Convergence, Cancer Research and the Koch Institute Experience at MIT

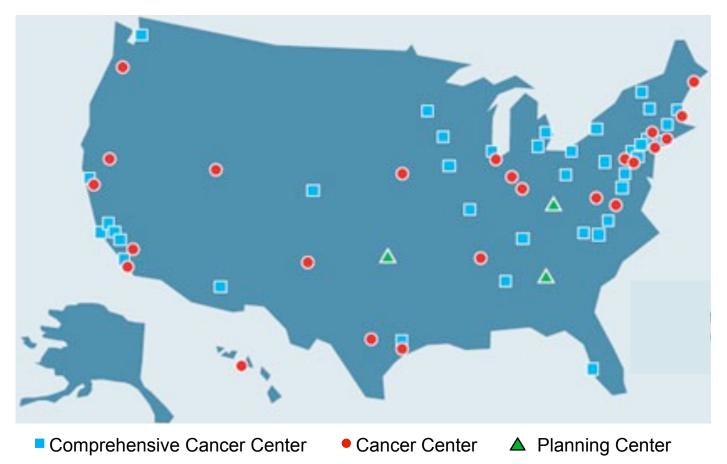
Tyler Jacks Director

NAS Workshop on Team Dynamics and Effectiveness July 1, 2013

science + engineering...conquering cancer together

President Richard Nixon signing the National Cancer Act on December 23, 1971.

"I will ask for an appropriation of an \$100 million to launch an intensive campaign to find a cure for cancer ... the time has come in America when the same kind of concentrated effort that split the atom and took man to the moon should be turned toward conquering this dread disease."


MIT Center for Cancer Research

NCI Cancer Centers

Salvador E. Luria, 1969

H. Robert Horvitz, 2002

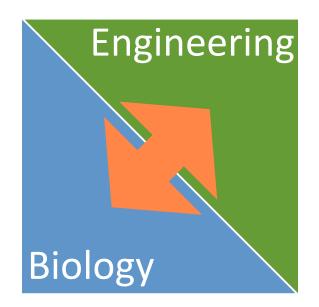
David Baltimore, 1975

Phillip A. Sharp, 1993

Susumu Tonegawa, 1987

Of an emerging arsenal of precision cancer drugs, two of the most powerful sprang from our work at MIT.

October, 2005: MIT CCR awarded one of seven inter-disciplinary NCI grants to form a Center for Excellence in Cancer and Nanotechnology


National Cancer Institute

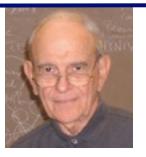
PHYSICAL SCIENCES

October, 2004: MIT CCR awarded one of nine inter-disciplinary NCI grants to use computational and mathematical ("systems") approaches to understand complex problems in cancer biel

The Koch Institute: A New Model for Cancer Research

Integration and Collaboration Discoveries and Solutions

Intramural Koch Institute Biology Faculty


Angelika Amon

Paul Chang

Jianzhu Chen

Herman Eisen

Frank Gertler

Michael Hemann

Nancy Hopkins Da

David Housman

Richard Hynes

Tyler Jacks

Jacqueline Lees Assoc. Director

Phil Sharp

Frank Solomon

Matthew Vander Heiden

Michael Yaffe

Intramural Koch Institute Engineering Faculty

Daniel Anderson Asst. Professor Chemical Engineering, Health Sci. Tech.

Sangeeta Bhatia Professor Health Sci. Tech, Elec. Engineering & Comp. Science

Angie BelcherNProfessorPMaterial ScienceN& Engineering,&Biological Engineering8

Michael Cima Professor Material Science & Engineering

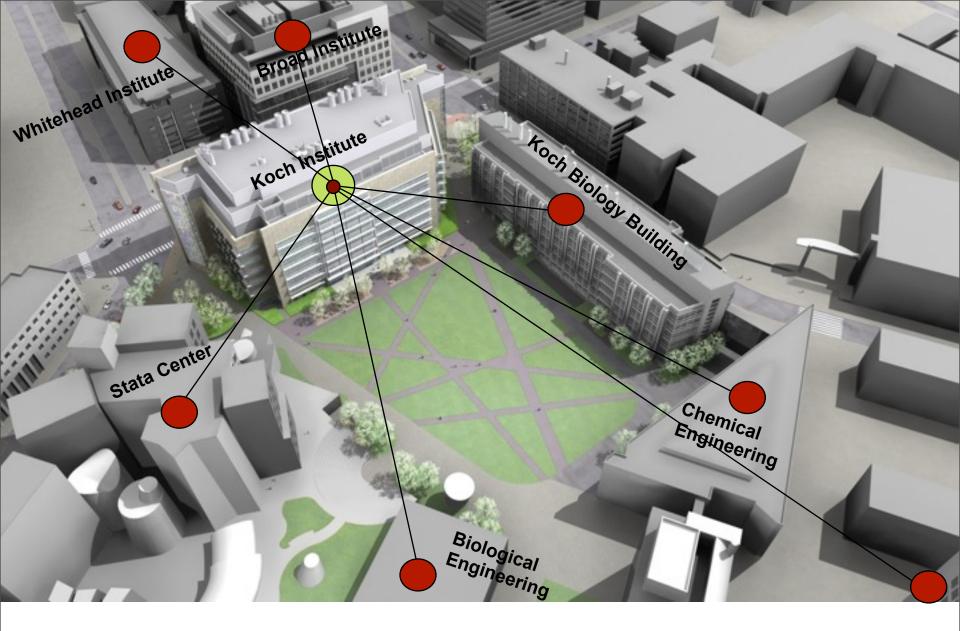
Paula Hammond Professor Chemical Engineering

