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Multi-Phase Survey Design Considerations 
 

• Statistical objectives 
 

• Multi-phase design choices 
– General framework  
– Costs (data acquisition, screening survey, classification survey) 
– Errors (variance of estimates, survey bias, misclassification) 
– Optimal design conditional on existing data 

 
• Measurement error across phases 

 
• Estimation and Inference 

– Direct, design-based methods 
– Model-assisted, model-based  
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Statistical Objectives of a Screening Study 

• Target population 
 

• Estimation of prevalence, population size 
 

• Screening to identify a sample for in-depth 
subpopulation study 
– Descriptive characteristics, DX types, symptoms 
– Incidence, age of onset 
– Associated factors, causal insights (?) 
– Treatment seeking, treatment compliance 
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Notation for the Sequence: Design, 
Observation, Measurement and Estimation 

Z 

 

X 
 

Y Y* ̂

Z – Existing population data, frame 
X -  Phase 1 Screening data  
Y -  Phase 2 measurement of outcome of interest 
Y*- Validated, calibrated outcome of interest 
       -  Estimate of population parameter 

 
̂
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Multi-phase Design Framework 

Step 0: Evaluate, prepare existing 
population data, frame Z  

Step 1: Screening phase  X|Z 

Step 2:  In-depth observation phase Y|Z,X 

Step 3: (optional).  Validation or calibration 
of survey measures Y|Z,X Y*|Z,X 

Step 4: Estimation and inference for θ  
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Cost Factors in Optimal Multi-phase Design 
• Prevalence of target population 

– Prevalence estimation, drives n for estimating P 
– Subpop study, drives n to achieve eligible sample of size m 

 
• Need for new Step 1 survey screening (alternative is to assign 

screener status using existing data source). 
 

• Ratio of phase-specific unit costs: C(2)/C(1) 
 

• Sensitivity of Step 1 screener 
– High false positive rate requires larger Phase 2 follow-up sample 

size to identify eligible case sample of size m. 
 

• Need for validation, calibration for YY* 
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Error Factors in Optimal Multi-Phase Design 

• Prevalence of target group – drives sampling variance 

• Strength of associations: Step 1 (X|Z), Step 2 (Y|Z,X) 

• Specificity of screener 
– Coverage of all true cases requires Step 2 subsampling of 

negative screens 

– High false negative rate based on Step 1 screener implies need 
for variable weighting of true cases in positive screen and those 
in subsample of screen negative cases 

– Variable subsampling and weighting of Step 1 +/- screens 
• Increases variance of estimates of population prevalence 

• Inflates variances of estimates for analyses of true subpopulation 
cases 

• Validity of Y for Y*-  potential for classification bias 
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Measurement:  
Sensitivity/Specificity of  Step 1 Screening 

Step 1 Screening or 
Model Assignment, 

g(Z,X) 
 

 

Step 2 Observed Status (Y) 
 

NO YES 

NO 

YES 
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Measurement Example:  
Sensitivity/Specificity of  Step 1 Screening 

( Example:  true prevalence=.20) 

Step 1 Screening or 
Model Assignment, 

g(Z,X) 

Step 2 Observed Status (Y) 

NO (0) YES (1) Total 

 
NO (0) 

P00=.64 P01=.04 
 

P0+=.36 
 

 
YES (1) 

P10=.16 
 

P11=.16 
 

P1+=.64 
 

 
Total 

P+0=.80 
 

P+1=.20 
 

P++=1.00 
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Screener Sensitivity=P11/P+1=0.8             Screener Specificity=P00/P+0=0.8     
   



Approximate % Increase in Variance of 
Estimated Prevalence Based on Step 2 Sample 
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Example of Weighting Loss in Variance of Estimates of 
Population Prevalence Due to Step 2 Subsampling of 

Step 1 Negative Screens ( true prevalence, P=.20) 
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fpos fneg, sub % Increase in 
Var(p) 

1.0 0.5 8% 

1.0 
 

0.33 22% 

1.0 
 

0.25 36% 

1.0 
 

0.10 130% 



 
Expected Disposition of Step 2  

Eligible Cases in a Two-Phase Design 

 

 
Step 1 Screening or Model 

Assignment, g(Z,X) 

Step 2  Expected Eligible Cases . 

Expected sample size. 
Eligible true cases 

Relative Design 
Weight. 

Step 1 is epsem. 

