

Social Cost of Carbon: Agricultural Sector

Wolfram Schlenker

Columbia University and NBER

National Academy of Sciences
November 13, 2015

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

What Have We Learned Recently?

- IAMs do not utilize latest studies (usually use studies from 1990s)

① Statistical models

- Data availability: new fine-scaled weather and yield data
- Daily data available on temperature maxima, minima, etc
- Crucial for nonlinear models
 - Averaging over space and/or time can “hide” nonlinearities
 - Key finding that extremes (especially temperature extremes matter most)
- Uncertainty about predicted climate change
 - Need to look at range of possible outcomes, not just average outcome

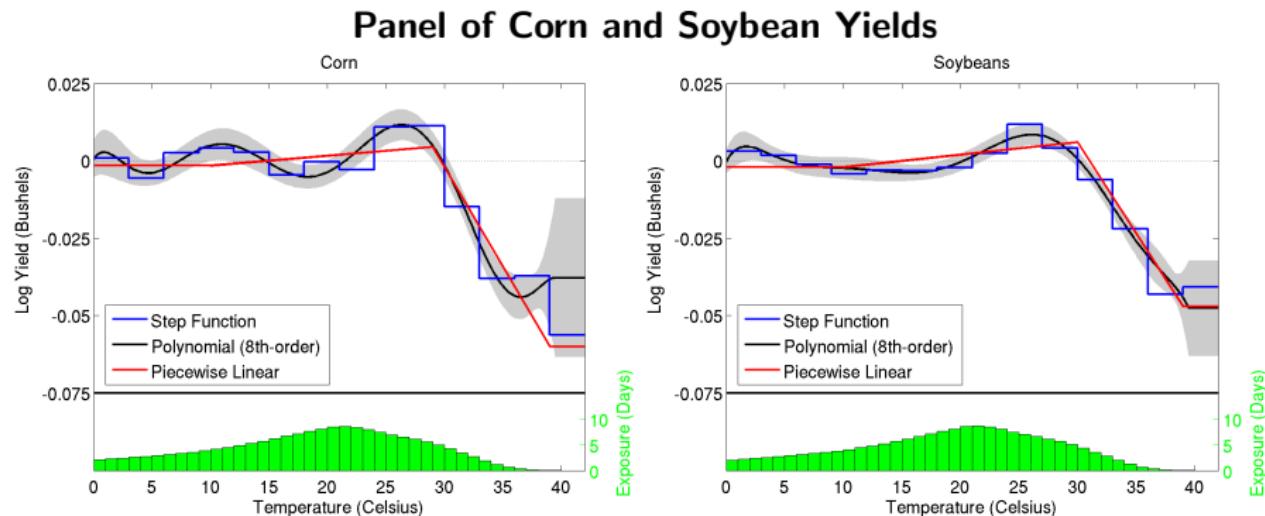
② Agronomic models

- Agricultural Intercomparison and Improvement Project (AG-MIIP)
- Similar to Coupled Model Intercomparison Project (CMIP5)
 - Use comparable set of input parameters
 - Comparison of model output

Link between Weather and US Yields

- Four commodity crops account for 75% of calories consumed by humans
 - Maize (corn), wheat, rice and soybeans
 - United States produces 23% of those calories
 - Global market share of US corn > 40%
- Statistical analysis
 - Panel of county-level yields in Eastern United States
 - Corn and Soybeans (two biggest staple commodities in US)
 - Fine-scale weather (daily temperature / precip on 2.5mile grid)
 - Years: 1950-2005
- Model accounts for
 - Amount of time spent in each 1°C interval
 - Quadratic in total precipitation
 - State-specific quadratic time trends
 - County fixed effects

Results: Effect of Temperature on Yields



Source: Schlenker & Roberts (2009)

Temperature versus Precipitation

Few Selected Other Studies

- Corn Yields in Africa [▶ Slides](#)
- Rice Yields in Asia [▶ Slides](#)
- Wheat Trials in Kansas [▶ Slides](#)

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Adapting Crops to a Warmer Climate

