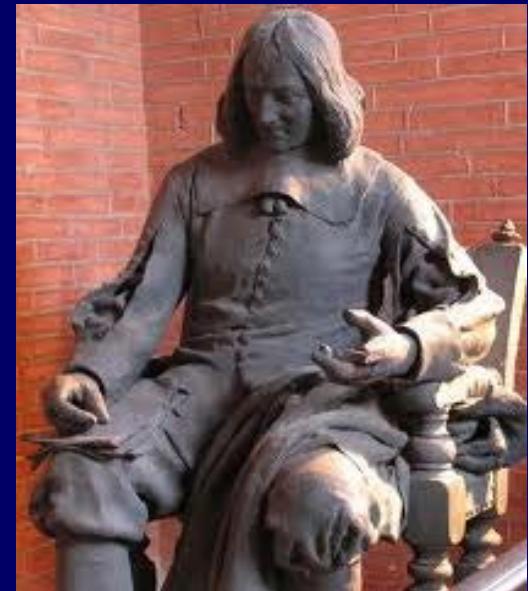


# An Evidence-Based Assessment of Research Collaboration and Team Science: Patterns in Industry and University-Industry Partnerships

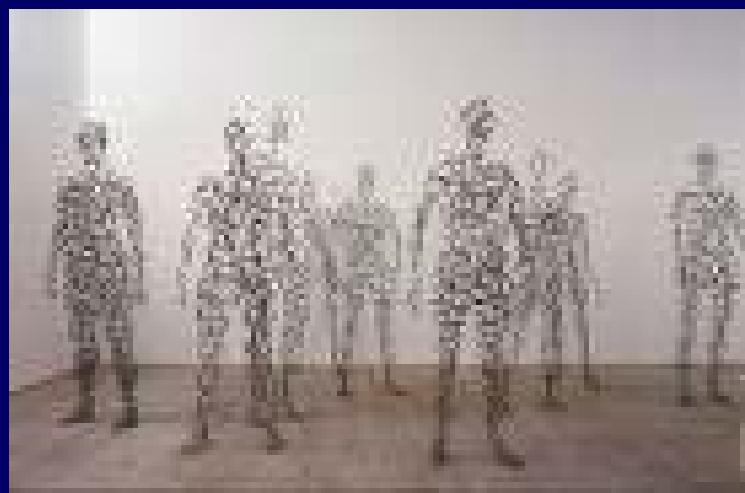

Barry Bozeman  
Craig Boardman

Presented by  
Susan Winter, UMD



# Organization of Scientific Work

- ❖ Old Science
  - Brilliant Solitary Researcher




- ❖ Modern Science
  - 90% of research in STEM fields
    - Collaboration
    - Teams
    - Networks
    - Co-authorship
  - Specialized Training
  - Complex problems
  - Collaborative Technologies
  - Shared Resources
  - Public Policies



# Collaboration

- ❖ Definition
  - Social processes
  - Pool human beings' experience, knowledge and social skills
  - Objective is to produce new knowledge
- ❖ Collaborators may never meet or interact with one another



# Collaboration

- ❖ Levels of Analysis

- Individuals
- Groups and Teams
- Organizations



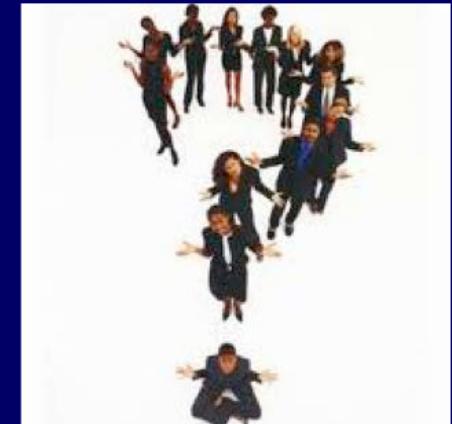
- ❖ Study Approaches/Methods Are Diverse

