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Natural disasters 2015

Winter storm
Severe storms USA, Canada, Winter Storm Niklas Earthquake

USA, Europe, Pakistan, Afghanistan,

7-10 Apr 30 Mar—1 Apr - 260ct Toinado
Severe storms = - China
USA, 1Jun
23-28 May

Wildfire: Heat wave

USA, Europe, Typhoon Soudelor
12 Sep—8 Oct Jun—-Aug ‘,China. Taiwan,
Drought Flash floods 2-13 Aug
USA L TR USA, o
5 hoon Mujigae
3 I 2.6 Oct Typ Jig
Jan O.ct : _ = China;
' & 1-5 Oct
Severe storms ‘ » *Winfer storm
Heat wave K . Australia,
USA, India, Pakistan ® ® 49-24 Apr
18-21 Apr Flash floods May—Jun
Ghana, ’ ®
Landslide 2-5 Jun d
Guatemala,
= 1 Oct Earthquake
Munich RE ! Flash flooJs HETXAS Nepal, i
Chile, Malawi, Mozambigque 25 Apr
23-26 Mar van—Mar
Source: Munich Re, NatCatSERVICE, 2016
® Geophysical events ® Hydrological events
(Earthquake, tsunami, volcanic activity) (Flood, mass movement)
@ Meteorological events @ Climatological events
(Tropical storm, extratropical storm, (Extreme temperature, drought, wildfire)

convective storm, local storm)



Extreme events in a 1.5°C or 2°C-world?
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Extreme events in a 1.5°C or 2°C-world?

Winter storm
Severe storms USA Canada Winter Storm Niklas Eart_hquake .
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climate model 1

Hydrological model

Hurricane model

Ice Sheet model

RCP2.6
RCP4.5 Health model
RCP6.0 Crop model
S Coastal infrastructure model
Fisheries model
Wild fire model
A N AN climate model 30 Energy model
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RCP2.6
RCP4.5
RCP6.0
RCP8.5

climate model 1

Hydrological model

Hurricane model

Ice Sheet model

climate model 30

» Health model

. Crop model
Coastal infrastructure model
Fisheries model
Wild fire model

Energy model




D

Major areas of impact modeling
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Katja Frieler, Impacts of Climate Change and Vulnerability



Climate data

5GCM x 4RCPs
+

Historical
observational

Socio-economic input

GDP, populations from $

SSPs
+

Historical data

Impact Models

Global
Water (13)
Agriculture (14)
Biomes (8)
Infrastructure (1)
Health/Malaria (5)
Fishery (7)
Permafrost (3)
Energy (?)
Biodiversity (?)

Regional
Forestry (?)
Water (14)

Synthesis of Impacts
in terms of warming

Main goals:

Improvement of
models

Cross-sectoral
aggregation

Cross-sectoral
effects
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provided by ISIMIP models (on 0.5° x 0.5° grid)

Water
Daily runoff, discharge, flooded areas, flood depth

Biomes
Monthly carbon fluxes and pools

Agriculture

Annual crop yields (pure crop runs) under rainfed conditions
and irrigation, required amount of irrigation water to reach full
irrigation

Name, Research Domain



Fisheries
Total catch

Energy

Energy demand, renewable potentials (e.g. hydropower) and
production, energy mixes and prices

Health

Population at risk of malaria, heat and cold related mortality, heat
induced losses in labor productivity

Name, Research Domain
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Wide spread consequences

Heat-induced mortality

Heat-induced reduction in labor productivity
Distribution of vector born-diseases (Malaria, Dengue)
Diarrhoeal diseases

Malnutrition

Available models

10

Mostly empirical approaches building on simple climate
indicators (temperature and precipitation) could be extended
by using more process-based risk indicators (e.g. flood events
as trigger of infectious diseases)

D
D

I
Ll
|

|

11| I’
| IIIEII

|

Name, Research Domain

o
=~

11



D

Required input data
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e Temporal resolution: Daily

e Spatial resolution: 0.5° x 0.5°

e Bias correction

e List of required variables is provided to CMIP6

» ISIMIP3 may provide set of higher resolution input data

More critical issue:
Detailed representation of human management
e.g. fertilizer input, land use patterns, dames, ...
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Agreement across models
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Water:

agreement (%)

<-50-30 -10 10 30 =50
relative change (%)
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Agriculture:
vield change in 2100 under RCP8.5

GGCMs without explicit N stress
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for future projections
Agriculture

e Representation of CO2 fertilization (difficult to constrain from
observations but potentially from field experiments)

Water

e Representation of evapotranspiration in low-flow regimes
e Representation of ice melting

Biomes

e Representation of CO2 fertilization effect
e Representation of mortality

A Name, Research Domain
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Impacts model evaluation is different from
climate model evaluation
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to extract pure weather effects from observations
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Comparison with simulations
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Grain yield (tha™")
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Comparison to field experiments
Wheat

Experimental setting A

Observations

e

Multi-mode
median

15 20 25 30 3%
Season mean temperature (°C)

Experimental setting B

15 20 25 30 35
Season mean temperature (°C)

