The new new neuroscience: extending the reach of
modern approaches to brain and mind

P. Read Montague

Virginia Tech Carilion Research Institute Wellcome Trust Centre for Neuroimaging
Department of Physics, Virginia Tech University College London, 12 Queen Square,
2 Riverside Circle, Roanoke, VA 24014 London, UK, WC1N 3BG



The prevailing model (ambition)

Growing body of cellular & Behavior, thoughts,
molecular data moods, etc.

Computational
Models and methods

Describe complex behaviors, thoughts, moods, etc as
computations.

!

Describe neuronal responses and interactions as
computations.



A shift to prediction, decoding, and groups




2 examples

evocative visual stimulus (IAPS)

» decode political ideology (Wilson-Patterson)



worms and brains
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Summary
Political ideologies summarize dimensions of life that

define how a person organizes their public and pri-
vate behavior, including their attitudes associated with

Results

We carried out a passive picture-viewing experiment to test
the hypothesis that nonpolitical but affectively evocative
images elicit brain responses that predict political ideology
as assessed by a standard political ideology measure. Healthy
volunteers (n = 83) were instructed to look at presented pic-
tures while lying in the scanner, and, to control for attentive-
ness, we instructed them to press a button when a fixation
cross appeared on the screen (Figure 1). Images were sampled
from the International Affective Pictures database [14] and
included disgusting, threatening, pleasant, and neutral images
(see Appendix S1 available online). Each emotional condition
had two subconditions (see the Supplemental Experimental
Procedures). After the fMRI session, participants completed
a behavioral rating session in which they rated all pictures
they had seen in the scanner (using a nine-point Likert scale)
as disgusting, threatening, or pleasant. Lastly, participants
filed out computer-based questionnaires assessing their
political attitudes, disgust sensitivity, and state/trait anxiety
level. See the Supplemental Experimental Procedures for de-
tails of the behavioral rating and survey sessions.

Political ideology was summed from several survey items
(Appendix S2), including ideological position, partisan affilia-
tion, and policy preferences (e.g., gun control and immigration,
presented in the well-known Wilson-Patterson format [15]).
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Wilson-Patterson Issue Battery

Here is a list of various topics. Please indicate how you feel about each topic.

1. strongly agree

2. agree

3. uncertain

4. disagree

5. strongly disagree

School prayer

Pacifism

Stop immigration

Death penalty
Government-arranged healthcare
Premarital sex

Gay marriage

Abortion rights

Evolution

Biblical truth

Increase welfare spending
Protect gun rights

Increase military spending
Government regulation of business
Small government

Foreign aide

Lower taxes
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What does the brain say?

Separate networks predict conservative and liberal scores
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Ahn et al., (2014) Current Biology 24:1-7



What does conscious behavior say?

All the pictures are rated the same

Ahn et al., (2014) Current Biology 24:1-7



Single stimulus prediction of political ideology score
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2 examples

< evocative visual stimulus (IAPS)

» decode political ideology (Wilson-Patterson)

<4— market price (human, agent)

— » bubbles (overvaluation)




Neural and computational underpinnings of collective choice

Irrational Exuberance in Laboratory Markets
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Price

Volume

Bubbles form despite ‘flat’ fundamental value
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Nucleus
Accumbens ROI

A Priori Mask
MNI (+/-12,8,-8)

24 voxels total
Trial-by-trial peak

response to “Trading
Results”
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Discussion: NAcc

NAcc activity tracks prices

NAcc activity predicts returns & crashes

Subjects for whom NAcc predicts buying do worse
Bubbles as a collective behavioral pathology

Common biological foundations with addiction and impulse control disorders



Within-market NAcc Activity as Indicator of Future Price Changes

Forward returns
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Artificial intelligence and Biological Brains

LETTER

doi:10.1038/naturel14236

Human-level control through deep reinforcement

learning
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The theory of reinforcement learning provides a normative account',
deeply rooted in psychological® and neuroscientific’ perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
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agent is to select actions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

Q* (Ssa) =

max [
n

26 February, 2015 Nature 518:529 -
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