- Panel models may over or understate long-term impacts
 - Depends which set of adaptation strategies are larger
 - Short-term adaptation cost not captured in yield regression
- Recent evidence suggests that adaptation is difficult
 - Comparable results in panel and cross-section of farmland values
 - Comparable results in panel and when looking at trends (Burke and Emerick, 2013)
 - Comparable sensitivities in different climatic zones
 - Newer varieties seem more, not less sensitive to extreme heat
- More likely outcome
 - Shift where crops are grown
 - Change in comparative advantage (Costinot, Donaldson & Smith, 2014)
- Challenge
 - Soils not as good in higher latitudes
 - Last glacial expansion scraped off good top soil
 - Non-uniform warming (higher latitudes warm more)
 - Sunlight restrictions

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- **Adapting to Changes in Climate Variability**
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Adapting to An Increase in Variability

- Yield-weather function
 - Higher concavity at higher temperatures
 - Increase in mean temperature will increase production variability
 - Even if weather variability does not change
- Seems “relatively” easy to adapt to
 - Most crops are storable
 - Higher variability can be smoothed by higher storage
 - Higher average food prices (cover storage cost), but decreased variability
- Challenge
 - Export restrictions / government interventions
 - Disincentive to store

▶ Details

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Spillovers from Agriculture

- Agriculture is a major contributor to water / air pollution
 - Non-point sources are not regulated as stringently
- Some spillovers have not been studied much
 - Hotter climate can lead to more pests
 - Increased pesticide use (large and significant in agriculture: Eyal Frank)
 - Spillover for human health
- Pollutants (especially ozone) impact yields and livestock
 - Hotter temperatures can lead to more ozone
 - Crucial ingredient when VOCs and NOx combine to ozone

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Effect of Production Changes on Prices

- Disaggregate studies crucial to identify non-linearities
 - Check for adaptation by how response changes with climate
- Aggregate studies crucial for price feedbacks. My personal view
 - US farmers are likely benefiting from climate change
 - US is big player
 - Produces 23% of basic calories - corn, wheat, rice and soybeans
 - Significant drop in production (yields)
 - Price increase more than offsets this
 - Climate change “accomplishes” what supply restrictions tried to do
 - Consumers are hurt through higher food prices
- Effect on US depends on what happens to rest of the world
 - Price levels determined by aggregate supply / demand
 - Not uncommon to have large production shortfalls on one farmers
 - Crop insurance (free, i.e., fully subsidized) for yield drops below 50%
 - Individual shocks average out around globe
 - In the last 50 years: aggregate caloric shock $\pm 5.7\%$
- Demand and supply must be highly inelastic

IV to Identify Demand and Supply

- Roberts & Schlenker (2013)
 - Instrument: Yield Shock (deviations from trend)
 - Identification of Demand
 - **Current** yield shock shifts supply-curve
 - Used since P.G. Wright introduced IV (1928)
 - Identification of Supply
 - **Past** yield shocks shift expected price
 - Instrument futures price in supply equation
 - New extension: Previous estimates find inelastic supply, yet simulations use positive elasticity.
- Significant supply and demand elasticity
 - Demand: -0.05 / Supply 0.11
 - But where is new supply coming from?
 - Area-expansion can lead to deforestation (high source of CO₂ emissions)
 - Recent working papers on deforestation in Brazil
- Recent observed climate trends already have effect on food prices

▶ Slides

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

What Model Should you Believe?

- Crucial importance of out-of-sample forecasts
- Recent forecasting exercise for wheat (Asseng et al, NCC 2014)
 - Researcher were given data at beginning and throughout growing season
 - 29 crop models / 1 statistical model
 - Asked to predict wheat yield at various stages
 - Subsequently compared to actual / measured yields
- Model mean performs better than any single model
 - Most crop models perform less well for very high temperatures
 - Simple statistical model performed very well!
 - Money ball: Parsimonious models can be very good predictors
- Average predicted reduction in yields
 - 6% for 1°C increase in temperature
- Recent predictive power of **statistical model**

Outline

1 Recent Evidence that Can be Used in IAMs

2 Improvements for Damage Functions

- Adapting to Changes in Mean Climate
- Adapting to Changes in Climate Variability
- Damages: Non-market Values

3 Aggregate vs Disaggregate Damage Functions

4 Reliability of Potential Improvements

5 Improvements for Damages over Time

Big Uncertainty: Exogenous Growth

- Agricultural output directly depends on weather / climate
 - Most of human history, largest share of population worked in agriculture
 - Climate fluctuations correlated with rise/demise of empires
 - Last 2500 years in Europe (Büntgen et al., 2011)
 - Roman empire, period of enlightenment, etc
- Agricultural (green) revolution
 - Before World War II
 - Increase in production through increase in growing area
 - Yields (output per area) rather constant
 - After World War II
 - Increase in production mostly through higher yields
 - Growing area increased moderately
- So far we model impacts *on top of trend*
 - Statistical models do not predict yields compared to today
 - If yield trends go up 100%
 - Climate change lowers yields by 40%
 - Yields are still 60% higher than today
 - Very difficult to model trend (not just agriculture)

Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Agronomic Evidence on Mechanism

- Biophysical evidence
 - Lobell, Hammer, McLean, Messina, Roberts, Schlenker (2013)
 - APSIM: biophysical model of crop growth
 - Includes water balance, etc
- Mechanism behind EDD (extreme heat)
 - Impacts water stress in two ways
 - Reducing soil water (evaporation)
 - Increased demand for soil water to sustain carbon uptake
 - Precipitation only impacts soil moisture
- Drought is a relative concept
 - Water requirements depend on temperature

Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Statistical Study in Africa

- Lobell, Bänzinger, Magorokosho, and Vivek (Nature Climate Change, 2011)
- Unique data set of field trials
 - 123 research stations
 - CIMMYT
 - Testing for drought conditions
- Matched with closest weather station
 - Better than gridded weather data
 - Authors split season into three phases (separate coefficients)
- Major results
 - Find nonlinearity effect of temperature on yield
 - Stronger under drought conditions

Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Rice Yields in Asia

- Welch, Vincent, Auffhammer, Moya, Dobermann & Dawe (PNAS, 2010)
- Rice field trials through South-eastern Asia
- Matched with weather station
 - Authors split season into three phases (separate coefficients)
- Major results
 - Effect varies by growing phase
 - Maximum and minimum temperatures have opposite effects
 - Higher maximum temperatures are beneficial
 - Lower minimum temperatures are harmful

Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Wheat in Kansas

- Tack, Barkley, and Nalley (PNAS, 2015)
- Unique data set of field trials
 - Kansas wheat variety field trials
 - 1985-2013
 - September - May growing season (split in fall, winter, spring)
- Matched with field-level weather data
 - Using full distribution between minimum and maximum temperature gives much better fit
- Major results
 - Biggest driver of yield losses: freezes and extreme heat
 - Climate change reduces freeze damage, increase damage from extreme heat
 - Newer varieties **more sensitive** to extreme heat than older varieties

Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Adaptation: Evidence from Cross-Section

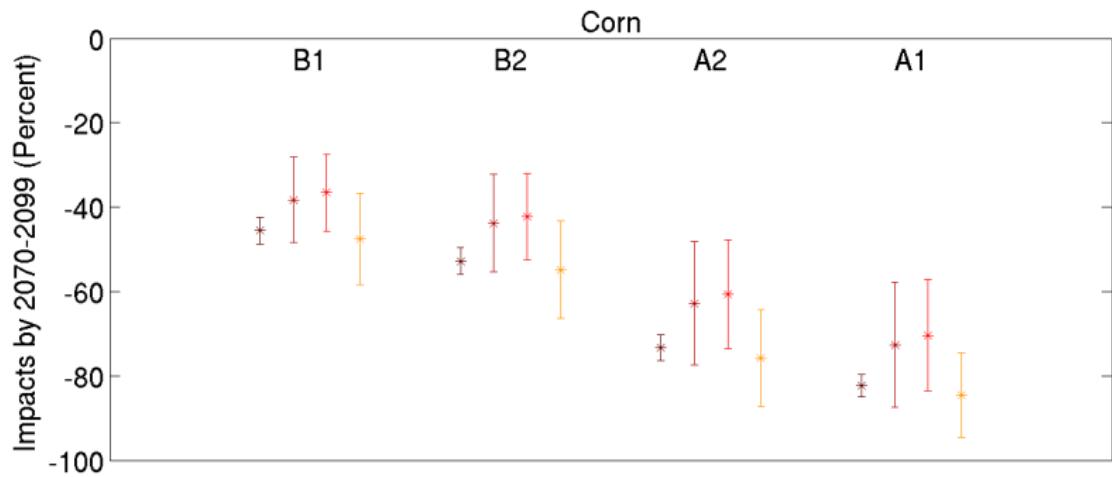
- Can crop switching save the day?
- Cross-sectional analysis of farmland values
 - Accounting for extreme heat
 - Limit to Eastern United States
 - Schlenker, Hanemann, and Fisher (2006)
- Similar results
 - Large negative effect of extreme heat
 - Robust to myriad of specification checks
 - Different census years
 - Permutations of other control variables

