A review of economic perspectives on collaboration in science

Jeff Furman Boston U & NBER

Patrick Gaule CERGE-EI & CERGE – Charles U

National Research Council Workshop on Institutional & Organizational Supports for Team Science October 2013

Agenda

- Introduce economic perspectives on collaboration in science
- Explain 2 key facts about collaboration:
 - what draws scientific collaborators together?
 - why has collaboration increased recently?
- Issues
 - Views of teaming from labor economics
 - Calculus from a researcher's perspective
 - benefits/incentives
 - costs coordination & credit
 - Open questions

Background notes on economic perspectives on scientific collaboration

- No single view or canonical model of scientific collaboration
 - much work in economics of science draws on sociology of science (e.g., Merton, Zuckerman, etc.)
- Four core features of economics of science
 - 1. knowledge accumulates
 - standing on the shoulders of giants" drives economic growth
 - 2. science is a competitive enterprise
 - both at level of individual and institution
 - **3**.it anticipates that incentives, benefits, and costs that individuals & institutions face will shape their behavior
 - policies assumed to operate through those mechanisms to change behavior (though researcher preferences, especially for autonomy also matter)
 - *4.it cares about causality & wants to measure it precisely*!

Teaming & Collaboration in labor economics

- Labor economics models of teaming & collaboration = basis for perspectives in economics of science
 - not designed for economics of science
 - but applicable
 - esp. Becker & Murphy (1992) & Lazear (1998 & 1999)
- Literature highlights tension between
 - benefits
 - task, skill, & knowledge complementarities (role for diversity)
 - specialization of labor
 - costs
 - direct costs of coordinating
 - incentive problems (e.g., free riding, increased monitoring, etc.)

The burden of knowledge & The death of the Renaissance Man

- Ben Jones (Kellogg) unified explanation for increasing collaboration & specialization in knowledge production
- Knowledge frontier is ever-expanding
 - in world of limited knowledge...
 - getting to frontier requires genius and some time
 - it is possible to be expert in multiple fields
 - in world of substantial knowledge
 - getting to frontier requires genius & substantial time
 - it is difficult to be an expert in even a single field
- As "burden of knowledge" grows...
 - researchers require longer learning periods before making contributions (unless educational productivity expands more rapidly)
 - researchers become expert in increasingly narrow arenas
 - → must **specialize** & **collaborate** to contribute at frontier of knowledge

Evidence

- increasing ages of Nobel Prize winners & 1st contribution to innovation
- mass influx of Soviet scientists \rightarrow collaboration (Agrawral et al., 2013)

Researcher's calculus: Incentives for / benefits of scientific collaboration

- Complementarity
 - skills, tasks, resources, knowledge bases
 - gains to specialization
 - *limited inquiry in economics of science* (likely due to difficulty in measuring concepts in large scale data)
 - creativity (more work in OT & psych)
 - racing & collusion
- Economies of scale & scope
 - fixed costs
 - equipment, materials data
 - spread across multiple projects
 - Big Science
 - Manhattan Project, Apollo, CERN
 - labs

- Attention & networks of impact
 - can increase quality
 - more connections → more diffusion
 - legitimacy (Matthew Effect)
 - "ghost authorship"
- Credit arbitrage
 - Bikard, Gans, & Murray (2013) if reputational boost of collaboration rises > cost of decreased credit
 - "guest authorship"
- Institutional incentives & subsidies
 - NIH P01 grants, Glue Grants
 - EU Framework Programs
 - Catch-up incentives for publishing

Researcher's calculus: Costs of scientific collaboration

- Direct costs
 - Communication costs and costs of negotiation & disagreement
 - organizational costs
 - Distance & costs
 - falling over time
 - e.g., BITNET (Agarwal & Goldfarb + Azoulay et al.)
 - but face-to-face still important
 - Ganguli et al, 2013
 - micro-geography matters (Catalini, 2013)
 - » UPMC-Sorbonne
 - » lab co-location → 3-5x more collaboration
 - » x-field :: cites & var 🛧

- Other costs
 - Credit [Gans & Murray w Bikard (2013)]
 - individual credit for contribution to project as # of team members rises
 - ▶ 1-author = 100%
 - > 3-author = 40%? 33%? 20%?
 - this function is not clear to
 - researchers ex ante
 - institutions ex post
 - policy-makers
 - Incentives
 - e.g., free-riding
 - not extensively studied, but anecdotal evidence strong
 - Potential for false science
 - pr(errors & fraud) may rise

Open Questions

Causality question

- selection vs. treatment
 - does collaboration cause high research impact? or
 - does high impact research require collaboration?
- experimental approaches?
- natural experiments?

Policy questions

- should public policies → collaboration?
 - what is market failure?
 - what does evidence suggest?
 - is diffusion a valuable goal of pro-team policies?

Open Questions

Causality question

- selection vs. treatment
 - does collaboration cause high research impact? or
 - does high impact research require collaboration?
- experimental approaches?
- natural experiments?

Policy questions

- should public policies → collaboration?
 - what is market failure?
 - what does evidence suggest?
 - is diffusion a valuable goal of pro-team policies?

Additional questions

- who works with whom?
 - are there frictions that inhibit optimal matching? (e.g., Fleming, discovered penicillin, but lacked chemical engineers to scale up)
 - is there a role for policy (funding) in supporting matching
- how can we usefully measure cross-field research & assess causal impact of doing such work?
- how does the collaboration imperative shape (for better or worse) research agendas & output?
 - e.g., individual researchers may have different risk preferences than combination of researchers
 - long-term vs. short-term goals (Azoulay et al., 2011)