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A

Your queries

. Simplest model of ocean CO, and pH

evolution

Permafrost carbon feedback? (Methane?)
Ocean hydrate feedback?

Tipping points of above?

Ocean acidification tipping point or
feedbacks?

. Valuing above?



My outline

1. Simple model of ocean CO, and heat

2. Impacts of methane vs. CO, on Peak T

3. Permafrosts and ocean hydrates within the

global methane cycle

4. Ocean acidification impacts (?)

. Immediate vs. ultimate social cost of carbon



Simplest Model for Earth’ s
Thermal Inertia
and Carbon Cycle
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Time scale for Atmospheric CO, Uptake

Ocean dissoln. ~300 yrs
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CaCOj, neut. ~5000 yrs
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Solid earth ~400,000 yrs
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CO, vs CH, Abatement Impacts
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Fig. 1. Observed temperatures (42) through 2009 and projected temperatures thereafter under various
scenarios, all relative to the 1890—1910 mean. Results for future scenarios are the central values from
analytic equations estimating the response to forcings calculated from composition-climate modeling
and literature assessments (7). The rightmost bars give 2070 ranges, including uncertainty in radiative
forcing and climate sensitivity. A portion of the uncertainty is systematic, so that overlapping ranges do
not mean there is no significant difference (for example, if climate sensitivity is large, it is large
regardless of the scenario, so all temperatures would be toward the high end of thejr ranges; s

giss.nasa.gov/staff/dshindell/Sci2012). gﬁmd‘eﬁ 8% arezwz



CO, vs CH, Abatement Impacts
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Fig. 1. Observed temperatures (42) through 2009 and projected temperatures thereafter under various
scenarios, all relative to the 1890—1910 mean. Results for future scenarios are the central values from
analytic equations estimating the response to forcings calculated from composition-climate modeling
and literature assessments (7). The rightmost bars give 2070 ranges, including uncertainty in radiative
forcing and climate sensitivity. A portion of the uncertainty is systematic, so that overlapping ranges do
not mean there is no significant difference (for example, if climate sensitivity is large, it is large
regardless of the scenario, so all temperatures would be toward the high end of thejr ranges; s

giss.nasa.gov/staff/dshindell/Sci2012). gﬁmd‘eﬁ 8% arezwz
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CO, vs. Methane

* Global Warming Potential (GWP)
integral of radiative forcing
methane more powerful by 20-40x
Peak Temperature Impact
methane by only 3-4x (today)
Methane = 1% of C emissions, 3% of impact



Methane

Radiative Forcing _ 0
1 Qur impact 30 years from now
change over the last 30 years






Methane Hydrate Stability Zone
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a b e
Ice Only Hydrate Only Hydrate + Ice
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Depth below sea level, m

Methane cycle

Base

o0 — L L L1 1111111111

—200¢

—400

—600

—800

—-1000

¢ 100 200 300 400 500 600 700 800
Offshore Distance, km

Hydrate

Q.95
Q.8
0.85
Q0.8
Q.75
Q.7
Q.65
Q.6
Q.55
0.5
0.45
Q.4
0.35
Q.3
Q.25
0.2
Q.15
Q.1
Q.05

Depth below sea level, m

Year 062001000

Nolce

) ) JE S N

0.95
Q.8
0.85
Q.8
Q.75

—20¢

—400

—600

—800

—-1000

—10.65

—0.55
Q0.5
0.45
0.4
0.35
Q.3
Q.25
Q0.2
Q.15
Q.1
Q.05

¢ 100 200 300 400 500 600 700 800

Offshore Distance, km

Hydrate



Long-term carbon cycle feedbacks:
soll carbon

| I
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Kilograms of carbon per square meter to 150 cm depth



Yedoma

Ancient soils. (Left) Exposed carben-rich soils Irom the mammoth steppe-tundra along the Kolyma River in Sideria. The soils are 53 m thick; massive ice medges are
visible. (Right) Soil close-up showing 30,000 -year-cld grass roots preserved in the permalrost,

Frozen grass roots accumulated in wind-deposited
glacial flour (loess)



Degrades quickly
upon thawing.

Can produce some
CH, in waterlogged
soils and lakes



Arctic Hydrates Are a Minor
Component of the Global Methane Budget

Ocean
(hydrates)

/

Land
(permafrost)

Human sources

Everywhere else (mostly fuel industry)

Where methane Where Arctic methane
comes from globally comes from



Long-term potential climate impact
from Arctic carbon”
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Ocean Acidification Impacts

e Shellfish hatcheries
juveniles more sensitive mineralogically
near-shore pH changes larger than expected

 Pteropods
cold-dwelling, aragonitic shells
eaten by salmon etc.

e Carbon cycle feedbacks
mesocosm experiments contradictory
small atmospheric CO, impact by 2100



Your queries

Simplest model

Two layers, two timescales
http://climatemodels.uchicago.edu/slugulator

Permafrost carbon feedback? (Methane?)
100’s Gtons C over 1-2 centuries
CH, up to 50%, depending on water saturation
Ocean hydrate feedback?

Time scale > 1000 years due to thermodynamic
exclusion of hydrate from permafrost zone

Tipping points of above?
Yes, in that they won’t reform if it cools back down
No, in that no sudden acceleration

Ocean acidification tipping point or feedbacks?
Impacts difficult to gauge
Carbon cycle feedbacks probably slow

Valuing above?
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How long will it last?

CO, degassing

from the Earth lgneous weathering

= function of fresh water (so, CO,)

CaSiO, + CO, -> Ca?* + CO5™ + SiO,

—

Metamorphic

decarbonation Ca%* + CO,™ -> CaCO,

Subduction

Burial of CaCO,




Long-Term Sea Level Rise
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Idealized hurricane simulations

Aggregale results: 9 GCMs, 3 basins, 4 paramelenzabons, 6-member ensembles
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Fig. 3. [Dipected decadally averaged changes in the global distribution of precipitation per degree of warming (percentage of change in precptation pes
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Solomon et al., 2009



What is it Worth?

Scenario: 10% decrease in carrying capacity that lasts 100,000 years

Postulate: Each generation values its existence in the world the same amount (as us)

Propose: Absolute unit of value through time: a generation-value

How much is 10% of our world worth to us?

10% * Global GWP (S100 trillion/yr) * 20 years (generation time)

Conclude: = S2E14 = S 200 trillion



The Number

5000 Generations * 10% = 500 generation-values

total cost - s 118 or S1 quintillion

1E18 dollars / 5E12 tons C * 12 g C / 44g CO, = $50,000 / ton COZ
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Conclusions

Our generation is walking out on 99.9% of the climate bill.
Using SCC in cost / benefit analysis => our financial self interest

not the same as ethical justification to burn that carbon
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