Darrell Irvine Assoc. Professor Material Science & Engineering, Bio. Engineering

Robert Langer Professor Chemical Engineering, Biological Engineering

Christopher Love Asst. Professor Chemical Engineering

Scott Manalis Assoc. Professor Biological Engineering, Mechanical Engineering


Ram Sasisekharan Professor Biological Engineering, Heath. Sci. Tech.

Forest White Assoc. Professor g, Biological Engineering

K. Dane Wittrup Professor Chemical Engineering, Biological Engineering Assoc. Director

The Hub of Cancer Research at MIT

From Renderings to Reality

BORDER COOLER

that he ceretailors used #1. Harvard will reestablish a formal presence for ROTC taday, signaling an end to 40 years of beautions between the eventity and the million \$1

The House voted to reput humbers tax-filing requi ment contained is the b correlion, a move that h House support. A2.

NUMBER 63

f

\$1,00 Bi / Arministra

Forty-two Senate 6 opposed a continu-former Harvard and all Berwick in income the new loss &

The US militar is girding for a fresh offenning by the Takban in Afghanetic and says it is before positioned than Lett year Marina

erry week them BL. US off proof : a retireed fill agent pert in Man fear or

age to No.Rec. Max specific home forecal opped susty 52 per reavy composed with

title 14 period last year as disustitions shows proce the se g of properties, BS.

The Us for we Skable d States had bied to help protect katti, the Pakatan efficial Wetter which in a main state after publing for larghemy laws. A6 him-1 fait a Have as 617-92

contact POINT OF

"Let's not here, Why is taking ye money, y deductions. deductibles. acomment: giving it find gr downtown two

expiritise on hea for the most part, g further than their r trips to the una" 81.

Sunday, June 30, 13

to landn ark building ichael Levenson

subcord department store in the publicy Square, part of a broader consolidate the city's administrative gs and revitation a bong neglected

ment of POME Health, and the vacant bold-ing as part of a \$40 million plan, but Gover-nor Mitt Rossney scrapped three plans in

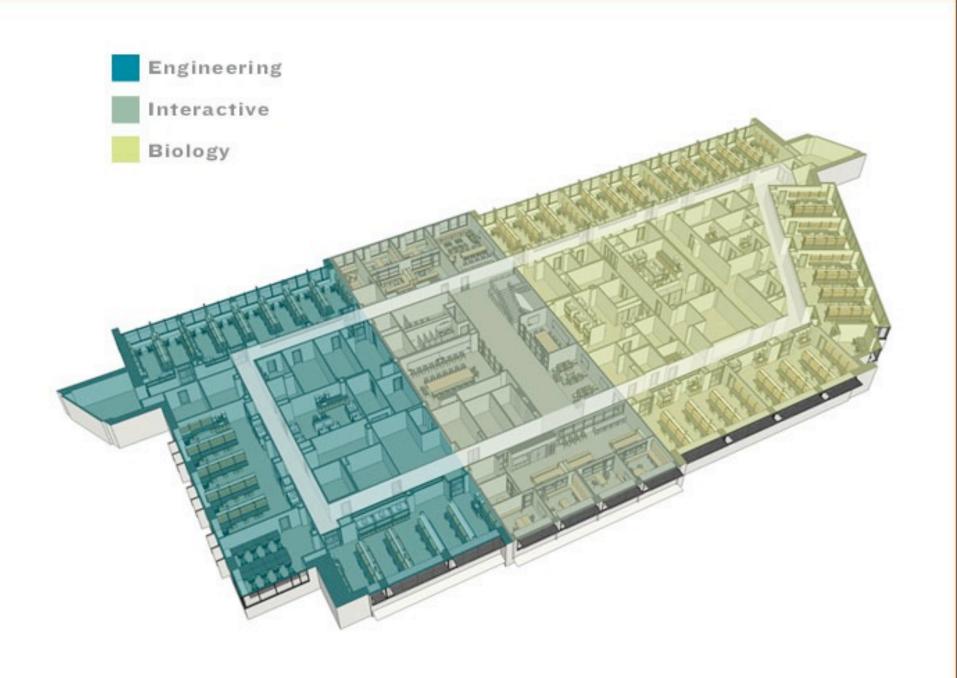
That year, Missino annunced plans to move the School Department to the long-domast site. Four years later, he even held a

