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Social Science Objectives

 Population distributions

 Comparative effectiveness

 Well-defined treatment (Hernan, et al)

 Assign a patient to intervention

 A patient actually received intervention

 A patient actually received entire intervention

 Well-defined outcome

 Cholesterol vs. death

 Well-defined population

 Those who would choose an intervention

 Those who are most likely to benefit from intervention
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Possible Evidence

Observational RCT

Large sample size X Meta-analysis

Realistic treatment 

and environment
X

“practical trials” 

(Tunis et al, 2003)

Probability sample

from target population
X

Re-weight and/or

extrapolate

“Strong” causal 

inference

Propensity scores, 

instrumental 

variables

X

Customized 

measurement
sometimes X

Long-term outcomes Less rare Rare

3



Well-Defined Populations

 What is the target population(s)?

 RCT Population:  Theoretical subset of the target 

population that consists of all individuals who 

would be eligible to enroll in the RCT. 

 Obs. Study Population:  Population “represented” 

by the study.

 Target Population:  Population of all individuals for 

which treatment may be considered for its 

intended purpose?
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Population:  Adjusting Obs. Data 

for causal inference

 Methods to reduce treatment selection bias 

influence the inferential population

 Propensity scores (PS) big idea:  

 Essentially re-weight the observational data so that the 

“controls” are comparable to the “treated”.

 PS population considerations

 Reweight to those who selected:  average treatment effect on 

the treated (ATT)

 Poor overlap limits the inference to those who might not 

choose treatment 

 PS assumptions:

 All important variables are measured
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Population:  Adjusting Obs. Data 

for causal inference

 Methods to reduce treatment selection bias 

influence the inferential population

 Instrumental variables (IV) big idea:  

 Essentially scales the effect of the instrument on outcome by 

the effect of the instrument on treatment selection.

 Treats treatment as a mediator of the instrument

 IV effect on the population:

 The estimand is a “local” average treatment effect (LATE), 

where “local” describes people who are influenced by the 

instrument.

 IV assumptions:

 The instrument only affects the outcome via the treatment 
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Population:  Adjusting RCT Data 

for participant representativeness

 RCT population might be:

 Like a SRS from the target population

 No adjustment needed

 Like a weighted sample from the target population

 Use observational data to “standardize” RCT data

 Survey methods like poststratification; Greenhouse, et al (2008)

 Propensity-based standardization; Cole and Stuart (2010), Stuart, 

et al (2011)

 Like a weighted sample of a subpopulation from the 

target population

 Sensitivity analyses/Comparisons; Marcus (1997)

 Use observational data to extrapolate from the RCT data 

using a model



Overarching models

 Goal:  leverage the internal validity of the RCTs 

and the external validity of the observational data.

 Confidence Profile Method (and other models)

 Eddy (1986); Eddy et al. (1990 and 1992)

 Wolpert and Mengersen (2004)

 Greenland (2005)

 Response Surface Methodology

 Rubin (1990)

 Cross Design Synthesis

 General Accounting Office (1992) and (1994)

 Kaizar (2011)

 Pressler and Kaizar (2013) 8
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Confidence Profile Method (CPM)

 Approach to handle bias

 Many g(θ,α) specified for specific kinds of bias
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Response Surface Methodology

 Approximate the response surface as an nth

order polynomial of the experimental 

conditions

 Choose experimental conditions

 Extrapolate to the “ideal” experimental 

conditions
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Cross Design Synthesis

 Examine randomized studies for external 
validity

 Examine administrative databases for internal 
validity

 Adjust data to improve validity

 Combine information between and within 
study types

 Create a framework (stratify by design, coverage)

 Combine studies within each design 

 Synthesize information across designs
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Simple Case:  Linear Bias

Selection bias = 𝛿𝑆 ∝ 𝐷𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑
𝑂 − 𝐷𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑

𝑂

Design bias = 𝐷𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
𝑂 − 𝐷𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑

𝑅

PATE = weighted average of Randomized Data Estimators

Population
Quantity of 

Interest

Randomized 

Data Estimator

Obs. Data 

Estimator

Represented 

by RCT
SPATEincluded 𝐷𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑

𝑅 𝐷𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
𝑂

Not 

Represented

by RCT

SPATEexcluded

= 𝐷𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑
𝑅

+𝛿𝑆
𝐷𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑
𝑂
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Example:  Insulin Pump Use

 Problem:  Is insulin pump use on average 
effective in improving metabolic control in the 
total population of diabetic patients?
 Outcome: Mean A1C level (lower is better)

 Control:  Insulin injections

 Goal:  Estimate the average treatment effect 
for use in policy decision making

 Data problem:  RCTs exclude the 
noncompliant  (<4 checks per day)

Doyle, et al (2004), Paris, et al (2009)
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Example



Extensions

 Multiple RCTs and Observational data sets

 Additional strata used for multiple inclusion criteria

 Multiple treatments (e.g., doses)

 Additional stratification (multidimensional response 

“surface”)

 “Fuzzy” group membership
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Designing new studies for 

sequential or simultaneous CDS

 On the RCT side:

 Clearly identify populations/strata where 

randomized data is lacking or weak

 Adapt design:  sample size, proxy outcomes

 On the Obs. Side:

 Check the adjustments for internal validity of the 

observational data

 Variable collection
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