

CHARACTERISTICS OF SUCCESSFUL OST STEM LEARNING EFFORTS

Bronwyn Bevan
Exploratorium

June 3, 2014

PRESENTATION OVERVIEW

Assumptions

Characteristics

Equity Orientation

QUESTION

What are the **characteristics**
of successful OST STEM learning
efforts?

ASSUMPTIONS

ASSUMPTIONS ABOUT STEM OST EFFORTS

**There is a thing called
“STEM OST”**

ASSUMPTIONS ABOUT STEM OST EFFORTS

- Afterschool +
Summer Programs
- Cultural Institutions/
Community Events
- Media Events
(episodes, podcasts)
- Internet Resources/
Community

ASSUMPTIONS ABOUT STEM OST EFFORTS

Afterschool +
Summer Programs

Cultural Institutions/
Community Events

Media Events
(episodes, podcasts)

Internet Resources/
Community

State/Civic

Youth
Development

Science-Specific

ASSUMPTIONS ABOUT STEM OST EFFORTS

Afterschool +
Summer Programs

Cultural Institutions/
Community Events

Media Events
(episodes, podcasts)

Internet Resources/
Community

State/Civic

Youth
Development

Science-Specific

Time
Staffing
Setting
Connectivity
Goals
Partnerships

ASSUMPTIONS ABOUT SUCCESS

There is agreement on
“what success looks like”
in OST settings

ASSUMPTIONS ABOUT SUCCESS

Producing Future Scientists

ASSUMPTIONS ABOUT SUCCESS

Producing Future Scientists

Producing More STEM-Engaged School Students

ASSUMPTIONS ABOUT SUCCESS

Producing Future Scientists

Producing More STEM-Engaged School Students

Producing More Lifelong STEM-Engaged Learners

Enthusiasts/Supporters?

Active Hobbyists/Citizen Scientists?

Evidence-Based Critical Thinkers?

ASSUMPTIONS ABOUT SUCCESS

Producing Future Scientists

Producing More STEM-Engaged School Students

Producing More Lifelong STEM-Engaged Learners

Enthusiasts/Supporters?

Active Hobbyists/Citizen Scientists?

Evidence-Based Critical Thinkers?

Producing More Lifelong STEM-Engaged Learners

ASSUMPTIONS

**There is a [consistent/variable]
relationship between characteristics
and success**

Characteristics → **Success**

ASSUMPTIONS ABOUT CHARACTERISTICS

$C_1 + C_2 + C_3 \dots$ = Characteristics of Success

ASSUMPTIONS ABOUT CHARACTERISTICS

$C_1 + C_2 + C_3 \dots = \text{Characteristics of Success}$

$C_1 \times C_2 = C_3 + C_4 + C_5$

ASSUMPTIONS ABOUT CHARACTERISTICS

$C_1 + C_2 + C_3 \dots =$ Characteristics of Success

$C_1 \times C_2 = C_3 + C_4 + C_5$

$C_1 \times C_2 > C_3 + C_4 + C_5$

ASSUMPTIONS ABOUT CHARACTERISTICS

$C_1 + C_2 + C_3 \dots = \text{Characteristics of Success}$

$C_1 \times C_2 = C_1 + C_2 + C_3$

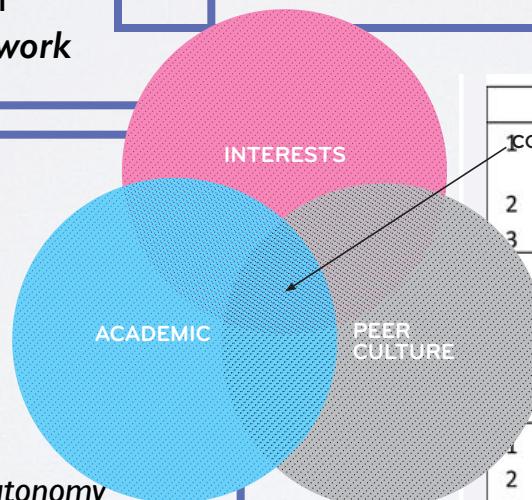
$C_1 \times C_2 > C_3 + C_4 + C_5$

$(C_1 \times C_2) + (C_3 + C_5)/4 \geq C_1 + C_2 + C_3 + C_4$

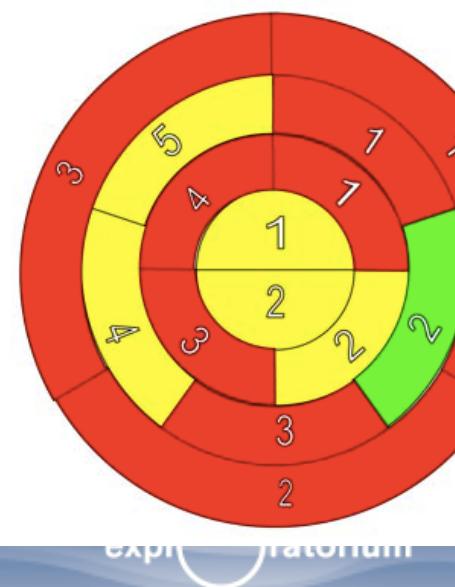
PAUSE

06/03/14

CHARACTERISTICS


CHARACTERISTICS LISTS, FRAMEWORKS, ETC.