e Ecch, which will be ded

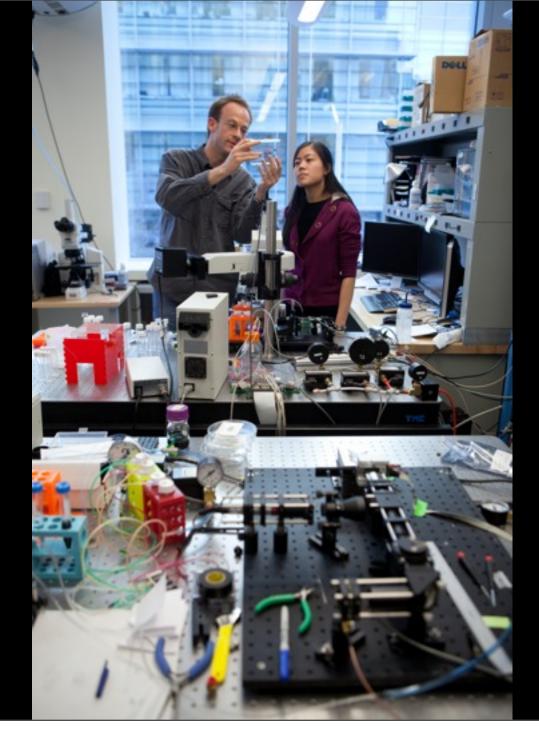
mday. "These are a storefry

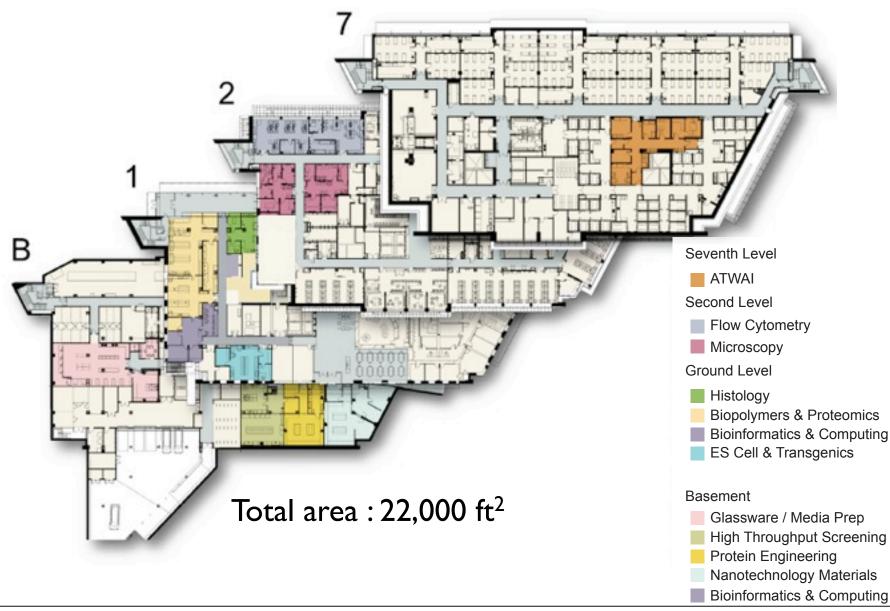
Dudley Sq. School D pt. would go

nus M. Mealao yonorday pro g the headquarters of the hos-bepartment into a more-grand



redham rin dentlar, if roo-adatory seatence n malel it is open off oronical animoro art anywhere is


>192,000 NASF
~27 Faculty Laboratories
>22,000 NASF of core facilities



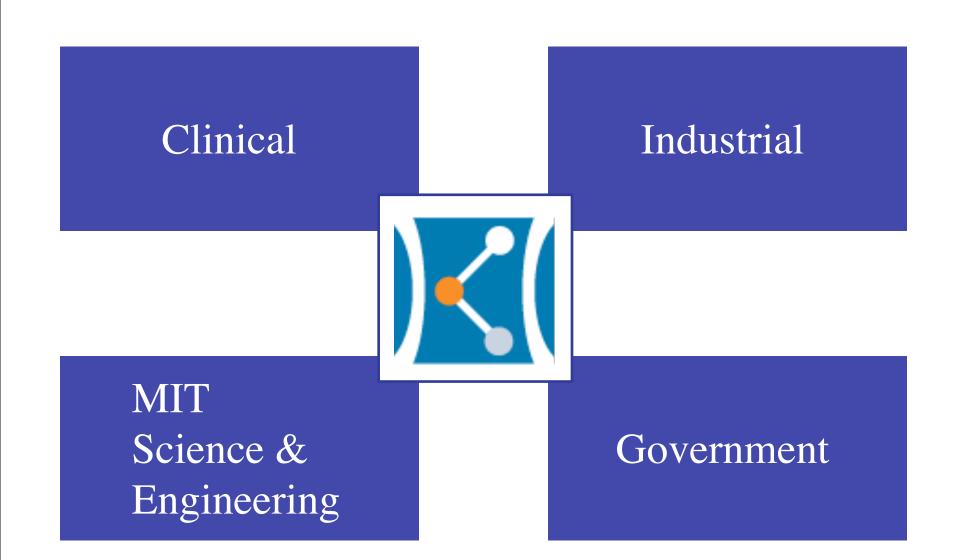
The KI Core Facilities have been organized into the Swanson Biotechnology Center