- ❖ Sector Differences

- ❖ Setting

- Industry
  - Most Research Collaboration is Here
- Academia
  - Most Studies of Research Collaboration are Here




# Study Focus

- ❖ Boundary-Spanning Research Collaborations
  - University-Based
  - University-Industry Partnerships
  - Industry Interdisciplinary Research Collaborations
  
- ❖ Forms
  - Multi-Discipline, Multi-Purpose University Research Centers
  - R&D Alliances
  - Consortia
  - Joint Ventures



# Study Questions

- ❖ Influences on research organization productivity and effectiveness
  - Needed organizational structures, policies, practices and resources
    - Human resource management
    - Cyberinfrastructure
  - Effective research management approaches, partnership models and leadership styles
  - Incentives for academics
  - Intellectual property and conflict of interest issues
- ❖ Reasons for failure
- ❖ Implications for practice



# Sampling Frame

- ❖ Empirical Evidence
  - Quantitative
  - Qualitative
  
- ❖ Not
  - Conceptual Models
  - Unverifiable Personal Insights
  - Unsupported Anecdotes or Opinions



# Theoretical Frame

- ❖ Scientific and Technical Human Capital (STHC)
  - Social Knowledge, Skills and Resources
  - Formal Education, Training, Social Relations
  - Network Ties
    - Other Scientists, Funding Agents, Vendors, Entrepreneurs, Equipment Developers, Technicians, Public Officials, etc
- ❖ Collaboration
  - Is Driven By the Need to Pool STHC to Address Challenges
  - Develops STHC



# Organizing the Literature

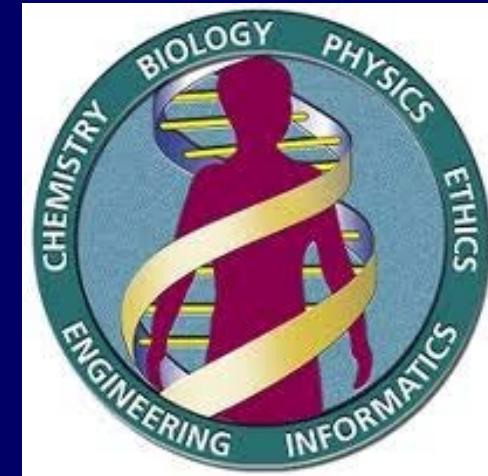
## ❖ Inputs and Resources

- People and Groups
- Materiel
- Organizational Capital

## ❖ Processes and Activities

- Project Level Management and Leadership
- Organization Level Management




# Organizing the Literature

- ❖ Outputs, Outcomes, Impacts
  - Enhanced Outputs and Impacts
    - Knowledge-Focused, Property-Focuses
  - Enhanced Scientific and Technical Human Capital
  - Negative Impacts of Collaboration
  
- ❖ Contextual Factors
  - Sector
  - Function
  - External Resources Environment



# Findings

- ❖ Engineering Disciplines Most Likely to Collaborate with Industry
- ❖ Disciplinary Heterogeneity
  - Increased Productivity
  - Heterogeneity of Incentives and Motivations
  - Hierarchical and More Formalized Organizationally
- ❖ **Little Research Has Considered Past Productivity as an Antecedent to Collaboration**
  - Measurement Issues with Pubs and Patents



# Findings

- ❖ Heterogeneous Research Experiences

- **Findings are Mixed**

- ❖ Prior Acquaintance and Trust

- Very Important
  - Easiest with High Similarity
  - Can Compensate with Formal Structures and Authorities



# Findings

- ❖ Tangible Capital
  - Collaborate to Gain Access to Resources and Capabilities
- ❖ Intangible Organizational Capital
  - Ability to Coordinate and Manage Diverse Resources
  - Induces Coordinated Problem Solving
- **Most Important Resource and Input to Collaboration**



