
UNDERGRADUATE RESEARCH EXPERIENCES IN ENGINEERING: THE STUDENT PERSPECTIVE

Presentation to the National Academies Board on
Science Education

November 19, 2015, Washington, DC

About my research

2

- Preparing a diverse new generation of engineers and scientists
- Creating self-directed learners
 - Understanding motives behind why students are here
 - Examining interactions between motivation and learning
- Providing empirical evidence to support education initiatives that empower students

My URE research emerged from differences in student motivation and problem solving practices in different learning environments.

3

“Yeah, I feel like I am willing to be more creative, like when it comes to our [research] or something like that, but in class, I just know there's a right answer. And you could get an A if you know how to do it. So it's a little more frustrating in the school setting if you are given a problem that doesn't have a specific answer.”

- Researcher identity and epistemic cognition: perceptions and attributes of undergraduate researchers do not necessarily translate to classroom practices.¹

Images courtesy of:

<http://www.rose-hulman.edu/news/on-campus/2012/siemens-features-rose-hulman-design-project.aspx>
<http://www.stke.k12.nf.ca/9-4%20Career%20List/Mechanical%20Engineer.html>

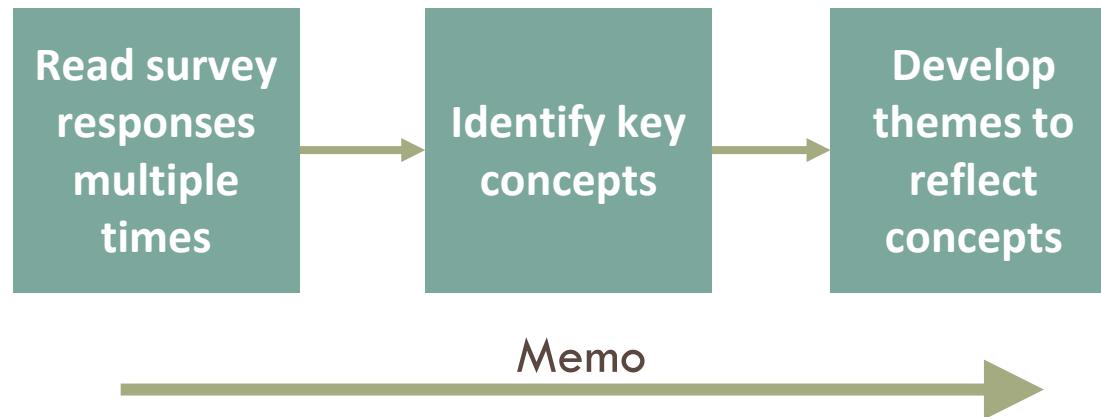
¹Faber, C. and L. Benson, “Undergraduate Engineering Students’ Development of a Researcher Identity,” 2015 AERA Conference, Chicago, IL

Research skills align with important aspects of engineering practice and ways of knowing engineering concepts.

□ Our research questions:

- How do undergraduate engineering students develop their identities as researchers and their ways of knowing engineering through UREs?
- How do UREs affect students' views of research and being researchers?

□ Our methods:


- Sixteen engineering students who had participated in research completed three open-ended surveys focused on researcher identity
- Six BME students interviewed, focused on epistemic cognition (aims and processes) during research experiences

How do undergraduates in engineering see themselves as researchers?

- Set of 3 open-ended surveys developed iteratively
- Sought to understand students' beliefs about research, views of themselves as a researcher, and experiences with research
- Example questions:
 - Why did you start doing research?
 - In your words, what is research?
 - What is the purpose of research?
 - Do you feel like you are a researcher?
 - [If yes...] Describe three ways in which you see yourself as a researcher.

Conventional qualitative content analysis was used to analyze students' responses.¹

- Avoids using predefined categories
- Allows for ideas to emerge from the data

¹) Hsieh, H. & Shannon, S.E. (2005) Three Approaches to Qualitative Content Analysis. *Qualitative Health Research*, 15(9), 1277-1288.

All of the students in the study identified themselves as researchers.