From Convergence to Confluence

A new educational series designed to bridge the Biology/Engineering divide

Modeling Cancer in the Mouse: The Basics

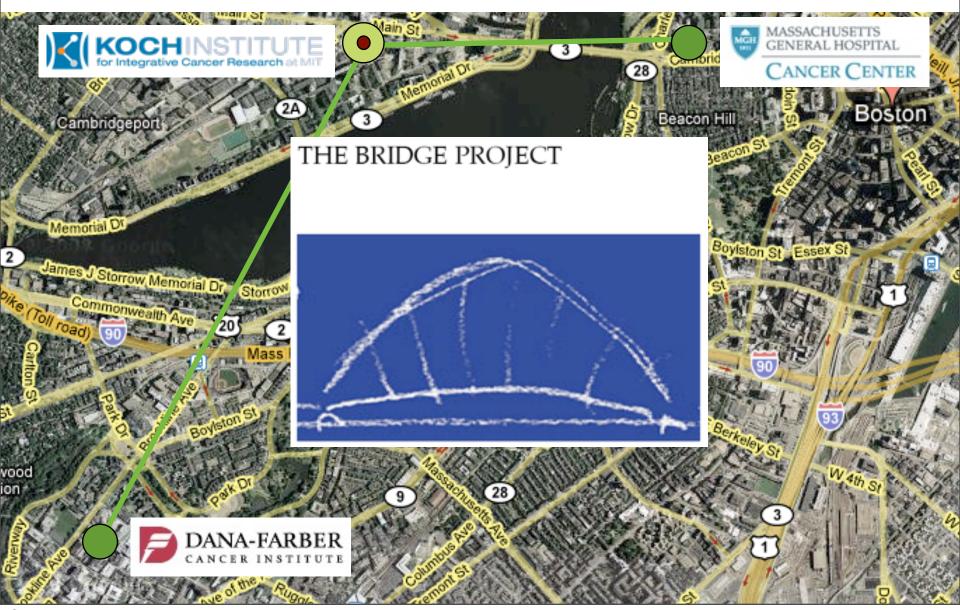
by David Feldser Jacks Lab


Wednesday, July 25, 3 PM 76-156 (KI auditorium)

ENGINEERING GENIUS BAR

The 2012 Koch Institute Retreat

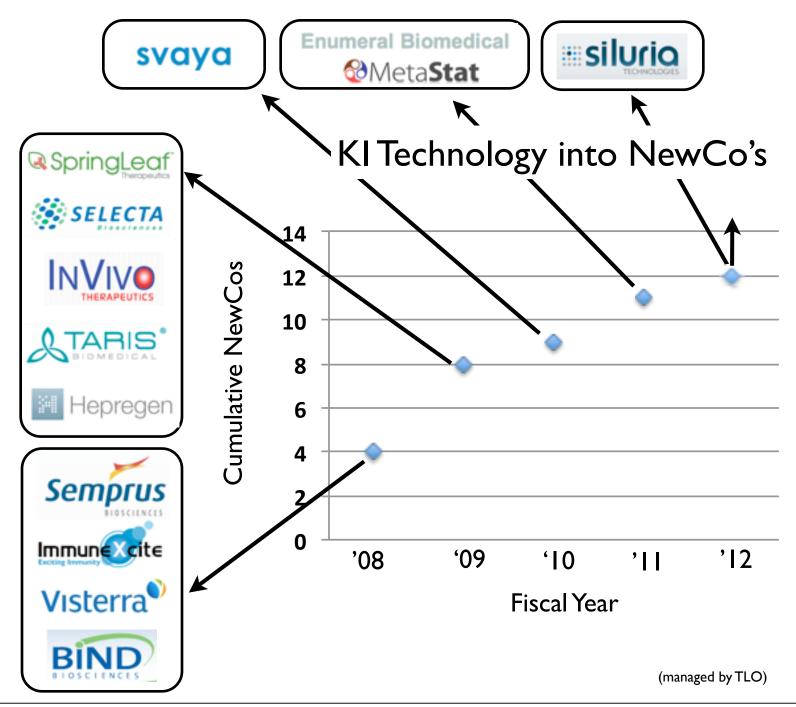
Koch Institute Clinical Investigator: Physician Scientist


Scott Floyd, MD, PhD Koch Clinical Investigator Brain Cancer Genetics and Treatment Instructor, BI Deaconess, Radiation Oncology

ctivity in clinical, translational, and basic research is essential. The ed individuals will have dedicated lab space and research support and will work closely with faculty mentors at the new Koch Institute.