Predicted Changes under Hadley III

Variable	2020–2049 Average (%)				2070–2099 Average (%)			
	Mean	Min.	Max.	σ	Mean	Min.	Max.	σ
Hadley HadCM3—Scenario B1								
Degree days (8–32°C)	−0.96	−26.83	24.33	12.11	−4.44	−41.73	49.83	20.13
Degree days (34°C)	−11.17	−33.66	2.75	4.82	−26.21	−59.01	−1.86	9.57
Precipitation	1.02	−19.51	13.26	4.99	1.11	−21.31	11.33	4.35
Total impact	−10.46	−58.58	28.02	16.21	−27.37	−78.77	44.15	22.58
Std. error, total impact	(2.89)	(4.85)	(4.51)		(4.90)	(4.83)	(8.93)	
Hadley HadCM3—Scenario B2								
Degree days (8–32°C)	−1.38	−31.50	30.37	14.02	−6.79	−45.71	60.91	22.40
Degree days (34°C)	−19.77	−42.84	−2.09	7.35	−29.79	−73.26	−8.20	12.73
Precipitation	−1.22	−30.61	13.42	5.44	0.18	−37.45	13.70	5.84
Total impact	−20.57	−67.67	34.41	18.66	−31.61	−88.28	52.37	26.57
Std. error, total impact	(3.44)	(4.75)	(5.70)		(5.17)	(3.66)	(11.20)	
Hadley HadCM3—Scenario A2								
Degree days (8–32°C)	−1.44	−30.12	30.11	14.19	−14.90	−52.76	80.70	26.54
Degree days (34°C)	−20.12	−49.19	−3.96	8.12	−56.53	−84.78	−23.59	10.85
Precipitation	−0.32	−28.56	8.94	3.83	−2.70	−41.48	15.83	7.62
Total impact	−20.21	−69.31	29.70	19.72	−61.64	−94.72	27.87	20.25
Std. error, total impact	(3.58)	(4.86)	(5.22)		(6.01)	(2.44)	(11.48)	
Hadley HadCM3—Scenario AIFI								
Degree days (8–32°C)	−0.54	−28.82	31.07	13.28	−23.29	−56.83	91.38	27.10
Degree days (34°C)	−24.99	−50.49	1.04	9.42	−63.16	−90.97	−20.08	13.39
Precipitation	−0.22	−15.15	13.28	4.39	−0.80	−41.66	18.74	9.20
Total impact	−24.50	−60.38	23.83	18.68	−68.54	−96.95	39.61	21.79
Std. error, total impact	(4.00)	(5.61)	(4.65)		(5.90)	(1.86)	(13.85)	

Source: Schlenker, Hanemann & Fisher (2006)

Predicted Changes under Hadley III - Yield Panel



Source: Schlenker, Hanemann & Fisher (2006) [► Back to Adaptation to Mean Change](#)

