Using empirical evidence to calibrate
economic models of climate change

Solomon Hsiang

Goldman School of Public Policy, UC Berkeley
National Bureau of Economic Research

Committee on Assessing Approaches to Updating the SCC
National Academy of Sciences, Washington DC
November 13, 2015



Cell phones and toasters work because they are built on a
foundation of empirical measurements.

Ho et al.
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A Interlinkages t
Model Damage type Study Basis SCC models
DICE _Aggregate non-SLR IPCC (2007), Tol (2009)! Calibration DICE, FUND, PAGE
SLR coastal impacts Undocumented
Kane et al. (1992), Reilly et al. (1994),
FUND . Morita et al. (1994), Fischer et al. (1996), Calibration
Agriculture Tsigas et al. (1996)
Tol (2002b) Income elasticity
Perez-Garcia et al. (1995), Sohngen et al. I
Forestry (2001) ( ) & Calibration
Tol (2002b) Income elasticity
Energy Downing et al. (1995), (1996) Calibration
Hodgson and Miller (1995) Income elasticity
Downing et al. (1995, 1996) Calibration

Water resources Downing etal. (1995, 1996) Income elasticity

Hoozemans et al. (1993), Bijlsma et al.

(1995), Leatherman and Nicholls (1995), Calibrati
Nicholls and Leatherman (1995), alibration
Brander et al. (2006)

WHO Global Burden of Disease (2000) Calibration

Coastal impacts

Diarrhoea 'WHO Global Burden of Disease (2000) Income elasticity

Martin and Lefebvre (1995), Martens et Calibration
Vector-borne diseases _al. (1995, 1997), Morita et al. (1995)

Link and Tol (2004) Income elasticity
E:;:ill?::’tii;uxl:;;gﬂty Martens (1998) Calibration
Storms CRED EM-DAT database, WMO (2006) Calibration

Toya and Skidmore (2007) Income elasticity
Ecosystems Pearce and Moran, (1994), Tol (2002) Calibration

PAGE SLR Anthoff et al. (2006)? Calibration & . FUND
income elasticity

Economic Warren et al. (2006)3 Calibration DICE, FUND, PAGE
Noneconomic Warren et al. (2006) Calibration DICE, FUND, PAGE
Discontinuity 1(,53(:]%:]1?\: Oai'd(hza?loss()if;;‘gfff etal. Calibration DICE, FUND
Adaptation costs Parry etal. (2009) Calibration

Diaz (2015)



What is holding us back?

1) Not enough empirical studies — academic publications do not sufficiently
reward reliable socially valuable measurements (for policy, “tested and true” often
preferred to novelty)

2) Econometric methods linking climatological and economic data are
challenging — requires additional training

3) Replication / harmonization of existing studies requires data sharing

4) Collection and comparison of results is labor intensive and costly
— Web 2.0 can help

5) Disagreement over what is being measured, weather or climate impacts?
— this is gradually getting resolved

6) Coordination/integration with climate modeling community is required
but challenging — interdisciplinary training/teams work

7) Adoption/integration with IAM community is required but challenging
— interdisciplinary training/teams work

8) IAM models are not falsifiable, so models with erroneous calibrations
are never rejected. Trusting models that cannot generate testable predictions
requires faith.



Core messages regarding empirical calibrations

Current calibrations are very far from modern empirical standards
and missing major known impacts. We know how to fix this.

We are simultaneously updating calibrations and building
infrastructure to prevent future gaps, but not the standard yet.

o Harmonization and consolidation of empirical findings is possible and
happening — this is difficult and bloody

o Research community is organizing to improve training and efficient
allocation of research — needs support

o Development of public goods computational infrastructure is possible
and happening — needs support and incentives to participate

o Applications of empirical results often fundamentally change
priors/results in IAMs — need to reduce transaction costs, create
incentives to ensure calibrations are up to date, require IAM
validation (e.g. hindcasts).



Clearing the climate-vs-weather logjam

Cross sectional analyses are confounded by omitted variables, it is
impossible to know by how much. Researchers cannot empirically
demonstrate this is not fatal to causal inference.

Identification of causal effects has improved dramatically by
leveraging high frequency variation in climate variables.
e.g. Schlenker & Roberts (PNAS, 2009)

Heuristic argument that climate # weather has created impasse.
Expectations clearly matter, but expectations over what matters too.

Claims against high frequency results generally do not compare
apples-to-apples.

Use of high-frequency variation does not assume away adaptation as
often claimed. It allows precise measurement of adaptation.



Clearing the climate-vs-weather logjam

Theory: weather identifies climate effects (Hsiang, in prep)

Proposition 1: If agents are optimizing the outcome and technologies are
“continuous,” then weather variations exactly identify the effect of
marginal climate changes.