Alice Shaw, MD, PhD Koch Clinical Investigator Lung cancer genetics and treatment Assistant Professor, MGH Thoracic Oncology Center

Enhancing Clinical Partnerships

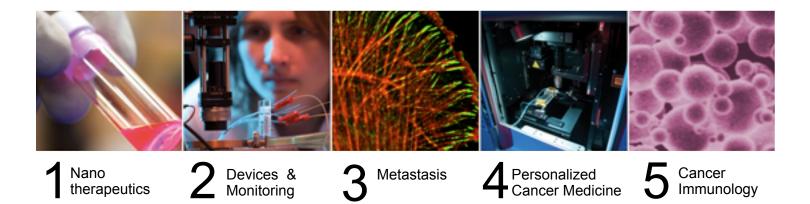

News

All News

Corporate News

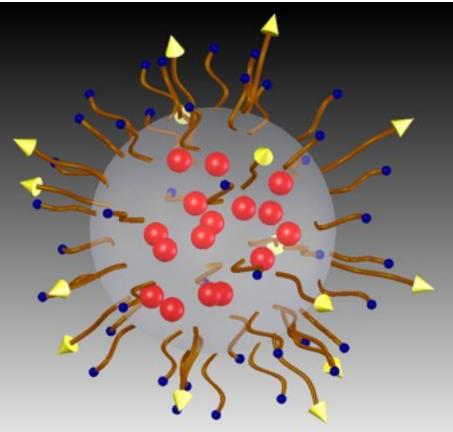
Product And Operating Company News Ortho-McNeil-Janssen Pharmaceuticals, Inc. Announces Oncology Research Collaboration Agreement with the Koch Institute for Integrative Cancer Research at MIT

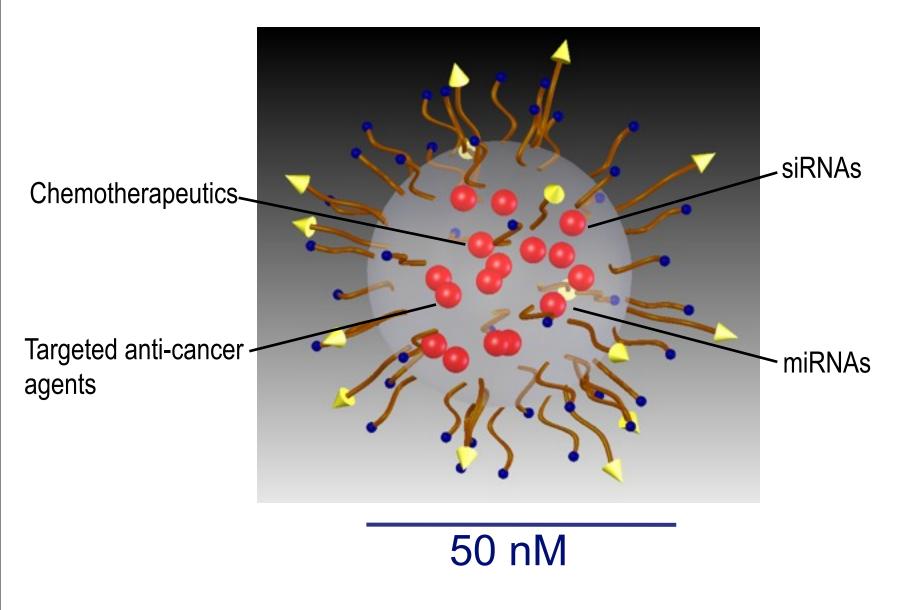
AA Text Size T Text Only 😆 Email to a Friend 👘 Printer Friendly 🔊 RSS

