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Cell phones and toasters work because they are built on a
foundation of empirical measurements.

Ho et al. (1974)



Table 2: Summary of literature sources for model damage specifications and interlinkages between models.

 

Model& Damage&type! Study! Basis! Interlinkages&to&
SCC&models!

DICE& Aggregate'non*SLR! IPCC'(2007),'Tol'(2009)1! Calibration! DICE,'FUND,'PAGE!
' SLR'coastal'impacts! Undocumented! ' '

FUND'
Agriculture!

Kane'et'al.'(1992),'Reilly'et'al.'(1994),'
Morita'et'al.'(1994),'Fischer'et'al.'(1996),'
Tsigas'et'al.'(1996)!

Calibration! '

' Tol'(2002b)! Income'elasticity! '

'
Forestry!

Perez*Garcia'et'al.'(1995),'Sohngen'et'al.'
(2001)! Calibration! '

' Tol'(2002b)! Income'elasticity! '
'

Energy! Downing'et'al.'(1995),'(1996)! Calibration! '
' Hodgson'and'Miller'(1995)! Income'elasticity! '
'

Water'resources! Downing'et'al.'(1995,'1996)! Calibration! '
' Downing'et'al.'(1995,'1996)! Income'elasticity! '

' Coastal'impacts!
Hoozemans'et'al.'(1993),'Bijlsma'et'al.'
(1995),'Leatherman'and'Nicholls'(1995),'
Nicholls'and'Leatherman'(1995),'
Brander'et'al.'(2006)!

Calibration! '

'
Diarrhoea! WHO'Global'Burden'of'Disease'(2000)! Calibration! '

' WHO'Global'Burden'of'Disease'(2000)! Income'elasticity! '

'
Vector*borne'diseases!

Martin'and'Lefebvre'(1995),'Martens'et'
al.'(1995,'1997),'Morita'et'al.'(1995)! Calibration! '

' Link'and'Tol'(2004)! Income'elasticity! '

'
Cardiovascular'and'
respiratory'mortality! Martens'(1998)! Calibration! '

'
Storms! CRED'EM*DAT'database,'WMO'(2006)! Calibration! '

' Toya'and'Skidmore'(2007)! Income'elasticity! '
' Ecosystems! Pearce'and'Moran,'(1994),'Tol'(2002)! Calibration! '

PAGE' SLR! Anthoff'et'al.'(2006)2! Calibration'&'
income'elasticity! FUND!

' Economic! Warren'et'al.'(2006)3! Calibration! DICE,'FUND,'PAGE!
' Noneconomic! Warren'et'al.'(2006)! Calibration! DICE,'FUND,'PAGE!

' Discontinuity! Lenton'et'al.'(2008),'Anthoff'et'al.'
(2006),'Nordhaus'(1994)4! Calibration! DICE,'FUND!

' Adaptation'costs! Parry'et'al.'(2009)! Calibration! '
                                                        
 
1'Tol'2009'is'a'meta'analysis'of'the'following'global'damage'studies:'Nordhaus'(1994a),'Nordhaus'(1994b),'Fankhauser'
(1995),'Tol'(1995),'Nordhaus'and'Yang'(1996),'Plambeck'and'Hope'(1996),'Mendelsohn,'Schlesinger,'and'Williams'(2000),'
Nordhaus'and'Boyer'(2000),'Maddison'(2003),'Rehdanz'and'Maddison'(2005),'Hope'(2006),'and'Nordhaus'(2006).'These'
studies'themselves'report'impacts'estimated'by'earlier'versions'of'the'SCC'models,'specifically'DICE*94,'RICE*96,'RICE*99,'
DICE*99,'PAGE95,'PAGE2002,'and'FUND1.6.'
2'Anthoff'et'al.'(2006)'is'a'study'of'coastal'impacts'that'uses'version'2.8'of'the'FUND'model.'
3'Warren'et'al.'(2006)'is'a'review'of'damage'modeling'in'earlier'versions'of'four'integrated'assessment'models:'DICE/RICE*
1999,'MERGE'1995'and'2004,'PAGE2002,'and'FUNDv2.9.'
4'Nordhaus'(1994)'is'an'expert'elicitation'on'climate'catastrophes,'and'is'also'used'as'the'basis'for'catastrophic'impacts'in'
DICE'prior'to'2010. 

This summary table highlights two crucial observations. First, the models draw either directly

or indirectly on older climate impacts literature, much dating back to the 1990s. Thus, these

damage estimates fail to reflect the more recent scholarship from the impacts, adaptation, and

vulnerability (IAV) community, a point that will be returned to in the Discussion (Section 5.3).

Second, there are clear interlinkages between the models’ damage formulations. For instance,
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What is holding us back?