Proposition 2: If technologies are “continuous,” then the assumptions
needed (regarding cross-unit conditional homogeneity) to integrate
non-marginal climate effects using marginal climate effects is strictly
weaker than the assumptions needed to use cross-sectional estimates.

(Note: Not all studies using weather variation satisfy these criteria.)

Data: weather and climate effects generally look the same

Careful apples-to-apples comparisons reveal panel, long-difference, and
cross-sectional results are indistinguishable in agriculture (Schlenker &
Roberts, 2009; Burke & Emerick, 2012), conflict (Burke et al., 2015) and
fertility (Barecca et al., 2015).



Calibrate to what?

Harmonization and consolidation is currently painful and costly.

Intergroup conflict
e Climatic Change
15 - (N=14) DOI 10.1007/s10584-014-1266-1
COMMENTARY
10
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Burke, Hsiang, & Miguel (Annual Rev Econ, 2015)

In science, not all priors can be right.

How can we foster an intellectual environment that encourages inter-study
comparisons and consolidations of findings?



Modern computing infrastructure reduces transaction costs

Cross-comparisons and meta-analysis for calibration are public goods.
They are currently under provided. Concept:

Distributed Meta-Analysis System

Researcher |

ACRA _violentcrime_temperature

Researcher 2
o Damage

He = -
Researcher 3 %/ == Function

dmas .berkeley.edu

(Rising & Hsiang, 2014)



Modern computing infrastructure reduces transaction costs

Cross-comparisons and meta-analysis for calibration are public goods.
They are currently under provided. Concept:

Distributed Meta-Analysis System

Bayesian updating

Researcher |

Researcher 2 e e Revised
Researcher 3 %/ — ‘ = - E.:':Zgoi
Researcher 4 — Mi —

dmas .berkeley.edu

(Rising & Hsiang, 2014)



Why empirical calibration matters

Example 1: “Top down” measurement of tropical cyclone impacts

Solomon Hsiang Empirical calibration of climate change economics
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A globally generalizable response

GDP per capita response to
tropical cyclone exposure (1970-2008)
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Hsiang & Jina (2014);
corroborating micro evidence in Deryugina (2013), Anttila-Hughes & Hsiang (2012)



Example implications for climate change: USA

Change in Atlantic power
dissipation by 2080-2100
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Emanuel et al. (2008, BAMS)
Knutson et al. (2010, Nat. Geo. Sci.)

Hsiang & Jina (2014)



Example implications for climate change: USA

Change in Atlantic power 2010 2090
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Example implications for climate change: USA

Change in Atlantic power
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Implications for climate policy

Net Present Value of anthropogenic cyclone risk (A1B, 5% discount)

% current GDP  billion US$

Japan -101% -4,461
China -12.6% -1,364
USA -5.9% -855
Philippines -83.3% -299
Mexico -17.2% -260
Vietnam -56% -160
Haiti -27.8% -4
Bangladesh +11.1% +26
Australia +13.1% +140
India +5.6% +264
World -13.8% -9,704

(£2,938)

Hsiang & Jina (2014)



Why empirical calibration matters

Example 2: “Top down” measurement of temperature impacts
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Global nonlinear effect of temperature on growth
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Aggregating globally
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Comparing SCC accounting for nonlinear growth effects

Table: Current Social Cost of Carbon ($ per metric ton CO,)

Modelf USG2
(3% discount) (BAU)
DICE 20
FUND 9
PAGE 25
BHM pooled* 348

(SSP5) 549
BHM rich-poor* 233

(SSP5) 455

T3°C climate sensitivity, |AWG socioeconomic sce-
nario except “SSP5" cases. *5-yr lagged model.



Why empirical calibration matters

Example 3: “Bottom up” estimates from the American Climate Prospectus
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Identifying major distributional effects in RCP 8.5
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Correcting confusion: This approach captures historical adaptations.
We can also model adaptation that is trending (due to warming).
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Innovation:
Link historical adaptation in cross-section (e.g. Schlenker & Roberts,
2009) and measured rates of adjustments (e.g. Burke & Emerick, 2012).




Applying ACP empirical mortality in USA to FUND /MIMI

Accounting for empirical mortality projections
— 415.5 deaths per 100k in 2100 (>8,000% of base calibration)
— 4+ $1.1 trillion in lost VSL in 2100

Death Rate Total Economic Losses
(per 100,000) ($Trillions)

w

FUND + empirical USA mortality FUND + empirical USA mortality

FUND

0 \/
1950 2000 2050 2100 1950 2000 2050 2100
Year Year




Where are we going from here?

“Bottom up” empirical estimates of a global damage function

Solomon Hsiang Empirical calibration of climate change economics



Building a global damage function from the bottom up

Close collaboration between economics (Berkeley, UChicago), climate
modeling (Rutgers), numerical modeling (Rhodium Group).
— 14+ researchers.

Integration of >40 climate models, >196 empirical impact studies, and
micro-level municipal and remote sensing data.