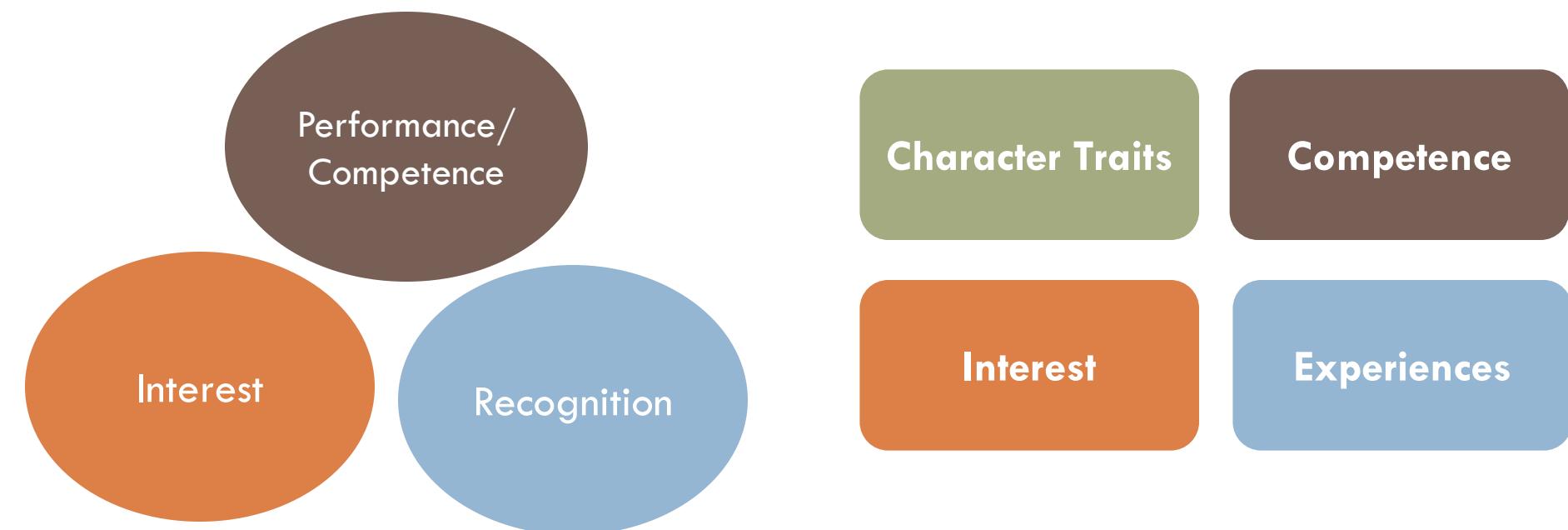
- Four themes emerged to describe why they felt like researchers.

Character Traits

“I have a strong work ethic that helps me to work well.”

“I am interested enough in specific topics to put forth the effort to run experiments to find results.” Participant 29

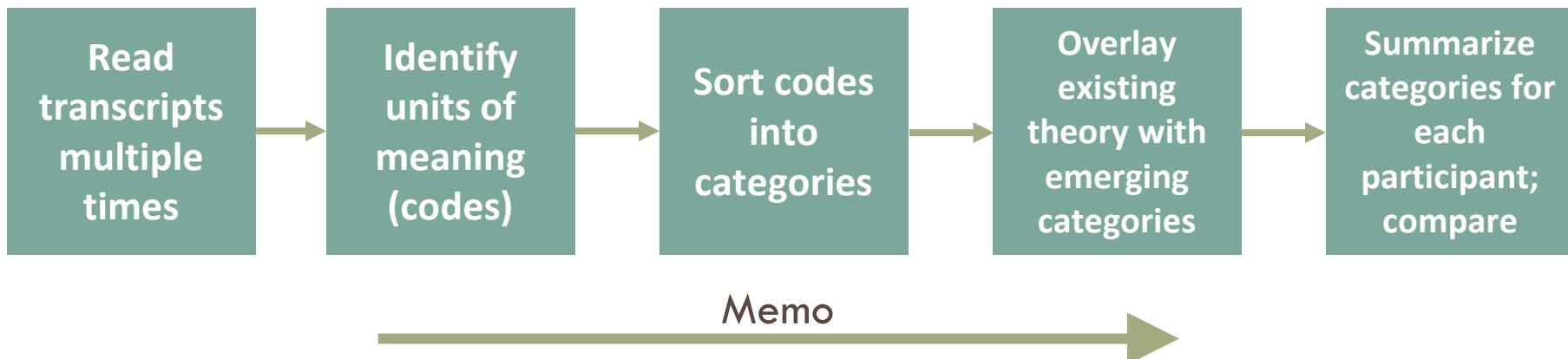
Competence


“I have the knowledge sufficient to usually contribute to best

“I know how to and have performed extensive literature reviews and made presentation, papers based off of it.”
Participant_17

Interest

This work is the first step in establishing a framework to assess students' development of a researcher identity.


- Themes are similar to those in a discipline-based identity framework^{1, 2}

1) Hazari, Z., Sonnert, G., Sadler, P. M., & Shanahan, M.-C. (2010). Connecting high school physics experiences, outcome expectations, physics identity, and physics career choice: A gender study. *Journal of Research in Science Teaching*, 47(8). 2) Godwin, A., Potvin, G. & Hazari, Z. (2013). The Development of Critical Engineering Agency, Identity, and the Impact on Engineering Career Choices. *Proceedings of the ASEE Annual Conference*, Atlanta, GA.

How do undergraduate engineering students develop their ways of knowing engineering through UREs?

- Six biomedical engineering undergraduate students interviewed about their UREs, focusing on epistemic cognition
- Sample interview questions:
 - Tell me about your research experiences.
 - How do you evaluate the success of your research?
 - What do you hope to gain from research?
 - When starting a new study, how do you decide what methods to use?

