCTs
and the external validity of the observational data.

s Confidence Profile Method (and other models)
o Eddy (1986); Eddy et al. (1990 and 1992)
o Wolpert and Mengersen (2004)
o Greenland (2005)

s Response Surface Methodology
a Rubin (1990)

m Cross Design Synthesis
o General Accounting Office (1992) and (1994)
o Kaizar (2011)
o Pressler and Kaizar (2013) 8



‘ Confidence Profile Method (CPM)

m Approach to handle bias

Target parameter= 6

Evidenceabout g (6, )

Likelihood under target parameter: f (x| 6)
Likelihoodunder CPM: f (x| g(@, «))

s Many g(0,a) specified for specific kinds of bias



‘ Response Surface Methodology

m Approximate the response surface as an n
order polynomial of the experimental
conditions

s Choose experimental conditions

s Extrapolate to the “ideal” experimental
conditions
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‘ Cross Design Synthesis

m Examine randomized studies for external
validity

m Examine administrative databases for internal
validity

s Adjust data to improve validity

s Combine information between and within
study types
a Create a framework (stratify by design, coverage)
o Combine studies within each design
a0 Synthesize information across designs
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\ Simple Case: Linear Bias

Population Quantity of | Randomized Obs. Data
P Interest Data Estimator Estimator
Represented
by I|23CT SPATEinciuded Dy, included Dmcluded
Not _ DR
Represented SI:)A-I-Eexcluded zg;uded Dexcluded
by RCT

Selection bias = 55 X Dexcluded Dmcluded
Design bias = Dmcluded Dmcluded

PATE = weighted average of Randomized Data Estimators
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‘ Example: Insulin Pump Use

= Problem: Is insulin pump use on average
effective in improving metabolic control in the
total population of diabetic patients?

o Outcome: Mean A1C level (lower is better)
a Control: Insulin injections

= Goal: Estimate the average treatment effect
for use In policy decision making

m Data problem: RCTs exclude the
noncompliant (<4 checks per day)

Doyle, et al (2004), Paris, et al (2009)
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\ Extensions

s Multiple RCTs and Observational data sets
o Additional strata used for multiple inclusion criteria

s Multiple treatments (e.qg., doses)

o Additional stratification (multidimensional response
“surface”)

m "Fuzzy” group membership
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\ Designing new studies for
sequential or simultaneous CDS

m On the RCT side:

o Clearly identify populations/strata where
randomized data is lacking or weak

o Adapt design: sample size, proxy outcomes

m On the Obs. Side:

o Check the adjustments for internal validity of the
observational data

o Variable collection
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