Robotics, Automation and the Economy

Rob Seamans
May 19, 2016
Why Do We Care?

- Automation \rightarrow Productivity growth
 - Bloom, Sadun, Van Reenen (AER 2012)

- Industrial robotics are type of automation, so Robots \rightarrow (?)Growth
 Graetz & Michaels (2015): 0.36 to annual productivity growth

- Industrial robotics can complement or substitute for labor
 - At the industry level and at the occupation level

- Timely: recent popular press interest, July 2015 JEP on automation, ongoing NAS study (Brynjolfsson and Mitchell)

- 2016 Economic Report of the President, Chapter 5 (Technology and Innovation)
Automotive Assembly Line
Automated Warehouse Systems
The Boston Consulting Group (2014) has estimated that worldwide spending on robotics will be $26.9B in 2015 and will rise to $66.9B by 2025.

Annual industrial robotics shipments have nearly doubled since 2010.
Automotive industry leads other industries, in number and number-per-worker.
Increase since 2010 seems pronounced in automotive.
Japan leads Germany and U.S.
Subjective, forward-looking measure (Frey and Osborne 2013)
- Occupations that are easier to automate have lower wages.
 - E.g., low reliance on manual dexterity, originality/creativity, social perceptiveness, negotiation and persuasion skills.

Podiatrists, civil engineers, clergy, interior designers, HR managers

Tax preparers, telemarketers, cashiers, office clerks

Source: Bureau of Labor Statistics; Frey and Osborne (2013); CEA Calculations
Subjective, forward-looking measure (Frey and Osborne 2013)

Occupations that are easier to automate have lower wages.
 - E.g., low reliance on manual dexterity, originality/creativity, social perceptiveness, negotiation and persuasion skills.
Patenting activity has started to increase since 2012, both in number and in rate.

No evidence of concentrated ownership across industries.
What We Know

• Robotics “sector” is small ($27B vs. $2T for mfg).
• Recent uptick since 2010 (units, revenues, patents).
• Upstream supply seems competitive.
• Potential for productivity growth, but also potential for labor displacement.

What We Hope to Know

• Need a better understanding of when robots (and automation) are substitute vs. complement.
• Need to better characterize the impact by geography.
• More research on effect on productivity and growth
Next Steps

- Researchers: continue to work with existing data
 - IFR shipments (country-industry-year level)
 - Subjective assessments of probability of automation
 - Patent applications w/ “robot” class
 - Census data on ICT, e-Business, etc.

- Researchers: develop (and share) new data sources
 - Systematic U.S. survey
 - e.g. “Last year, how much money did your establishment spend on robotics?” and “Has your establishment considered using robotics instead of human labor?”

- Policymakers: track affected industries and geographies
 - NSTC subcommittee on AI/ML