Asseng et al., NCC, 2014
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Comparison of global & regional simulations
Historical runs (1971-2000)
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within ISIMIP

For many sectors the multi-model median
seems to best reproduce observations

Special Issue in Environmental Research Letters:
"Impacts of Extreme Weather Across Sectors”
Submission deadline November 1

Each ISIMIP round intended to include same set of
historical simulations to track model improvement
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Use of impact models for
economic damage assessment
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There is much more process-understanding than
currently represented in stylized damage
functions

We should use it
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e Translation into economic indicators

e Scaling with global mean temperature

—K Name, Research Domain

28



Closing the loop — efficiently

4 )
emissions @

Simple Climate
Model
Costs of f
Mitigation Economic ' 1 g Global warming
Models

Adaptation e )
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Damages < reduced form
representation of
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impact projections
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Different ways to incorporate impacts
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Option 1

(e.g. used in IMAGE)

Regionally explicit
impact projections

Global warming

-

Highly efficient

/

Global
warming

We

=

-

\_

|| established
)

Pattern
scaling

=

Regional
climate

J

Based on multiple GCM
simulations for a small
number of emission

scenarios

impact
generator
-
4 )
Impact
- Model
\_ /

sector)

¥
N

=

Usually only one
impact model (per

Regionally
explicit
impact

projections
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Option 1

(e.g. used in IMAGE)

Regionally explicit
impact projections

Global warming

Highly efficient
impact
generator

High flexibility wrt different climate patterns
No coverage of impacts model uncertainty
Needs access to impacts models

Potentially slow

Global
warming

Pattern
scaling

Regional
climate

Based on multiple GCM
simulations for a small
number of emission
scenarios

Impact
Model

Usually only one
impact model (per
sector)

Regionally
explicit
impact

projections




Global warming

Option 2: ‘
4 )
Regionally expiicit Highly efficient
impact projections | impact

« generator

o J

4 ) 4 ) )
Impact Regionally
Global »‘ PRI » Regional » Model » explicit
warming scaling climate emulator impact
\ J \_ J projections
Based on multiple GCM Relationship between regional
simulations for a small climate indicators and impacts
number of emission derived from multiple impact

scenarios model simulations 33



Global warming

Option 2:

Regionally expiicit Highly efficient
Impact projections impact

 Maximum flexibility wrt climate pattern
and impact models

* Fast

e Potentially difficult to develop:

e complex collection of individual emulators

o _ Regionally
Global * Relevant indicators from pattern scaling explicit
warming e efc. impact

projections

Based on multiple GCM Relationship between regional
simulations for ? s_maII climate indicators and impacts
number of emission derived from multiple impact

scenarios model simulations



Option 3
the ISIMIP way:

Regionally ex
impact projection

Global
warming

=

A set of multi-GCM-
multi-Impact Model
simulations for a limited

-

\_
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Impact
emulator

Global warming

-

.

¥
N

Highly efficient
impact
generator

/

» explicit
impact

J

Regionally

projections

number of scenarios



Option 3 Global warming
the ISIMIP way:

Regionally expiicit Highly efficient
impact projections impact

e Some flexibility wrt climate patterns and

impact model (limited to ISIMIP)
e Fast

e Easy to build

Regionally
Global Impact explicit
warming emulator impact
projections

A set of multi-GCM-
multi-iImpact Model
simulations for a limited
number of scenarios



Availability of reduced impact models
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Change in Annual Maximum Flood Volume (%)
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Sea level contribution in mm Sea level contribution in mm

Sea level contribution in mm
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Translation into economic indicators
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Characteristics of standard damage models
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Only minor effects on growth rates

GDP per-capita level

GDP per-capita growth rate
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Moore and Diaz, 2015:
Temperature effects on both
i)  Total Factor Productivity
i) Capital depreciation

»Economically optimal warming“
reduced from 3.5°C to below 2°C

Dietz and Stern, 2015:
Temperature effects on

i)  Total Factor Productivity or
i) Capital stocks

Reduction of increase of
per-capita-consumption by
> 10%

> 25%

Moyer et al., 2013:
Temperature effects on
i)  Total Factor Productivity

Already small damage to Total
Factor Productivity yields negative
growth rates
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Economic growth assuming climate change
reduced total factor productivity
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From process-based models

e Reductions in capital stocks from extreme events
(empirical damage functions)

e Number of people affected by floods and tropical cyclones

e Changes in agricultural production

e Water scarcity indicators, droughts (national)

e |nundation areas due to sea level rise (+ storm surges)

By empirical approaches

e Changes in heating and cooling demands
e Changes in labor productivity due to heat
e Heat and cold induced mortality

Name, Research Domain
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Priority research
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Conceptual improvements:

e Viable way of temporal and spatial aggregation of effects of
extreme events

e Structural elimination of perfect forsight facing extreme events

e Economic processes needed to capture the observed long-term
growth reduction

e Distributional and equity issues between regions, households
and sectors

e Quantifying impacts in economically relevant terms (e.g. effects
on stocks and productivities)

Name, Research Domain 50
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