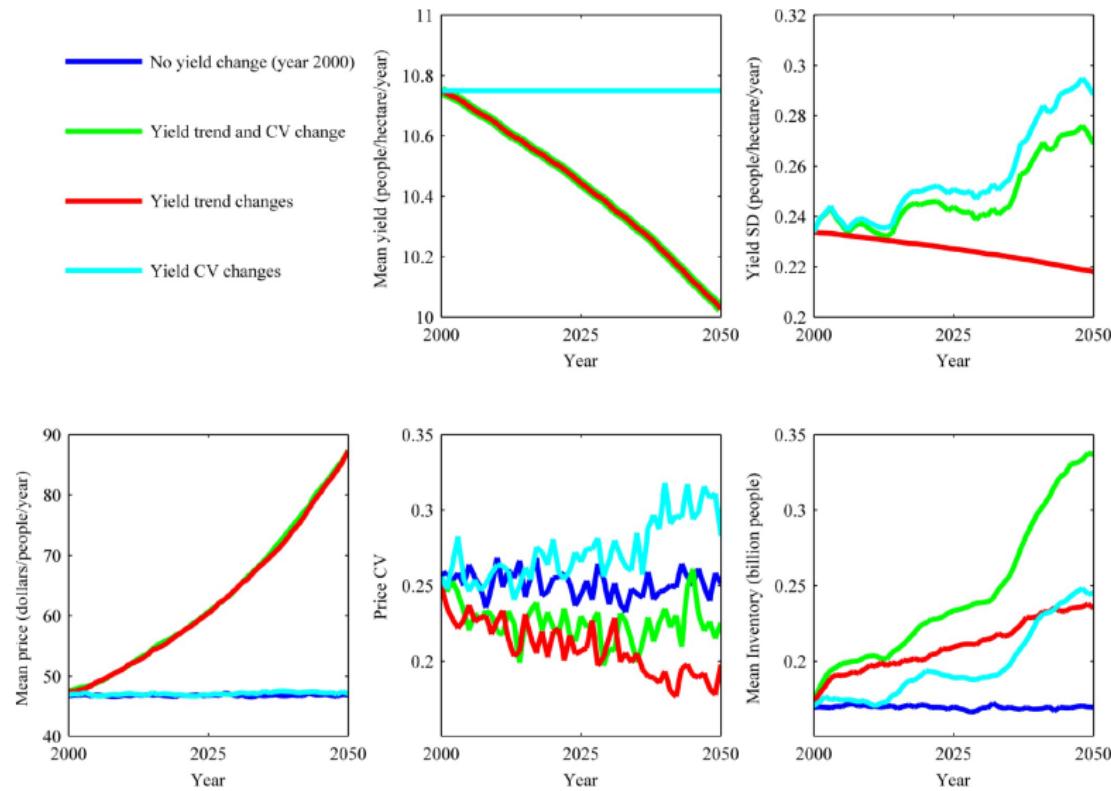
Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability**
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

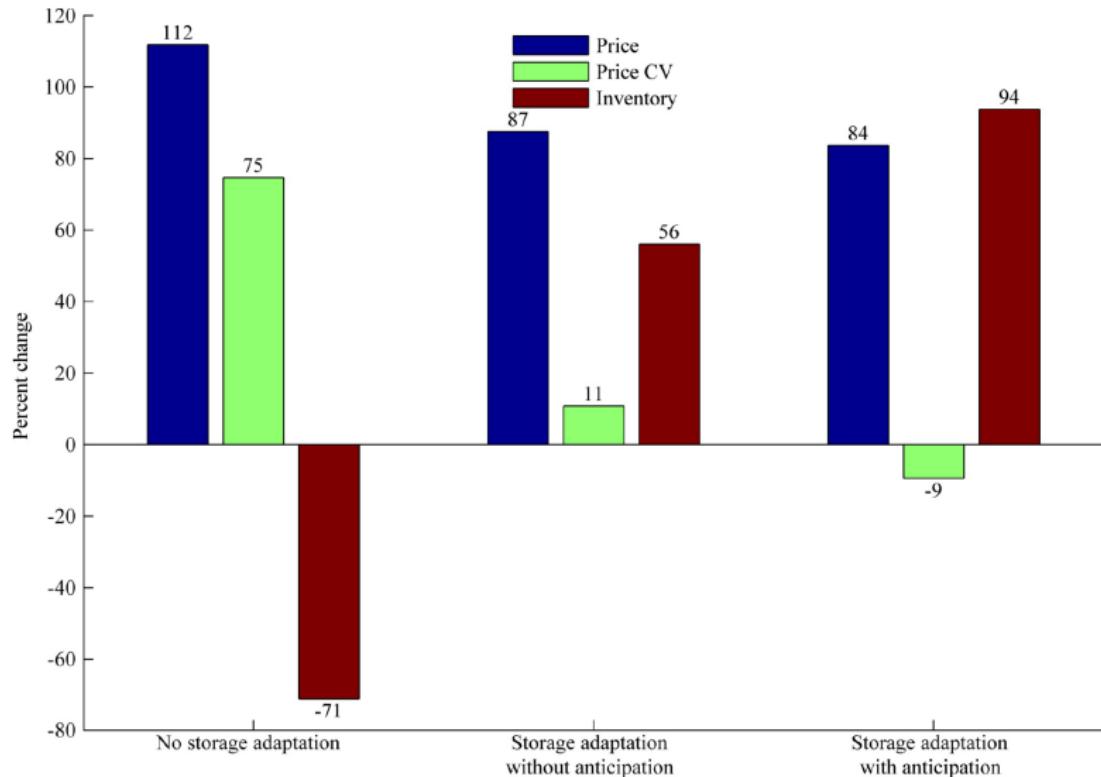
Yield Variability in the Future

- Highly nonlinear relationship between yields and temperature
- Increase in mean temperature
 - Reduction in average yields
 - Increase in frequency of extreme heat
 - Increase in yield variability
 - Even if weather variability does not change
 - Relationship between yields and weather have higher curvature
 - Same weather fluctuation result in larger yield swings
- Will food prices become more variable?
 - Calibrate a storage model
 - Storage driven by arbitrage between periods
 - If production more variable, incentive to hold more stock
 - Higher stock levels: higher average price as storage costly, but less variability

