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Improving Health Research for Small Populations 

A Workshop 
 
 

January 18 and 19, 2018 
 

The NAS Building 
2101 Constitution Ave. NW 

Washington, DC 20418 
 

NAS Lecture Room 
 
 

AGENDA 
 
 
Brief Statement of Task 
 
A National Academies of Sciences, Engineering, and Medicine ad hoc planning committee will 
organize a public workshop to discuss the methodological challenges of conducting research on 
small, underrepresented population subgroups in health research. The workshop will consider 
ways of addressing the challenges of conducting epidemiological studies or intervention 
research with small population groups, including alternative study designs, innovative 
methodologies for data collection, and innovative statistical techniques for analysis. Specifically, 
the workshop will address approaches for identification, recruitment, and retention of study 
participants to maximize the sample sizes of small groups in research studies; epidemiological 
design and analytics approaches for small samples; and intervention study design and analytic 
approaches for subpopulations. 
 
 
This workshop is co-sponsored by the National Cancer Institute (NCI), the National Institute on 
Minority Health and Disparities (NIMHD), and the Office of Behavioral and Social Sciences 
Research (OBSSR) of the National Institutes of Health. Support for this workshop was also 
provided, in part, by the Robert Wood Johnson Foundation. The views expressed here do not 
necessarily reflect the views of the Foundation. 



DAY 1: Thursday, January 18, 8:30 AM - 5:00 PM (NAS Lecture Room) 
 
8:00 - 8:30 AM Registration (East Court); Refreshments Available 
 
WELCOME AND INTRODUCTIONS 
 
8:30 MODERATOR: Graham Colditz, Committee Chair, Washington University in St. Louis, 
Opens the Workshop 
 

8:35 Welcome to the National Academy of Sciences  
Brian Harris-Kojetin, Director, Committee on National Statistics, National 
Academy of Sciences, Engineering, and Medicine 

 
8:45 Motivation and Objectives for the Workshop 

Robert T. Croyle, Director, Division of Cancer Control and Population Sciences, 
National Cancer Institute 

 
9:00 SESSION I: What do we Mean by Small Populations? How to Decide when a Small 
Population is Important or Meaningfully Different Enough to Study? Why did we Structure the 
Workshop this Way?   
 
MODERATOR: Graham Colditz, Committee Chair, Washington University in St. Louis 
 

9:05 Howard Koh, Harvard T.H. Chan School of Public Health, The Importance of 
Health Research on Small Populations 

9:35 Scarlett Lin Gomez, University of California, San Francisco, Data Issues in 
Studying Small Populations: Challenges, Opportunities, and a Case Study 

9:50 Lisa Signorello, Division of Cancer Prevention, National Cancer Institute, Fielding 
Studies in Underrepresented Populations: Challenges and Considerations  

10:05 Floor Discussion 
 
10:20  BREAK (refreshments available in East Court) 
 
10:40 SESSION 2: Challenges in Using Available Data for Small Population Health Research 
 
MODERATOR: Lance Waller, Committee Member, Emory University 
 

10:45 Kelly Devers, NORC, The Feasibility of Using Electronic Health Records and 
Electronic Health Data for Research on Small Populations   

11:05 Chris Fowler, Pennsylvania State University, Using Geospatial Methods with 
Demographic Data to Identify Populations 

11:25 Ellen Cromley, Consultant, Using Geospatial Methods with Other Health and 
Environmental Data to Identify Populations 



11:45 Floor Discussion 
 
12:00 PM LUNCH (available in East Court) 
 
1:00 SESSION 3: Techniques Used in Survey Research to Identify and Find Small Populations 
for Health Research 
 
MODERATOR: Graham Kalton, Committee Member, Westat 
 

1.05  Marc Elliot, Rand, Probability Sampling Methods for Small Populations  
1:25 Sunghee Lee, University of Michigan, Two Applications of Respondent Driven 

Sampling: Ethnic Minorities and Illicit Substance Users 
  1:45  Patrick Sullivan, Emory University, Venue-Based and On-line Sampling 