1) Not enough empirical studies – academic publications do not sufficiently
reward reliable socially valuable measurements (for policy, “tested and true” often
preferred to novelty)

2) Econometric methods linking climatological and economic data are
challenging → requires additional training

3) Replication / harmonization of existing studies requires data sharing

4) Collection and comparison of results is labor intensive and costly
→ Web 2.0 can help

5) Disagreement over what is being measured, weather or climate impacts?
→ this is gradually getting resolved

6) Coordination/integration with climate modeling community is required
but challenging → interdisciplinary training/teams work

7) Adoption/integration with IAM community is required but challenging
→ interdisciplinary training/teams work

8) IAM models are not falsifiable, so models with erroneous calibrations
are never rejected. Trusting models that cannot generate testable predictions
requires faith.



Core messages regarding empirical calibrations

Current calibrations are very far from modern empirical standards
and missing major known impacts. We know how to fix this.

We are simultaneously updating calibrations and building
infrastructure to prevent future gaps, but not the standard yet.

Harmonization and consolidation of empirical findings is possible and
happening – this is difficult and bloody

Research community is organizing to improve training and efficient
allocation of research – needs support

Development of public goods computational infrastructure is possible
and happening – needs support and incentives to participate

Applications of empirical results often fundamentally change
priors/results in IAMs – need to reduce transaction costs, create
incentives to ensure calibrations are up to date, require IAM
validation (e.g. hindcasts).



Clearing the climate-vs-weather logjam

Cross sectional analyses are confounded by omitted variables, it is
impossible to know by how much. Researchers cannot empirically
demonstrate this is not fatal to causal inference.

Identification of causal effects has improved dramatically by
leveraging high frequency variation in climate variables.

e.g. Schlenker & Roberts (PNAS, 2009)

Heuristic argument that climate 6= weather has created impasse.

Expectations clearly matter, but expectations over what matters too.

Claims against high frequency results generally do not compare
apples-to-apples.

Use of high-frequency variation does not assume away adaptation as
often claimed. It allows precise measurement of adaptation.



Clearing the climate-vs-weather logjam

Theory: weather identifies climate effects (Hsiang, in prep)

Proposition 1: If agents are optimizing the outcome and technologies are
“continuous,” then weather variations exactly identify the effect of
marginal climate changes.

Proposition 2: If technologies are “continuous,” then the assumptions
needed (regarding cross-unit conditional homogeneity) to integrate
non-marginal climate effects using marginal climate effects is strictly
weaker than the assumptions needed to use cross-sectional estimates.

(Note: Not all studies using weather variation satisfy these criteria.)

Data: weather and climate effects generally look the same

Careful apples-to-apples comparisons reveal panel, long-difference, and
cross-sectional results are indistinguishable in agriculture (Schlenker &
Roberts, 2009; Burke & Emerick, 2012), conflict (Burke et al., 2015) and
fertility (Barecca et al., 2015).



Calibrate to what?

Harmonization and consolidation is currently painful and costly.
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Modern computing infrastructure reduces transaction costs

Cross-comparisons and meta-analysis for calibration are public goods.
They are currently under provided. Concept:

Distributed Meta-Analysis System

dmas.berkeley.edu

Researcher 1

Researcher 2

Researcher 3

Damage

Function

(Rising & Hsiang, 2014)



Modern computing infrastructure reduces transaction costs

Cross-comparisons and meta-analysis for calibration are public goods.
They are currently under provided. Concept:

Distributed Meta-Analysis System

dmas.berkeley.edu

Researcher 1

Researcher 2

Researcher 3

Researcher 4

Bayesian updating

Damage

Function

Revised

(Rising & Hsiang, 2014)



Why empirical calibration matters

Example 1: “Top down” measurement of tropical cyclone impacts
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Maximum Wind Speed (m/s) 2008
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A globally generalizable response
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Example implications for climate change: USA
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Example implications for climate change: USA
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Implications for climate policy

Net Present Value of anthropogenic cyclone risk (A1B, 5% discount)

% current GDP billion US$

Japan -101% -4,461
China -12.6% -1,364
USA -5.9% -855
Philippines -83.3% -299
Mexico -17.2% -260
Vietnam -56% -160
Haiti -27.8% -4

Bangladesh +11.1% +26
Australia +13.1% +140
India +5.6% +264

World -13.8% -9,704
(±2,938)

Hsiang & Jina (2014)



Why empirical calibration matters

Example 2: “Top down” measurement of temperature impacts
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Global nonlinear effect of temperature on growth
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Burke, Hsiang & Miguel (Nature, 2015)



Aggregating globally

Burke, Hsiang & Miguel (Nature, 2015)
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Comparing SCC accounting for nonlinear growth effects

Table: Current Social Cost of Carbon ($ per metric ton CO2)

Model† USG2
(3% discount) (BAU)

DICE 20
FUND 9
PAGE 25

BHM pooled* 348
(SSP5) 549

BHM rich-poor* 233
(SSP5) 455

†3◦C climate sensitivity, IAWG socioeconomic sce-
nario except “SSP5” cases. *5-yr lagged model.