Identification of “gaps” in the literature, in-house analysis to fill them.

Voluntary training and collaboration with 15 doctoral students through
summer workshop in climate econometrics.

Develop “plumbing” for seamless flow of results
empirical researchers - DMAS — aggregation — APl — IAMs
Close coordination with David Anthoff (MIMI).

We will have initial global estimates by summer 2016.



Mortality analyses (published + in-house)
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State of current evidence we use

Sector Subsectors # Studies  “Grade” w/ Reanalysis
Agriculture Staple crops 24 A A
Livestock 5 D C
Crime & Intergroup 39 A A
Conflict Interpersonal 18 B B
Labor Absenteeism 8 B A
Productivity 5 D C
Health Mortality 17 A A
Early Life Impacts 5 D C
Hospital Admissions 8 D C
Vector-borne Disease 32 C A
Migration Internal 10 B A
International 9 B A
Coastal Economic Damages 11 A A
Health Damages 3 C C
Energy Demand 22 B B
Supply 3 D C

Lowest hanging fruit: update existing analyses w/ current econometric standards.



Potentially major remaining unknowns, limited empirics

o ecosystems / biodiversity o morbidity (e.g. vector borne

o amenity valuations disease)

o water issues o human capital formation

o prices o innovation

o trade o financial / capital markets

o energy supply o distributional effects

o high value crops o tipping points

o infrastructure o covarying losses

o ocean acidification o things we haven't thought of yet

Explicit measurement of adaptation is missing or highly uncertain in
most sectors. (Although limited impact in ACP).

Usable estimates in some contexts: crime, agriculture, mortality, cyclones.

Solomon Hsiang Empirical calibration of climate change economics



Thoughts on the path forward



Top-down approach Bottom-up approach

Benefits Benefits

. oy o mechanisms clearer
o comprehensive within markets echanisms cleare

o captures adaptation adjustments o captures distributional effects

. . . o supports adaptation policies
o weather clearly identifies climate PP P P
impacts o allows more credible welfare
- lculation
o easier calculations
o can capture nonmarket impacts
Challenges

o missing nonmarket impacts Challenges

o requires prices, including

o baseline projections are )
nonmarket valuations (VSL)

challenging
o “missing sectors” and “missing

o distant from welfare > i
samples’ are a major challenge

© may misrepresent depreciation . . ..
o modeling adaptation explicitly

o growth effects not in IAMs . .
sometimes required



Some remaining structural challenges to integration w/ IAMs

— IAMs are not built to “accept” the output of many empirical findings
(e.g. GDP growth, US maize yields).

— Climatic forcing data not available for all scenarios (e.g.
country-specific tropical cyclone exposure).

— Climate models, socioeconomic scenarios, and damages are not
mutually and internally consistent in many cases.
Some additional process recommendations

— Intentional segregation of damage estimates to allow uncontaminated
cross-comparison.

— Promote practices in empirical study design that allow/encourage
comparisons.

— Require public documentation and replication files for all calibrations.

— Standardize at least one top down and one bottom up damage scenario
where possible for application and comparison across IAMs.



Conclusions

We can use credible identification strategies to measure climate impacts.

We can use empirical results to generate spatially explicit
projections/damages.

We can integrate projections into IAMS by working closely with modelers.
When we do this, it has large and potentially important influence on SCC.

We can use modern computing technology to make this process easy,
transparent, continuously updatable, with fewer errors.

There is no intellectually or ethically defensible reason not to require
complete integration and transparency in all IAMs used for the SCC.

Our teams are already doing all of this (ETA summer 2016).

This process should be supported and institutionalized to ensure SCC is
constantly updated in real time with the best available numbers.

Solomon Hsiang Empirical calibration of climate change economics
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Effect of temperature on income in the USA

Average number of days in
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Effect of temperature on income in the USA
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Little evidence of adaptation over time

Annual total income per capita (%)
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Limited evidence of adaptation over space

Annual total income per capita (%)
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Weather vs. Climate

Degree days above 29°C Corn yields (bushels/acre)
(Grand Traverse, MI) (Grand Traverse, MI)

Raw annual data

2-5

Periodicity of filtered data (years)
>
o
5

a7 /\“/\/\/\ ’\/\,—\/\

155 m /\'—/\J/\

1950 1962 2002 2014 1950 1962 2002 2014
Year Year

Hsiang (2016)



Weather vs. Climate

Change in log annual yields

Hsiang (2016)

0.04

-0.04

-0.08

— Raw annual (1950-2014) - Schlenker & Roberts (2009)
--- Raw annual (1962-2002)
—— 2-5 year period

—— 6-9 year period

~—— 10-13 year period

—— 14-17 year period

—— 18-33 year period

—— Long difference (1980-2000) - Burke & Emerick (2012)

BK Filtered data (1962-2002)

10 20
Temperature during additional 24 hrs (°C)