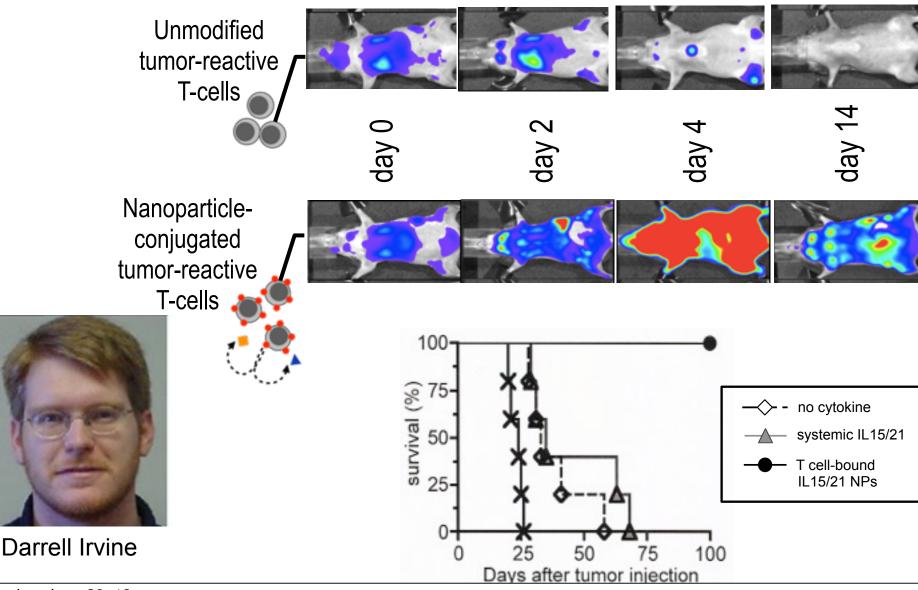


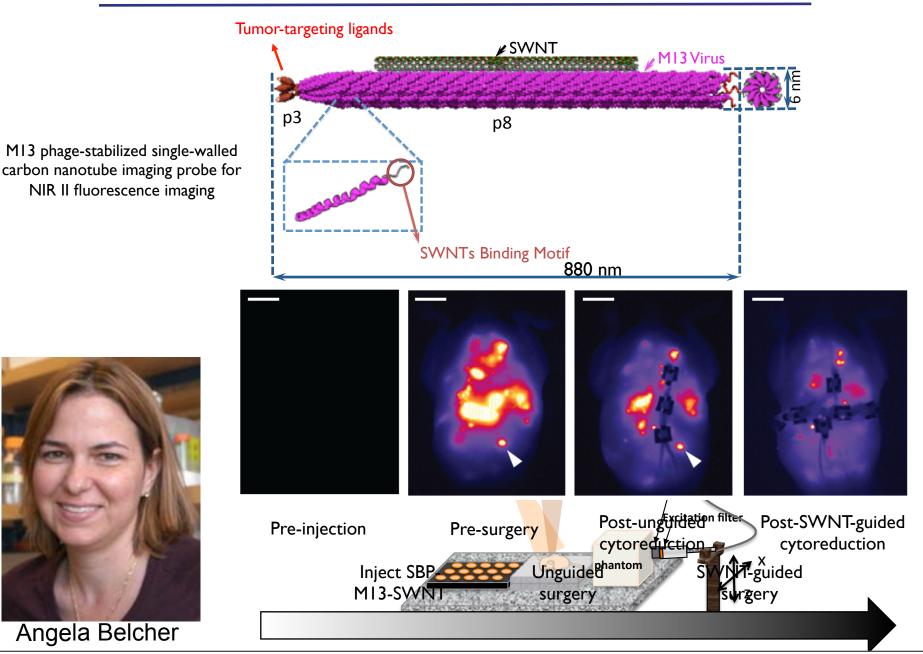
Sunday, June 30, 13



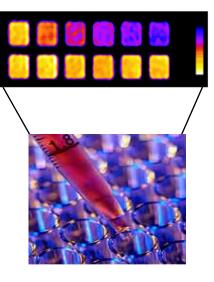

Priority Research Areas

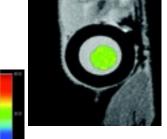


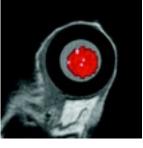


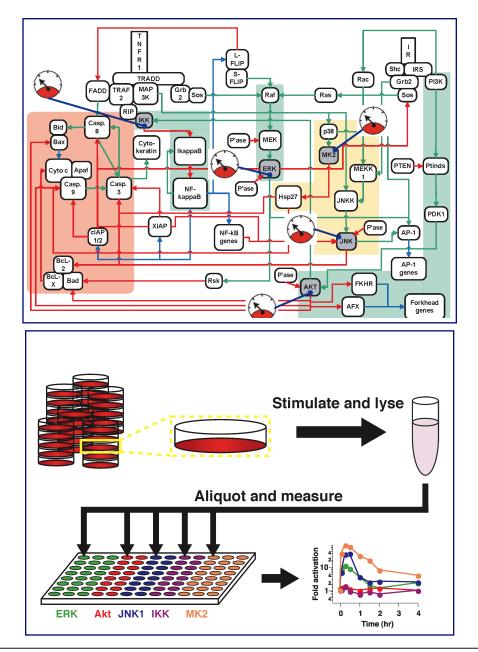

50 nM

Engineering the Immune System to Fight Cancer


Novel cancer imaging strategies


Engineer implantable devices to monitor and treat cancer





K Receptor	Receptor		Ē	R							T Antigen	
Receptor	Receptor		NFR-: NFR-: CD95	Fβ R-I ctivin cepto hibin cepto	EZF-1	PrP-Z	РтР-Ү	PrP-X	PPP-2A	EIA	Large T Antigen	6
Neurotensin	Vib		2		Bcr	PrP-2C	p55	p60	prac	denovirus	SV40 virus	G
Receptor	Receptor		TRA TRA FAI	TAK	Pitslre	PrP-2B	Calmodulin	Inh2	- p107	Middle Antigen	= p53 =	Small T Antigen
Receptor IL8	Receptor		F2	TAB1	Pictaire-3		Ca ²⁰		ap105 Rb	olyoma virus Large Antigen	IK	ß Integrin
Grocz Receptor	Sub. K Receptor	PTP 1B			Pictaire-2		, I L				Cell adhe- sion K.	CD11 α Integrin
fMLFP Receptor	Secretin Receptor	НРТРС	Tx	A1	Pictaire-1	Glyc: bigd-	Cyclin D3 Cyclin E G	CUK4 = 0 Cyclin F	Cip	CDK5	a ps	CD28
Endothelin Receptor	Prostacyclin Receptor	ΗΡΤΡγ	UPP32	Pag-1	Pitalre				7			CD4
CCK Receptor	PAF Receptor	НРТРЕ	ICH-1S	Bad	Kkialre		Cuclin Do	÷				δ chain
Cannabinoid Receptor	Oxytocin Receptor	SH-PTP1	ICH-1L	Bcl-XL	Picclra			Curlin A	CDK2 0	Csk1	Wee1	r chain ε chain
Calcitonin Receptor	Octopamine Receptor	HLRP	ICE-III	Bcl-XS	RNA-dep.		Cyclin B1 Cyclin B2 Mat1 Skp1 Skp2	Cyclin B2	Cyclin B	CDK1 8	Myt1	v chain
C5A Receptor		ΗРТРα	ICE-II	Bcl-2	β-sub.	Casein Kinase-20	Cyclin H RNA poly Casein β-sub.		CDK7 =	Cdc25		TCR ^Q
Receptor	ž	нртр	ICE	Bax	eIF-4E	Casein eIF-4E Kinase-1			Fra-2	Cip2	Ĭ	NO Rec. II
Bombesin		Нара							L		syk	NO Rec. I
Rhodopsin Receptor	Arrestin	Acetyl-CoA carboxylase Arr				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	N-Myc		Fra-1	MKP-2	ZAPK	ANF-Rec.
Taste Receptor	cGMP PDE					÷		2 Un	C-F05		SH2 SH2	Tie-1
Olfaction	cGMP PDE	AMP-dep.	Hrp75	Hsp70 Hsc70		F	ATF2	•	1	PAC-1	Btk	Tek
