4-H SCIENCE
3,500 4-H Educators
532,312 Volunteers

3,068 Counties
109 LGUs

Total Enrollment: 6,330,612

Male: 3,049,525
Female: 3,281,525
Content and Context
4-H Youth Solution

4-H PYD Inputs

- Skill-Building
- 4-H Positive Youth Development
- Long-Term Caring Adult

Meaningful Leadership

Outcomes

- Competence
- Confidence
- Connected
- Caring
- Character

Impact

Contribution

4-H Impact
Content and Context

4-H SCIENCE since 1902
A Strategic Focus on STEM
Alternative Energy
Biotechnology and Plant Sciences
Engineering and Technology
Environmental Sciences
Geospatial Technologies
Robotics
Rocketry
4-H Program Delivery Modes

<table>
<thead>
<tr>
<th>Program Type</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-H Clubs</td>
<td>1.7 million</td>
</tr>
<tr>
<td>4-H Camps/Summer</td>
<td>475,000</td>
</tr>
<tr>
<td>4-H Afterschool Groups</td>
<td>400,000</td>
</tr>
<tr>
<td>4-H School Enrichment Programs</td>
<td>3.4 million</td>
</tr>
</tbody>
</table>
4-H Science National Infrastructure

National Management Team
Regional Science Teams
LGU 4-H Science Liaisons
LGU 4-H Science Plans of Action
County Programs

4-H Science Logic Model
4-H Science Checklist
Program Design

Situation
- **Description of challenge, problem, or opportunity:**
 - Unresolved worldwide social problems need to be addressed by science.
 - In the US, shortage of scientists and engineers understanding science.
 - Underrepresentation of women and minorities in science careers.
 - Need a diverse pool of trained scientists to frame and solve problems and educate others.
 - General population in the US (and worldwide) lacks basic understanding of science methods and content ("science literacy").

Inputs
- **What we invest:**
 - Federal, state, and private funds
 - 4-H Infrastructure
 - Land Grant Univ. Support
 - County Extension administrators and agents, program coordinators, and specialists
 - Training
 - Knowledge
 - Collaborations with external researchers
 - Collaborations with science industry leaders

Activities
- **What we do:**
 - Select and develop 4-H Science curriculum
 - Select and train volunteers
 - Market 4-H Science to increase interest, participation
 - Conduct non-formal education (learning and teaching, facilitated inquiry and discovery)
 - Facilitate question formation and problem solving through guided activities
 - Provide supplemental math programming
 - Teach youth about academic and career choices, requirements
 - Who we reach (Participation):
 - Extension administrators, LSU and Extension faculty and staff
 - Youth (grades 3-6, 6-9, 9-12)
 - Federal, state & private funders
 - Partners
 - Public

Outputs
- **What we produce:**
 - 4-H Science curricula
 - New instructional methods
 - Trained staff and volunteers
 - Adult participants engaged
 - Youth participants engaged
 - Partners (other Federal agencies, science museums, youth organizations, etc.) collaborating
 - Marketing materials
 - Evaluation materials

Outcomes
- **Knowledge**
 - Increased engagement in science among youth
 - Improved attitudes toward science among youth
 - Increased awareness of science among youth
- **Actions**
 - Youth apply science learning to contexts outside 4-H (e.g., school classes, science fairs, invention contests, etc.)
 - Youth adopt and use new methods or improve technology
 - Youth demonstrate use of life skills
 - Youth express interests and demonstrate aspirations toward science careers (career fairs, job shadowing, volunteer work or internships)
 - Youth raise questions and identify problems to be addressed using science
- **Conditions**
 - Occurs when there is a change in behavior of the participants from what they've learned and gained.
 - Occurs when there is a change in behavior or the participants act upon what they've learned and gained.
 - Occur when a societal condition is improved due to a participants action taken in the previous column.

“I like to do this.”
- Increased number and more diverse pool of youth pursuing education and careers in science-related fields.
- Increased and more diverse pool of trained teachers, educators, scientists.
- Increased science literacy in general population.
- Increased innovation addressing social problems using science.
Program Design

“I can do this.”

Situation
- Description of challenge, problem, or opportunity:
 - Unsolved worldwide social problems need to be addressed by science.
 - In the US, shortage of scientists & people understanding science.
 - Under-representation of women and minorities in science careers.
 - Need a diverse pool of trained scientists to frame and solve problems & educate others.
 - General population in the US (8 worldwide) lacks basic understanding of science methods and content (‘science literacy’).