# Management and Leadership

- ❖ Project Level Teams Well Studied
  - Best Local Practices May Not Be Robust Across Situations
  - Equifinality (Multiple Possible Practices) So Successful Collaborations Can Differ



# Management and Leadership

- ❖ Organizational Level

- Levers for Coordinating Inputs and Resources

- Goal Congruence, Resource Interdependence, Formal Authorities

- ❖ **Center Management Underdeveloped**

- **Little Research on Effective Responses**



# Collaboration Assessment

- ❖ **Products**

- Knowledge Focused
  - Publications, Citations
- Property Focused
  - Patents, Patent Citations, Commercial Products
- Capacity Building

- ❖ **Measurement Weaknesses Abound**

- ❖ **Baseline Data N/A**

- Productivity When Not Collaborating



# Who Benefits?

- ❖ Increased Science and Technology Human Capital
- Additive so Improved Individual, Group, Lab, Firm and Research Center STHC
- **Mediated by Ability to Deploy the STHC (Intangible Organizational Capital)**



# Study Questions

- ❖ Effective research management approaches, partnership models and leadership styles

- Evidence Base Is Minimal**

- Importance of**

- Monitoring of Terms of Contracts
  - Trust
  - Alliance Management
  - Proximity



- Management Practices of Collaboration Organizations Often Poorly Thought Out**

# Reasons for Failure

- ❖ **Poorly Understood**

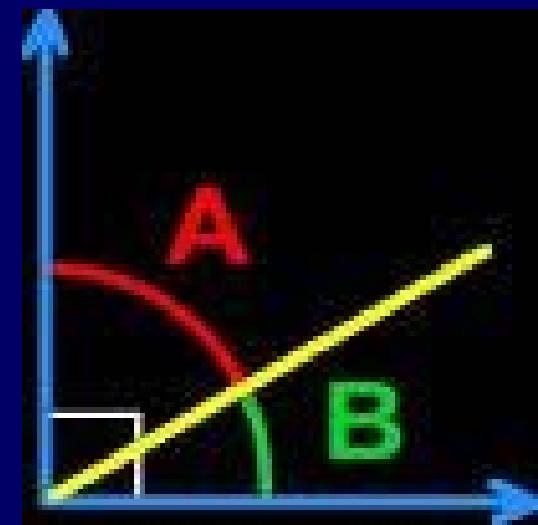
- Threshold Effects
- Interactions Among Variables

- ❖ Inherent Instability?

- ❖ Intellectual property and conflict of interest issues

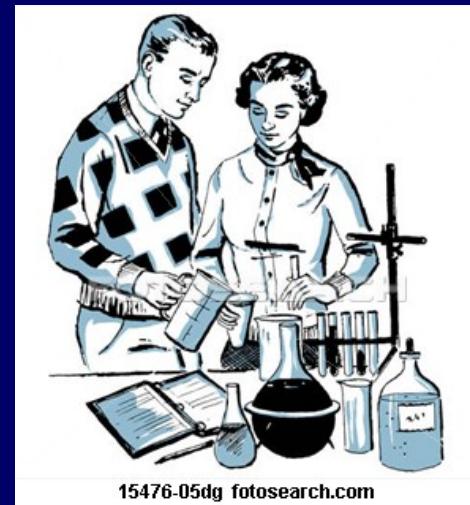
- Alliance Management Skills




# Recommendations

- ❖ Much Is Well-studied Already
  - Dyads, Triads, Small Groups
  - Co-authorship and Patenting Patterns




# More Research Needed

- ❖ How Choose Among Available Collaborative Institutions and Modalities
- ❖ Institutional Failures and the “Dark Side”
- ❖ Science and Technology Human Capital Aspects



# More Research Needed

- ❖ Management of University-Based Centers
  - Scientists Expected to Become Managers
  - Inadequate Professional Managerial Training
- ❖ Field Experiments/Find Patterns Across Instances
- ❖ Impact-Focused Research
  - Multiple Informants, Longitudinal



Thank You