Environment and climate
 Administration and organization
 Relationships
 Staffing and professional development
 Programming and activities
 Linkages between school and afterschool
 Youth participation and engagement; Parent, family, and community partnerships;
 Program growth and sustainability
 Measuring outcomes and evaluation
 -NY State Quality Afterschool Framework


Supportive relationships with adults
 Supportive relationships with peers
 Engagement
 Cognitive Growth and Mastery
 Orientation
 Structure, Control, Chaos
 —Vandell et al 2006

Girls STEM Programs
 Hands on
 Mentoring
 Internship
 Career Exploration

Building on prior interests
 Multiple pathways
 STEM as means not ends
 Inviting materials that spark engagement
 Sparking interest through modeling
 Asking “what-if” questions
 Supporting reflection
 Ideas and inspiration
 Opportunities for collaboration and for autonomy
 -MAPDD

category	value
1 CONNECTED LEARNING	1
1 Preparation	1
2 Teacher-organization	1
2 collaboration	1
3 Connection to curriculum	1
3 Clarifying the goals	1
3 Addressing the environment	3
4 Connection to everyday life	1
4 Social interactions	2
4 Guide performances	2
5 Physical activity-observer	1
5 Active learning-observer	2
5 Active learning	1
5 Physical activity	1
6 Beliefs, views & values	2
6 Knowledge & understanding	2