 
NO (0) 

 
Wi =K=1/fneg, sub 

 
YES (1) 

  
Wi = 1.0 
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Approximate % Increase in Variance of Mean 
Estimates for Phase 2 Eligible Subpopulation Sample 
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Example of Approximate % Weighting Loss in Variance 
of Estimated Means for Phase 2 Eligible Subpopulation 

Sample ( true prevalence=.20, sensitivity=0.8) 
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fpos fneg, sub Step 1 Screen Specificity  

1.0 0.9 0.8 0.7 0.6 0.5 

1.0 0.5      0% 11% 13% 12% 11% 10% 

1.0 
 

0.33 0% 30% 34% 33% 30% 20% 

1.0 
 

0.25 0% 50% 56% 54% 50% 46% 

1.0 
 

0.10 0 180% 203% 194% 180% 265% 



Measurement: 
Reliability and Validity in True Case Identification 

Observed/Assigned Case 
Status, Y 

True Case Status (Y*) 

NO YES 

NO  
Specificity:  90.9% 
Sensitivity:  77.9% YES 

Total 
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Kessler, et al. (2009).  The National Comorbidity Survey Adolescent Supplement 
(NCS-A): III. Concordance of DS<-IV/CIDI diagnoses with clinical reassessments. J 
Am Acad Child Adolescent Psychiatry: 48(4):386-399 
 
• Any disruptive behavior disorder,  AUC = .84 



Integrating survey and administrative data. 
Adaptation to Information Content of Available Data 

Traditional Survey Design, 
Measurement and Inference, e.g. 

Double Sampling 

Model-Assisted Survey Design, 

 Inference 

Survey-Assisted Modeling 

Modeling, Data Mining, “Analytics” 
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High Z, 
High X, 

Some Y? 

Low Z, 
No X,Y 
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Multi-phase Data Collections: Double Sample 

• Probability sample selected on the basis of Z 
• Step 1 screening ascertains X for full sample 
• Step 2 in depth interview or clinical follow-up for 

subsample ascertains Y or Y*. 
• Optional: Calibration study after Step 2 determines Y 

Y*  

 
 

Traditional Survey Design, Measurement and 
Inference, e.g. Double Sampling 
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Flint Men’s Health Study 

• Heeringa, SG., Alcser, KH., et al. (2001), “Potential Selection Bias in a 
Community-Based Study of PSA Levels in African-American Men,” Journal 
of Clinical Epidemiology,54(2),142-148. 

 

•  Multi-phase design 

– Step 0:  Area probability sample frame for Flint, MI  disproportionately 
allocated to efficiently identify African-American households.  

– Step 1:  Screening of new household sample to: 1) identify African-
American males age 40+, 2)conduct health history interview, 3)obtain 
blood sample for PSA test (X|Z). 

– Step 2:  Sample of Step 1 participants stratified by measured PSA level. 
Urologist clinical visit for clinical tests and transrectal ultrasound 
(TRUS) to determine probable cancer Y|X,Z. 

– Step 3:  Biopsy to confirm cancer in detected growths, YY* 
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Multi-phase Data Collections:  
Model-Assisted Survey Design 

• Z, X0 known for the population or existing probability sample 
• Model of f(Y*|Z,X0) is assumed 
• Step 1: Under the assumed model, near optimal sample is selected 

directly based on f(Y|Z,X) and known values of Z, X0 

• Step 2: In depth interview or clinical follow-up for the subsample 
ascertains Y or Y*, f(Y|Z,X) is estimated and used in population estimation. 

• Optional: Calibration study after Step 2 determines properties of Y Y*  
• Standard estimation of θ from sample data  

 

 
 

Model-assisted Two-Stage Survey Design.  
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Aging Demographics and Memory Study (ADAMS) 
- Direct Estimation 

• Langa, K.M., Plassman, B.L., Wallace, R.B., Herzog, A.R., Heeringa, S.G., 
Ofstedal, M.B., Burke, J.R., Fisher, G.G., Fultz, N.H., Hurd, M.D., Potter. 
G.G., Rodgers. W.L., Steffans, D.C., Weir, D.R., Willis, R.J. (2005). “The 
Aging, Demographics and Memory Study: Study Design and Methods”. 
Neuroepidemiology, 25, 181-191. 

 

• Multi-phase design 

– Step 0:  Health and Retirement Survey (HRS) longitudinal panel of U.S. 
adults born prior to 1949.  Rich longitudinal data including cognition 
test measures from HRS 2000, 2002.  Ability to estimate a logit model 
of the probability of dementia from an external data set.  Based on 
existing information in the HRS and a model the HRS panel “frame” 
was stratified by age, gender and cognitive score. 
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Dementia Probability Model  (VSMA)* 
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  0 1 2 3( | )  = 

:

 TICS 10 for HRS Self-reporters

=  JORM IQ Code Score for Proxy Reports

logit p dementia X Age Educ CogScore

where

CogScore

        



* Source:  Veterans Study of Memory and Aging 
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Figure 1:  Predicted Probability of Dementia. 

Model Estimated from VSMA Data 
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Aging Demographics and Memory Study (ADAMS) 
- Direct Estimation 

• Langa, K.M., Nlassman, B.L., Wallace, R.B., Herzog, A.R., Heeringa, S.G., 
Ofstedal, M.B., Burke, J.R., Fisher, G.G., Fultz, N.H., Hurd, M.D., Potter. G.G., 
Rodgers. W.L., Steffans, D.C., Weir, D.R., Willis, R.J. (2005). “The Aging, 
Demographics and Memory Study: Study Design and Methods”. 
Neuroepidemiology, 25, 181-191. 