Why empirical calibration matters

Example 3: “Bottom up” estimates from the American Climate Prospectus
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Identifying major distributional effects in RCP 8.5

Houser et al. (2015)



Correcting confusion: This approach captures historical adaptations.
We can also model adaptation that is trending (due to warming).
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Innovation:
Link historical adaptation in cross-section (e.g. Schlenker & Roberts,
2009) and measured rates of adjustments (e.g. Burke & Emerick, 2012).



Applying ACP empirical mortality in USA to FUND/MIMI

Accounting for empirical mortality projections

→ +15.5 deaths per 100k in 2100 (>8,000% of base calibration)

→ + $1.1 trillion in lost VSL in 2100
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Where are we going from here?

“Bottom up” empirical estimates of a global damage function
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Building a global damage function from the bottom up

Close collaboration between economics (Berkeley, UChicago), climate
modeling (Rutgers), numerical modeling (Rhodium Group).
→ 14+ researchers.

Integration of >40 climate models, >196 empirical impact studies, and
micro-level municipal and remote sensing data.

Identification of “gaps” in the literature, in-house analysis to fill them.

Voluntary training and collaboration with 15 doctoral students through
summer workshop in climate econometrics.

Develop “plumbing” for seamless flow of results

empirical researchers → DMAS → aggregation → API → IAMs

Close coordination with David Anthoff (MIMI).

We will have initial global estimates by summer 2016.



Mortality analyses (published + in-house)

Econometric studies

Epidemiological studies

Domestic migration micro-data sets available for in-house analysis



State of current evidence we use

Sector Subsectors # Studies “Grade” w/ Reanalysis

Agriculture Staple crops 24 A A
Livestock 5 D C

Crime & Intergroup 39 A A
Conflict Interpersonal 18 B B
Labor Absenteeism 8 B A

Productivity 5 D C
Health Mortality 17 A A

Early Life Impacts 5 D C
Hospital Admissions 8 D C
Vector-borne Disease 32 C A

Migration Internal 10 B A
International 9 B A

Coastal Economic Damages 11 A A
Health Damages 3 C C

Energy Demand 22 B B
Supply 3 D C

Lowest hanging fruit: update existing analyses w/ current econometric standards.



Potentially major remaining unknowns, limited empirics

ecosystems / biodiversity

amenity valuations

water issues

prices

trade

energy supply

high value crops

infrastructure

ocean acidification

morbidity (e.g. vector borne
disease)

human capital formation

innovation

financial / capital markets

distributional effects

tipping points

covarying losses

things we haven’t thought of yet

Explicit measurement of adaptation is missing or highly uncertain in
most sectors. (Although limited impact in ACP).

Usable estimates in some contexts: crime, agriculture, mortality, cyclones.
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Thoughts on the path forward
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Top-down approach

Benefits

comprehensive within markets

captures adaptation adjustments

weather clearly identifies climate
impacts

easier

Challenges

missing nonmarket impacts

baseline projections are
challenging

distant from welfare

may misrepresent depreciation

growth effects not in IAMs

Bottom-up approach

Benefits

mechanisms clearer

captures distributional effects

supports adaptation policies

allows more credible welfare
calculations

can capture nonmarket impacts

Challenges

requires prices, including
nonmarket valuations (VSL)

“missing sectors” and “missing
samples” are a major challenge

modeling adaptation explicitly
sometimes required



Some remaining structural challenges to integration w/ IAMs

→ IAMs are not built to “accept” the output of many empirical findings
(e.g. GDP growth, US maize yields).

→ Climatic forcing data not available for all scenarios (e.g.
country-specific tropical cyclone exposure).

→ Climate models, socioeconomic scenarios, and damages are not
mutually and internally consistent in many cases.

Some additional process recommendations

→ Intentional segregation of damage estimates to allow uncontaminated
cross-comparison.

→ Promote practices in empirical study design that allow/encourage
comparisons.

→ Require public documentation and replication files for all calibrations.

→ Standardize at least one top down and one bottom up damage scenario
where possible for application and comparison across IAMs.



Conclusions

We can use credible identification strategies to measure climate impacts.

We can use empirical results to generate spatially explicit
projections/damages.

We can integrate projections into IAMS by working closely with modelers.

When we do this, it has large and potentially important influence on SCC.

We can use modern computing technology to make this process easy,
transparent, continuously updatable, with fewer errors.

There is no intellectually or ethically defensible reason not to require
complete integration and transparency in all IAMs used for the SCC.

Our teams are already doing all of this (ETA summer 2016).

This process should be supported and institutionalized to ensure SCC is
constantly updated in real time with the best available numbers.
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Effect of temperature on income in the USA
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Effect of temperature on income in the USA

Annual total income per capita (%)
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Little evidence of adaptation over time
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Limited evidence of adaptation over space
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Weather vs. Climate
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Weather vs. Climate
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Weather vs. Climate
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Weather vs. Climate
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Weather vs. Climate
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