NRC RESEARCH SYNTHESIS RE STRONG YD AND STRONG STEM

Physical Well-Being

Intellectual Development

Psychological + Emotional
Development

Social Development

Interest

Concepts

Inquiry

Epistemologies

STEM Practices

Identity

STRONG YOUTH DEVELOPMENT

NRC, 2002

Physical Well-Being

Intellectual Development

Psychological + Emotional
Development

Social Development

critical thinking

school success

life and vocational skills

confidence/self-efficacy

autonomy

mastery orientation

STRONG YOUTH DEVELOPMENT

NRC, 2002

Physical Well-Being

Intellectual Development

Psychological + Emotional
Development

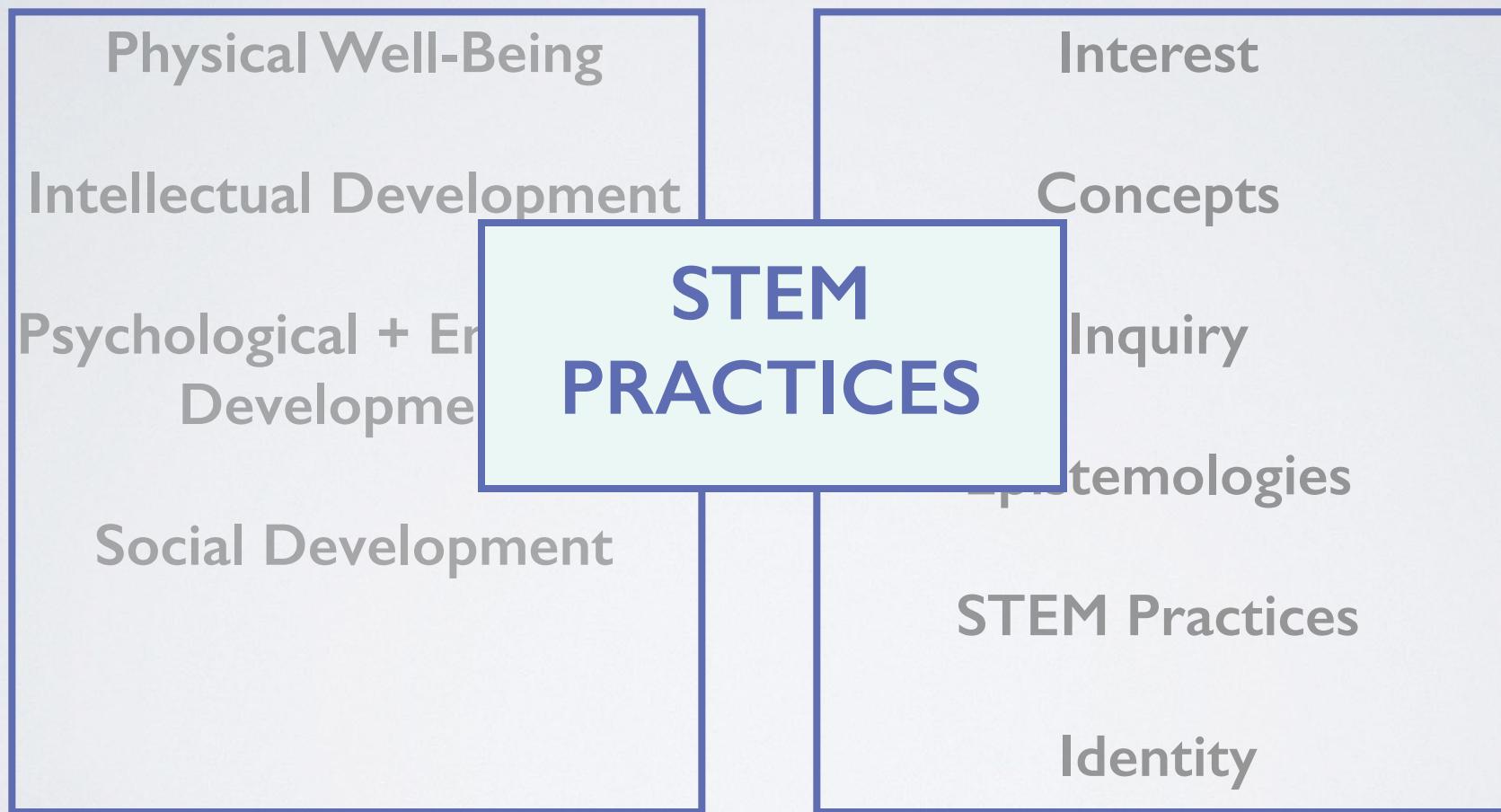
Social Development

connectedness
civic engagement
relationships

STRONG SCIENCE

NRC, 2012, 2009 AND 2006

participate
*intellectually, socially,
physically, emotionally*
in scientific and learning
practices with others, using
scientific language and tools


Concepts
Cross-Cutting Themes
Science & Eng Practices

Interest
Concepts
Inquiry
Epistemologies
STEM Practices
Identity

STEM PRACTICES (NRC, 2012)

1. Asking **questions** (science) and defining problems (engineering)
2. Developing and using **models**
3. Planning and carrying out **investigations**
4. Analyzing and interpreting **data**
5. Using **mathematics** and computational thinking
6. Constructing **explanations** (science) and designing solutions (engineering)
7. Engaging in **arguments** from evidence
8. Obtaining, evaluating, and **communicating** information

STEM PRACTICES AT THE INTERSECTION

WHAT DOES IT LOOK LIKE? STEM PRACTICES

Smoothie day with a bike!

Today was awesome for the get city experts. We made a smoothie maker using a [blender with a bike as a power source](#). We used a bike because we are looking at ways to get off the power grid, and survive without using electricity. We used fruit, maple syrup, and milk as ingredients in the smoothies. It was so sweet.

[More»](#)