TSH Y Recentor	CGMP PDE		-	Hsp10 Hsp32	-		ZIXM	SAPKa	sk2		Itk	D A+
Receptor	ing PDE	5		Glycogen Synthase	-			SAPKβ	Rsk1		Tec St	Flg-2
LH/hCG Receptor	cGMP Stim. PDE	-		Phos. Kin. B sub.	Erk5		Hogo	SAPKy	Erk2	۴K	3	Bek
Histamine Receptor	inh. PDE	╡┙	MLC	α sub.	Mek5	Mkk3	Mkk6	Sek1		Mek2	Fer	Flg-1
Receptor GHRF Receptor	"stim: PDE =stim: PDE		MLCK		Tpl2	2 Mos	Mek	:k3 Mekk1	kk2 Mekk3	? Mekk2	SH2	
GnRH	Ca ²⁺ /CaM	Ht 31	ļ		ł		•					TrkC
Glucose	n' PDE			GSK3R	S6K	FKBP12			RafB	RafA	Pvk2	TrkB
Glucagon	"stim. PDE 	AKAP 95	Type II APR inh.	GSK3α	FRAP	Ř	Paki	ŝ	Raf1	, Ksr1	Eak	TrkA
Receptor		CAPK	-LAMK-V	Synapsin I	PKB	RhoA	Cdc42 e	Rac	Ras	14-3-3	14	Stk1
Dopamine D1 Receptor	AMP	RIIa. sub.			Camk-III	Ē	Rho-GAP	p62 F	NF1			Fms
Receptor	Aden: Cyclase - II						ŀ			ß	Fgr	Kit
ACTH Receptor	Aden. clase - I	4	CaMK-IIV		PKC2 :	GG	PI 3-K	D85 SHI SHI SHI SHI		SHZ	S.	Flt
Adenosine Receptor	2	PA	-Самк-щр			3 BP-1	Arg		Щ	11	BIK	FIk1
Somatostatin Receptor		← <mark>ਲ</mark>	CaMK-IIO	= PKCA		SH3 SH3 SH3 SH3 SH3 SH2	AD SH2 Pro	₽	×	Brk SHE	H _{ck}	ß Pee.
PGE2 Receptor		PL D .	CaMK-I			ŝ	Ş	Ĭ			Yrk	α rec.
Receptor Neuropeptide Y Recentor		Ceramide	CaMKK		в РКСВ =	SH3	SH2 SH3 SH3	Pro PTB SH2	4	7	Yes	Met
FRMF	8	- <mark>N</mark>	^{E2} Calmodulin		H PKCY =	Š	Grb2	Ť	F	Ntk	Ŀck	ErbB4
Dopamine D2 Receptor Enkaphalin	<u>9</u>	Sphingo- myelinase	CAK -	$P_2 \rightarrow DAG + P_3$	FA + UPC PP	PTB	SH3 SH2 SH3	SHZ SH2		Čč 2	Src	ErbB3
Bradykinin Receptor	2	Y	GB GY	β1 Ριζβ2	PC PLCB1	PLCY	Dynamin	Grb10		H3 H2	SH3 SH2	Neu
Angiotensin II Receptor	8				PL A2	PH SH2 SH2 SH3	Pro	Grb7	ĥ			ErbB EGF rec.
Receptor GABA Receptor	6		β Stat2	Ω.	ISGF 3Y	Stat3	Stat6	Stat5		4PS/IRS-2	4 P \$/)	IGF-II Rec.
Thrombin Receptor	2		13	H3 H2 H3 H2	JAK1	Tyk2	JAK3			IRS-1	12	Rec. β Sub
Receptor Serotonin Receptor	8		(b Kinase	130 GRK6	gp130	╞┥╴		βc-sub.	G	IL-2Ry	PH	IGF-1 Rec. α Sub
α-adrenergic Receptor	÷65	fch.		- CN - L	- II	F IF	IFN	GM	E	1 - 1	, IL	Rec. α Sub Insulin Rec. β Sub
Muscarinic Receptor	Ca+2 annel	Annel Ca+2		IFR IFR GRK4	-10R 6R -11R	Ν-γRα Ν-γRβ	-12R Ν-α/βR Ν-αR	-5Rα -csfrα	L-7R PO-R 3Rα	-2Rβ L-4R	-1Rα 2Rα	Insulin