What students get out of a URE is not necessarily related to why they seek research experiences.

- Research project choice based on interest
- Both epistemic and non-epistemic goals
- Students' research decision-making processes not related to goals; more related to their research group
 - More autonomy → Clearer research outcomes and relevance, contributions to research group discussions
 - Less autonomy → Difficulty describing research outcomes and relevance; did not develop research skills to the same extent
 - Struggles with their project or the structure of their research experience → Lack of adopting research community's epistemic processes (how knowledge is made)
- Students new to research are more likely to rely on mentors than on peer-reviewed resources to confirm research decisions

Research findings can inform design and implementation of effective UREs in engineering.

- Give students the chance to experience authentic research activities
 - Literature reviews
 - Design experiments
 - Analyze results
 - Write reports
 - Present work
 - Work with others
- Scaffold experiences to help students develop competencies
- Facilitate student involvement in research that interests them

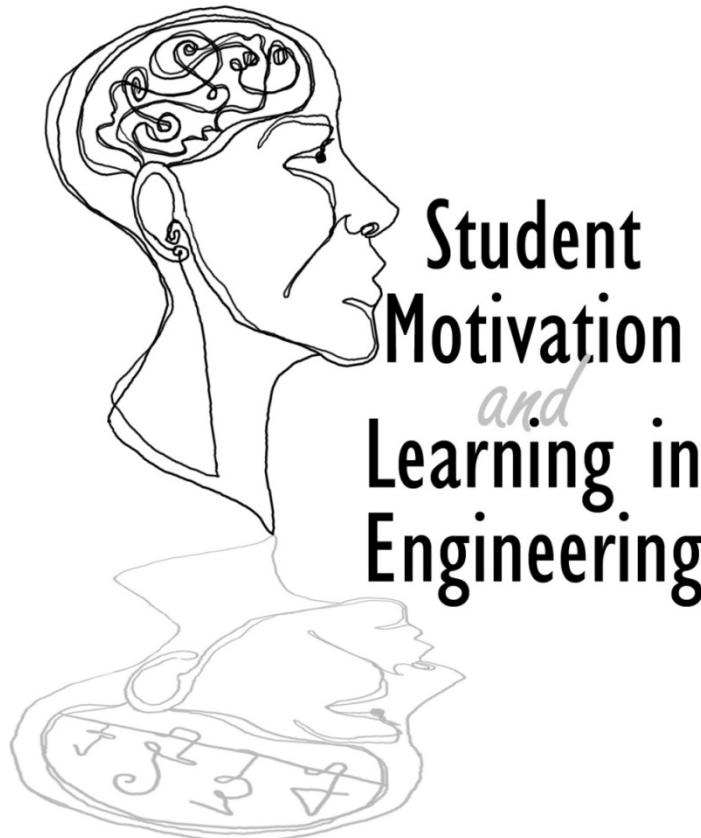
Directions for future research on UREs: The student's perspective & long term outcomes

- Broaden study population to create comprehensive descriptions of UREs from students' perspectives
 - How undergraduates conceptualize research
 - How/if they view themselves as researchers
 - How they understand the nature of knowledge and knowing in their fields
- Study the impact of research group culture and structure on students' epistemic cognition when making research decisions and on development as a researcher
- NSF Award EEC-1531607: Student Perspectives on Researcher Identity and Transformative Epistemologies (SPRITE)

SPRITE will start with a multi-institution quantitative study on researcher identity and epistemic beliefs.

Engineering Epistemic Beliefs Items

1	Theories in engineering cannot be argued or changed
2	Classroom engineering problems have only one right numerical answer.
3	Engineering problems outside the classroom have only one right answer.
4	Engineering knowledge cannot be subject to change with new observations by individuals.
	Engineering knowledge cannot be subject to change with new


Need for Cognitive Closure

- 1 Even after I've made up my mind about something, I am always eager to consider a different opinion.
- 2 I don't like situations that are uncertain.
- 3 I dislike questions which could be answered in many different ways.
- 4 I feel uncomfortable when I don't understand the reason why an event occurred in my life.

Classroom Need for Closure

- 16 I carefully plan my study time for [ENG] class.
- 17 I think that having a detailed and complete syllabus in my [ENG] class is necessary for me to be successful.
- 18 I like to go into [ENG] class knowing what I can expect for the day.
- 19 I hate it when I have to change my study plan for [ENG] class.
- 20 I feel uncomfortable when my [ENG] class is not well organized and focused.

Thank you!

Student Motivation *and* Learning in Engineering

Acknowledgements:

The Benson Research Group

The SPRITE Research Group:

Courtney Faber, The College of NJ

Rachel Kajfez, The Ohio State University

Marian Kennedy, Clemson University

Penelope Vargas, Clemson University

NSF Support: GRFP; CAREER Award
EEC-1055950, and EEC-1531607