Adaptation: Storage can Smooth Variability



Adaptation: Storage can Smooth Variability



▶ Back to Adaptation to Change in Variability

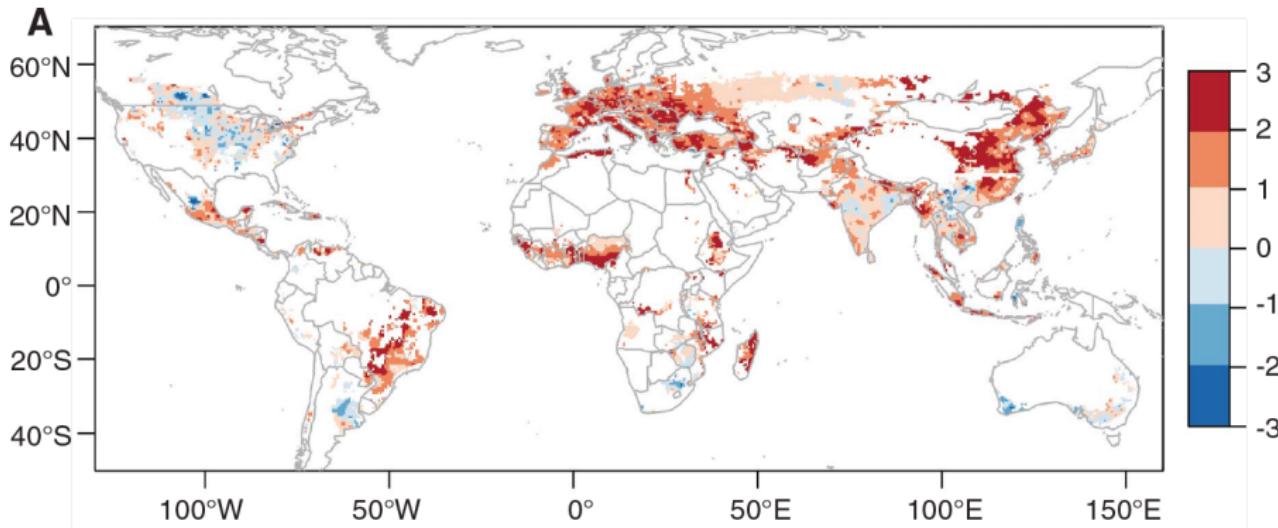
Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Observed Climate Trends and Food Prices