Systematic analysis of cancer networks

 $\frac{1}{k_{off}}\frac{d\overline{R}}{dt} = -\overline{R}\frac{G_{1}\overline{P}_{a} + Da\overline{C}}{1 + Da\overline{R}} + \gamma(1 - \overline{R}) + \overline{C}$ $\frac{1}{k_{off}}\frac{d\overline{C}}{dt} = \overline{R}\frac{G_{1}\overline{P}_{a} + Da\overline{C}}{1 + Da\overline{R}} - \frac{\overline{C}}{1 - \delta}$ $\frac{de_{1p}}{dt} = \frac{I_0 + G_2 R_T \overline{C}}{1 + G_4 e_{3p}} \frac{1 - e_{1p}}{K_{m,1} + (1 - e_{1p})} - \frac{V_{\max,3} e_{1p}}{K_{m,3} + e_{1p}}$ $de_{2p} = k_2 e_{1p} (1 - e_{2p}) = V_{\max,4} e_{2p}$ $dt = K_{m,2} + (1 - e_{2p}) = K_{m,4} + e_{2p}$ $de_{3p} - k_3 e_{2p}(1 - e_{3p}) - V_{\max,6} e_{3p}$ $dt = K_{m,3} + (1 - e_{3n}) = K_{m,6} + e_{3n}$ $\frac{1}{k^{P}}\frac{d\overline{P}}{dt} = \mu(1-\overline{P}) - (v_{0} + G_{3}e_{3p})\overline{P}$ $\left|\frac{1}{k^{P}}\frac{d\overline{P}_{a}}{dt} = (v_{0} + G_{3}e_{3p})\overline{P} - \overline{P}_{a}\right|$

MIT Google People Offices

Search

about

visiting | maps | offices+services

admissions undergrad | graduate | financial aid

education

schools+courses OpenCourseWare | MITx | edX

research

labs+centers | lincoln lab | libraries

community

students | faculty | staff | alumni

life@MIT

arts athletics video

Initiatives

energy | cancer | diversity | global

impact

Industry | public service |

commencement

P

news

Exploding the myths of manufacturing

Thailand's microfinance mystery

3Q: The hidden history of camouflage

Studying school quality, to fight inequality

research campus press

events

DOXORUBIC

DOXORUBICIN

MIT study shows that staggered delivery

of cancer drugs is far more effective

Of Note: Yesterday Happened: Remembering H.M., by Catalyst Collaborative@MIT (tonight)

Adel F. Sarofim Memorial Symposium (today)

Launching SpaceX: How to Build a Rocket Company (today)

GIVE TO MIT O

D-Lab Decennial Gala (tomorrow)

Today's image

jobs | facts | services | contact | about the spotlight

NIB

MIT | 77 Massachusetts Avenue | Cambridge, MA 02139-4307 | 617.253.1000 | TTY 617.258.9344 | Follow us on: 🔢 💽 🌿 🄡

UBI

DOX

BICIN

today's spotlight

Giving breast cancer

the one-two punch

D

ERLOTINIB ERLOTINIB ERLOTINIB

science + engineering...conquering cancer together