WHAT DOES IT LOOK LIKE? DOING, PERSISTING, CARING

ECOLOGICAL PERSPECTIVES

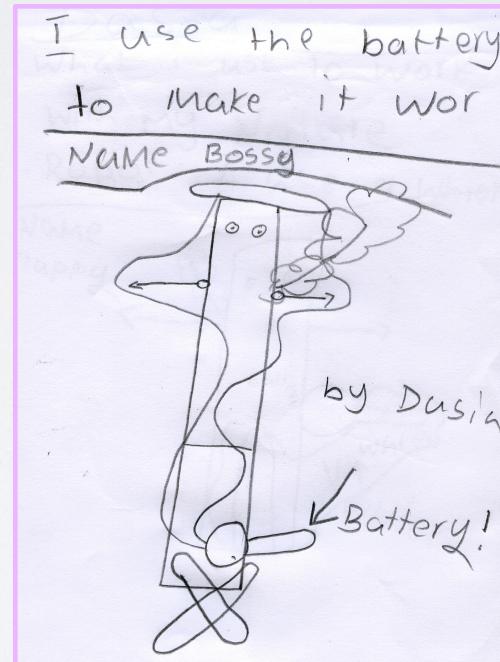
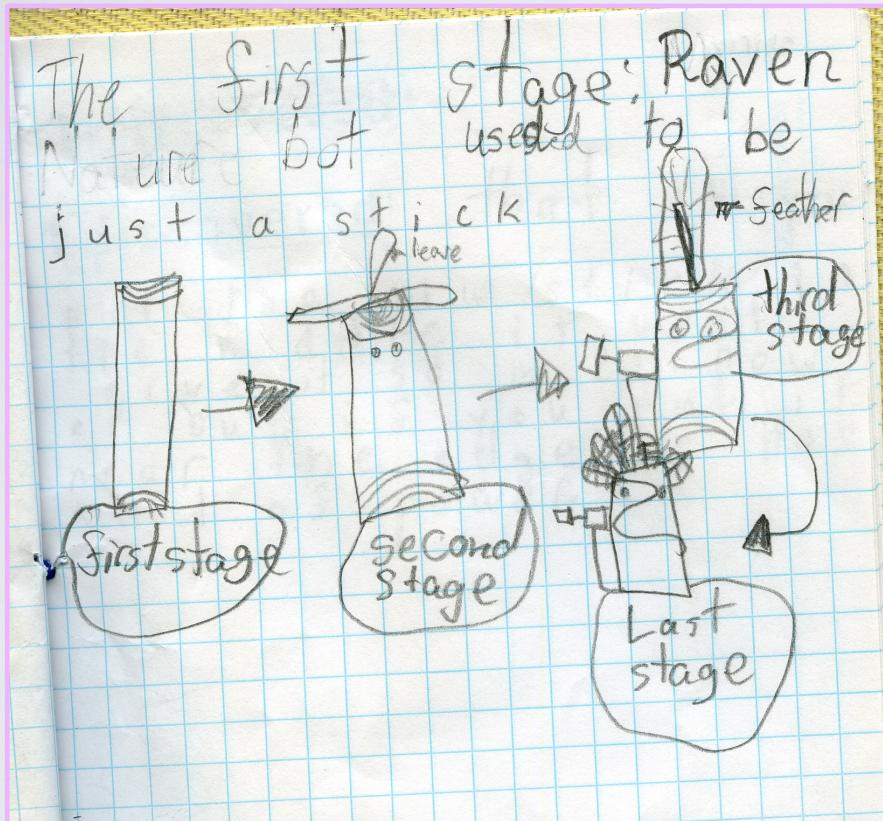
BROADENING PARTICIPATION IN STEM: CHARACTERISTICS FOR ACCESS AND EQUITY

EQUITY IN STEM EDUCATION

- **Access** to ongoing, multiple opportunities to do and learn STEM.
- STEM introduced as the best means towards achieving goals that are **meaningful** to the learner.
- Learning activities **leverage** young people's familiar personal, family, and cultural resources and routines.

EQUITY ORIENTED OST STEM EXPLO/SF B&G CLUBS

**Weekly Tinkering
Program offered by
Exploratorium and SF
Boys & Girls Clubs**



**Each semester organized
around 2-3 key
phenomena**

EQUITY ORIENTED OST STEM EXPLO/SF B&G CLUBS

Each idea, tool, or process introduced in context of familiar family or youth practices

EQUITY ORIENTED OST STEM EXPLO/SF B&G CLUBS

Intentional connections and language associated with STEM practices and with school practices

EXPO/SF B&G CLUBS

STRUCTURES

Time	Weekly
Staffing	Science Educators + Youth Developers
Setting	Community Clubhouse
Connections	Language and Practices
Goals	Rich Learning Opportunities
Partnership	Science Museum and Y.D.

CHARACTERISTICS OF EQUITABLE OST STEM

Intellectually Engaging and Challenging

Relevant

Contextualized in Matters of Young People's Interests
Mixed Age Groups/Peer-Mentoring

Expanding Horizons

Opportunities for Research
Opportunities to meet and know STEM professionals

Intentional Connections Across Settings and Time

Leveraging Familiar Routines, Tools, and Experiences
Making Connections Between Home, School, OST, Future

QUESTIONS FOR POLICY AND PROGRAM LEADERS

- 1. What other learning opportunities and activities are available to the young person?**
- 2. How do programs make intentional connections among learning opportunities? *(but critical to open up rather than narrow down)***
- 3. Can we replace “align to” with “relate to”?**
- 4. How do we expand access/scale opportunities without losing local meaning and variation?**

CROSS SETTING INFRASTRUCTURE TO EXPAND ACCESS AND EQUITY

1. Use of **social media** to allow youth to expand and explore interests — open up possibilities.
2. Networks that **broker relationships and opportunities** and connect youth with adults in shared areas of STEM practice/interest.
3. Systems for **recognizing learning** across settings (badging is one alternative, intentional coordination and talking across levels/systems is another).

-Penuel, Lee, & Bevan (2014)