 

• Multi-phase design (continued) 

– Step 1:  “Screening” and stratified subsampling for follow-up of HRS panel 
based on a stratification that used an externally estimated model relating 
probability of dementia to: age, education level , and TICS/JORM cognition 
test scores (2000 or 2002).  

– Step 2:  In-home neurocognitive assessment, medical records collection, 
followed by consensus diagnostic conference review by expert medical 
panel to assign diagnosis category: normal, CIND, possible dementia, 
probable dementia, ALZ 

– Step 3:  Two year follow-up to refine probable/possible dementia into 
CIND and dementia categories. YY* 
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Aging Demographics and Memory Study (ADAMS) 
- Direct Estimation 

ˆ

:

1 if ADAMS respondent i=1,...,n is classified as dementia, 0 otherwise;

 a case specific (population) weight to reflect sampling probabilities 

and nonresponsein the HR

i i

i
dementia

i

i

i

i

w y

p
w

where

y

w













S panel and the ADAMS subsample.

ˆ( ) ~  computed using variance estimation methods

appropriate to the ADAMS complex sample.

dementiase p
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ADAMS Estimates of 
2002 Population Prevalence, Age 71+ 

Dementia

14%

Normal

64%

CIND

22%

Sources : Plassman B, Langa K, Fisher G et al, 2007, 2008. 

US Population, Age 71+: 

Dementia  3.4 million 

CIND   5.4 million 

Total Pop    24.3 million 
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ADAMS Direct Estimates of Overall Prevalence of 
Dementia by Age Categories 
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Age Adams Direct 

70-79 years 4.95 

(1.27) 

80-89 years 24.13 

(2.22) 

≥ 90 years 38.18 

(3.79) 

Total 13.67 

(1.29) 

Percentages and Complex Design Corrected Standard 
Errors (parentheses) . 



Multi-phase Data Collections:  
Survey-assisted Modeling 

• Z, X0 known for the population or existing probability sample that represents the 
full population 

• Y* is not known.  Model of f(Y*|Z,X0)  is assumed but parameters cannot be 
estimated from existing data. 

• Step 1: Under the assumed model, sample is selected based on known values of Z, 
X0.  Sample design is optimized to estimate f(Y|Z,X). 

• Step 2,3: In depth interview or clinical follow-up for the subsample ascertains Y or 
Y* and concurrent values of X, Z.   

• From the survey data (training set), a “best”  predictive model, f(Y|Z,X) is 
estimated  

• The predictive model estimated from the survey is used to predict Y  for each 
element in the existing frame (e.g. population reference, large baseline survey). 

• Estimation and inference are based on model-predictions, properly reflecting the 
uncertainty associated with the modeled values of Y*.  

 
 

Survey- Assisted Modeling 
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Multi-phase Data Collections:  
Survey-assisted Modeling 

• Predictive modeling approaches assign classification probabilities to 
all elements in the population frame (or weighted sample): 

 

Gertrude:  “I hear the average American family now has  1.5 
automobiles.” 

Heathcliffe: “I bet that half a car is tough to drive.”  

Red Skelton (ca. 1968) 

 

• Decision is needed to analyze on probability scale or use 
probabilities to impute discrete classification. 

 

• Inference should reflect prediction (imputation) uncertainty 
inherent in modeled values. 
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Estimation and inference:  

Predicted probability or discrete classification? 

• Option 1: Use probability of  dx classification 
directly in analysis 

 

 

• Option 2: Impute discrete classification 
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ADAMS- Survey Assisted Modeling. 
Estimating the prevalence of dementia in the U.S. 

household population, age 70+ (2002)* 
 

 
 
Statistic 

 
ADAMS 
Direct 
Estimate 

Predictive Modeling Method 
Using ADAMS to predict dementia for full HRS. 

Logistic 
Regress 

w/MI 

 
Lasso 

Random 
Forest 

 
Boosting 

 
BART 

0.137 0.141 0.156 0.156 0.157 0.155 

0.013 0.004 0.004 0.004 0.004 0.004 

ˆ
dementiap

ˆ( )dementiase p

* Covariate data base: HRS 2002.  Predictive models fitted based on ADAMS sample 
data. 
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HRS: Logistic Regression Model for Overnight 
Stays in Hospital during the Past Two Years* 

2002 2004 

Dementia* 1.30 1.32 

(1.11 - 1.53) (1.09 - 1.60) 

Age 1.03 1.03 

(1.02 - 1.04) (1.02 -1.04) 

White 1.22 1.08 

(1.01  - 1.46) (0.94 - 1.25) 

Female 0.92 0.87 

(0.82 - 1.04) (0.79 – 0.96) 

Odds Ratios, with 95% CI in parentheses 
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*Dementia predictor is predicted value from ADAMS dementia logistic 
prediction model.  Multiple imputation of predicted probabilities is used 
to reflect imputation uncertainty in the model predictions. 