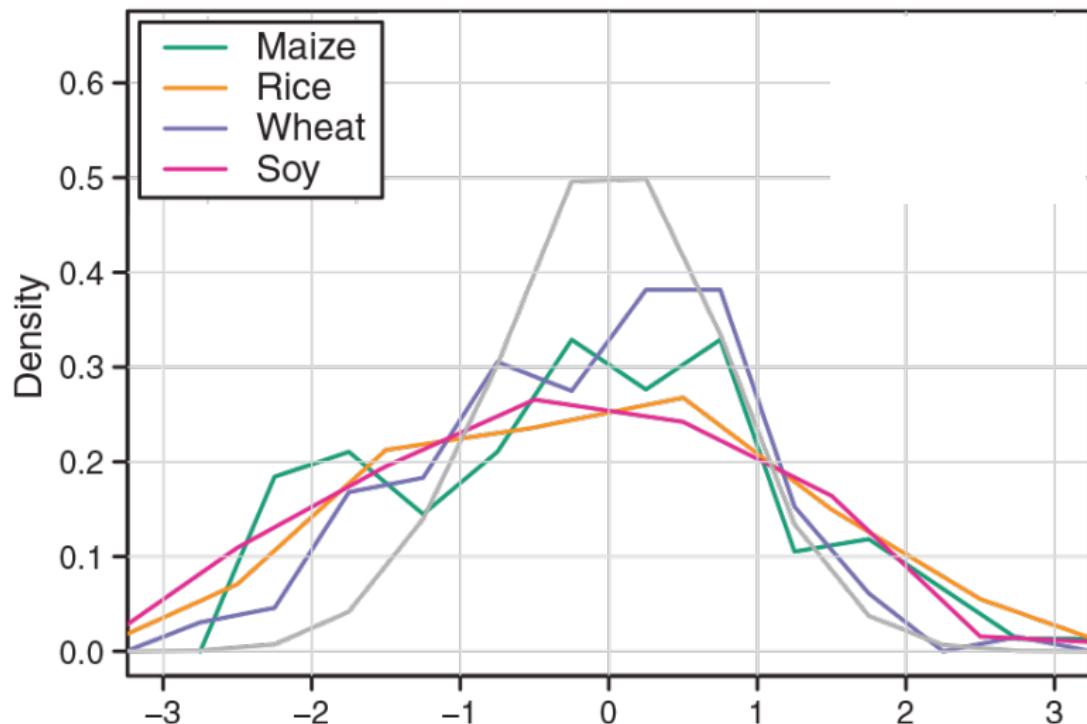
- Do climate trends already have an effect on food production
 - Statistical model linking yields to weather
 - Predicted production under observed trend
 - Predicted production if trend is removed
 - Difference in global production
- Focus on four major staples
 - Maize, rice, soybeans, wheat
 - Responsible for 75% of global caloric production
- Panel of country-level yields (FAO data)
 - Matched with weather data (University of Delaware)
 - Averaged over area where crop is grown
 - Monfreda, Ramankutty & Foley 2008
 - Averaged over crop-specific growing season
 - Sacks, Deryng, Foley & Ramankutty (2010)

Temperature Trend (1980-2008) in Historic Std. Deviation



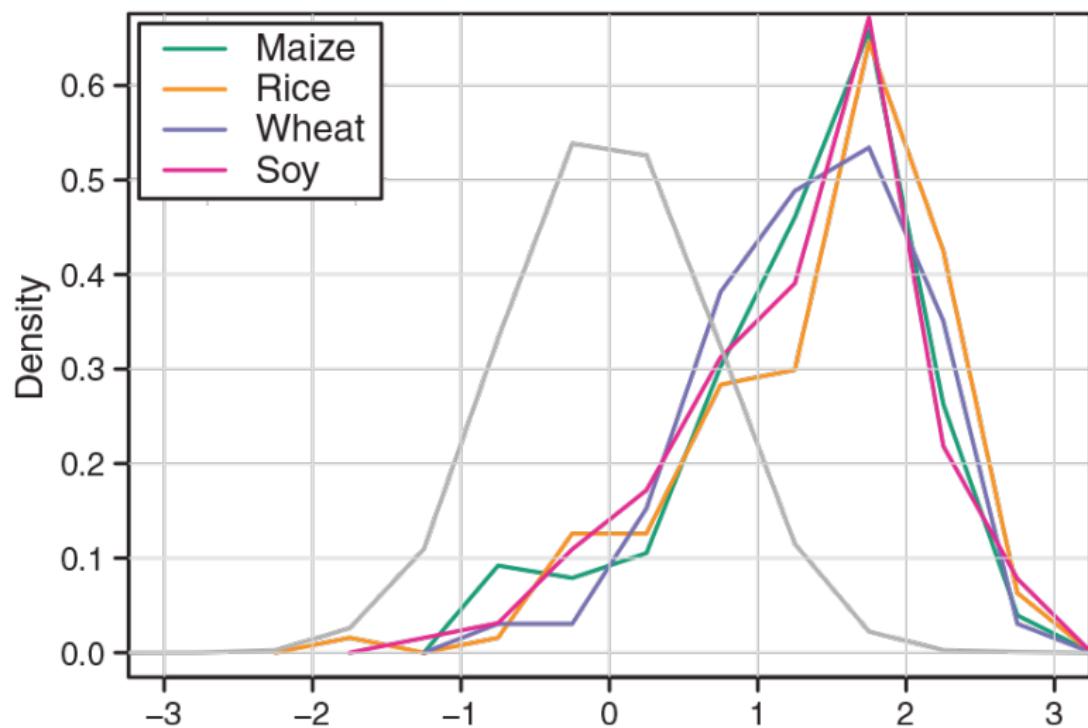
Lobell, Schlenker & Costa-Roberts (2011)