Inputs
- What we invest:
 - Federal, state and private funds
 - 4-H infrastructure
 - Land Grant Univ. Support
 - County Extension administrators and agents, program coordinators, and specialists
 - Training
 - Knowledge
 - Collaborations with external researchers
 - Collaborations with science industry leaders

Activities
- What we do:
 - Select and develop 4-H Science curricula
 - Select and train volunteers
 - Market 4-H Science to increase interest, participation
 - Conduct non-formal education (learning and teaching, facilitated inquiry and discovery)
 - Facilitate question formation and problem solving through guided activities
 - Provide or supplement math programming
 - Teach youth about academic and career choices, recruitment
 - Who we reach (Participation):
 - Extension administrators, LSU and Extension faculty and staff
 - Youth (grades 3-6, 7-9, 9-13)
 - Federal, state & private funders
 - Partners
 - Public

Outputs
- What we produce:
 - 4-H Science curricula
 - New instructional methods
 - Trained staff and volunteers
 - Adult participants engaged
 - Youth participants engaged

Program Design

Outcomes
- Occurs when there is a change in knowledge or the participants learn:
 - Increased engagement in science among youth
 - Improved attitudes toward science among youth
 - Increased awareness of science among youth

Knowledge
- Increased science skills (scientific methods) and knowledge (content areas) among youth
- Increased awareness of opportunities to contribute to society using science skills.
- Increased life skills

Actions
- Youth adopt and use new methods or improved technology
- Youth demonstrate use of life skills

Conditions
- Occurs when a societal condition is improved due to a participant’s action taken in the previous column.
 - Increased number and more diverse pool of youth pursuing education and careers in science related fields.
 - Increased and more diverse pool of trained teachers, educators, scientists
 - Increased science literacy in general population
 - Increased innovation addressing social problems using science.
Program Design

Situation

- **Description of challenge, problem, or opportunity:**
 - Unsolved worldwide social problems need to be addressed by science.
 - In the US, shortage of scientists & people understanding science.
 - Under-representation of women and minorities in science careers.
 - Need a diverse pool of trained scientists to frame and solve problems & educate others.
 - General population in the US (differently) lacks basic understanding of science methods and content ("science literacy").

Inputs

- What we invest:
 - Federal, state and private funds
 - 4-H infrastructure
 - County Extension administrators and agents.
 - Program coordinators, and specialists.
 - Training.
 - Knowledge.
 - Collaborations with external researchers
 - Collaborations with science industry leaders.

Activities

- What we do:
 - Select and develop 4-H Science curricula.
 - Select and train volunteers.
 - Market 4-H Science to increase interest, participation.
 - Conduct non-formal education (learning and teaching, facilitated inquiry and discovery).
 - Facilitate question formation and problem solving through guided activities.
 - Provide or supplement math programming.
 - Teach youth about academic and career choices, recruitment.

Outputs

- What we produce:
 - 4-H Science curricula.
 - New instructional methods.
 - Trained staff and volunteers.
 - Adult participants engaged.
 - Youth participants engaged.
 - Partners (Other Federal agencies, science museums, youth organizations, etc.) collaborating.
 - Marketing materials.
 - Evaluation materials.

Knowledge

- Occurs when there is a change in knowledge or the participants learn:
 - Increased engagement in science among youth.
 - Improved attitudes toward science among youth.
 - Increased awareness of science among youth.
 - Improved science skills (scientific methods and knowledge/content areas) among youth.

Actions

- Occur when there is a change in behavior or the participants act upon what they’ve learned and:
 - Youth apply science learning to contexts outside 4-H (e.g., school classes, science fairs, invention contests, etc.).
 - Youth adopt and use new methods or improved technology.
 - Youth demonstrate use of life skills.

Conditions

- Occur when a societal condition is improved due to a participant's action taken in the previous column:
 - Increased number and more diverse pool of youth pursuing education and careers in science related fields.
 - Increased and more diverse pool of trained teachers, educators, scientists.
 - Increased science literacy in general population.
 - Increased innovation addressing social problems using science.

“This is important to me.”

- Youth express interest in science careers.
- Youth express careers in science careers.
- Youth express interest in science careers.
4-H Science Outcomes

• Interest and engagement in Science
• Develop Science skills and abilities
• Positive attitudes and aspirations toward Science
• Apply learning, make a contribution through Science
“Science Ready” Checklist

- Next Generation Science Standards
- 4-H Science Abilities
- Essential Elements of PYD
- Trained, Caring Adult as Co-Learner
- Experiential Approach to Learning
- Inquiry Approach to Learning
- Frequency and Duration

4-H SCIENCE

high quality STEM programming
4-H Science Professional Development

- 4-H Science Logic Model
- 4-H “Science Ready” Checklist
- 4-H Science 101 Guide
- 4-H Science Competencies
- Self-Assessment
- Inquiry Based Learning
- Experiential Learning
- Promising Practices
- 4-H Science Academies – National, Regional, e-Academy
Additional 4-H Science Strategies

• National Youth Science Day
• National Youth STEM Summits
• Continued Focus on Underrepresented and Underserved Youth
• New Models of Volunteerism
• Increased Collaboration with other National Youth Organizations
4-H SCIENCE

THANK YOU

FOR MORE INFORMATION
http://www.4-h.org/resource-library/professional-development-learning/science-training-guides-resources/
http://www.4-h.org/about/youth-development-research/science-program-research/

Chad Ripberger, ripberger@rce.rutgers.edu
Program Director, STEM, National 4-H Council

www.4-H.org