Country-Crop Specific Temperature Trends (1960-1980)



Lobell, Schlenker & Costa-Roberts (2011)

Country-Crop Specific Temperature Trends (1980-2008)



Lobell, Schlenker & Costa-Roberts (2011)

Predicted Impact of Observed Trend

Crop	Global production, 1998–2002 average (millions of metric tons)	Global yield impact of temperature trends (%)	Global yield impact of precipitation trends (%)	Subtotal	Global yield impact of CO ₂ trends (%)	Total
Maize	607	−3.1 (−4.9, −1.4)	−0.7 (−1.2, 0.2)	−3.8 (−5.8, −1.9)	0.0	−3.8
Rice	591	0.1 (−0.9, 1.2)	−0.2 (−1.0, 0.5)	−0.1 (−1.6, 1.4)	3.0	2.9
Wheat	586	−4.9 (−7.2, −2.8)	−0.6 (−1.3, 0.1)	−5.5 (−8.0, −3.3)	3.0	−2.5
Soybean	168	−0.8 (−3.8, 1.9)	−0.9 (−1.5, −0.2)	−1.7 (−4.9, 1.2)	3.0	1.3

Combined Price Effect: 18.9% (no CO₂ fertilization), 6.4% (including CO₂ fertilization)

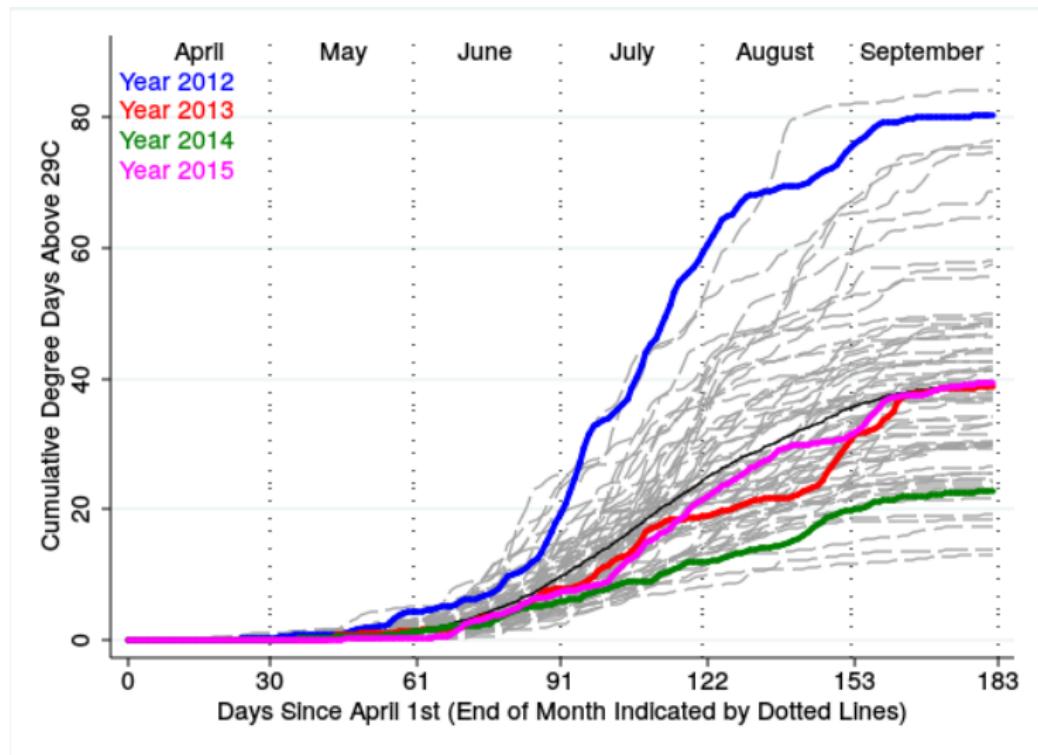
Lobell, Schlenker & Costa-Roberts (2011)

[Back to Price Elasticities](#)

Outline

- 6 Water versus Temperature
- 7 Yields in Africa
- 8 Rice Yields in Asia
- 9 Kansas Wheat Trials
- 10 Cross-Section in US Farmland Values
- 11 Adaptation to Production Variability
- 12 Observed Climate Change and Global Production Trends
- 13 Statistical Model: Recent Performance

Statistical Model: 2012-2015 Compared to 1950-2010



Source: Berry, Roberts & Schlenker (2013)