2:05 Krista Gile, University of Massachusetts, Amherst, Invited Discussant  
2:25 Floor Discussion 

 
2:45 BREAK (refreshments available in East Court) 
 
3:00 SESSION 4: New and Emerging Designs for Intervention Studies 
 
MODERATOR: James Allen, Committee Member, University of Minnesota Medical School 
 

3:05 Amy M. Kilbourne, University of Michigan, Designs for Dissemination and 
Implementation Research for Small Populations 

3:35 Christine Lu, Harvard Medical School, Quasi-experimental Designs with 
Application to Small Populations 

3:55 Diane Korngiebel, University of Washington, Addressing the Challenges of 
Research with Small Populations 

4:15  Patrick H. Tolan, University of Virginia, Invited Discussant 
4:35 Floor Discussion 
 

5:00 PM PLANNED ADJOURNMENT 
  



DAY 2: Friday, January 19, 8:30 AM - 2:00 PM (NAS Lecture Room) 
 
(Refreshments available in East Court from 8:00 AM) 
 
8:30 AM MODERATOR: Graham Colditz, Committee Chair, Washington University in St. Louis 

Welcome and Introductions to Second Day 
 
8:40 SESSION 5: Recruitment, Retention, and Collection of Data with a Focus on Small or 
Hard to Reach Populations 
    MODERATOR: Jan Probst, Committee Member, University of South Carolina 
 

8:45 Vetta Sanders-Thompson, Washington University in St. Louis, Issues and 
Challenges Associated with Recruitment and Retention for Health Research  

9:05 F. Douglas Scutchfield, University of Kentucky, Improving Health Research in 
Rural Areas 

9:25 Kathi Mooney, University of Utah, Using Technology for Recruitment, Retention. 
Data Collection, and Intervention Delivery 

9:45 Tracy L. Onega, Dartmouth University, Invited Discussant   
10:05 Floor Discussion 

 
10:20  BREAK (refreshments available in East Court) 
 
10:40   SESSION 6: Analysis Techniques for Small Population Research 
    MODERATOR: Lance Waller, Committee Member, Emory University 
 

10:45 Rick H. Hoyle, Duke University, Design and Analysis Considerations in Research 
with Small Samples  

11:05 Thomas A. Louis, Johns Hopkins Bloomberg School of Public Health, Bayesian 
Methods for Small Population Analysis  

11:25 Katherine R. McLaughlin, Oregon State University, Estimating the Size of Hidden 
Populations   

11:45 Floor Discussion 
 
12:00 PM LUNCH (available in East Court; seating available in Great Hall) 
 
1:00 SESSION 7: Wrap-up and Concluding Remarks 
    MODERATOR: Gordon Willis, National Cancer Institute 
 

1:00 Steering Committee. Panel Discussion – Next Steps in Improving Health Research 
for Small Populations 

1:30 Floor Discussion 
 
2:00 PM  ADJOURNMENT 
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What is a Small Population?1 
 

 
Srinivasan and colleagues2 (2015, p.1) provided their definition of a small population as one for 
which “the size, dispersion, or accessibility of the population of interest makes it difficult to 
obtain adequate sample sizes to test specific research questions.” They go on to note that “it is 
critical to ensure that all segments of the US population benefit from [health] research and 
from the latest technologic advances…”   
 
Unfortunately, populations for which it is difficult to obtain adequate sample size are also likely 
to be expensive to study because dispersion and accessibility increase logistical costs. Hence, 
even if it is technically feasible to study a small population, it may not be easy to obtain funding 
for the study. This argues for increased efforts to document the needs, potential benefits, and 
methods for enhancing the efficiency of the study.   
 
In other situations there may be no good sample frames because there is no agreed to 
definition of the population or a way to identify it. These, so called “hidden populations” are 
“small” by the above definition but raise more fundamental questions in health research and 
require additional data source work even to measure health disparities. Devers et al. (2013) 
provides some examples of this challenge and potential options for addressing it.   
 
Much of the interest in studying health disparities for “small” populations was stimulated by 
the Department of Health and Human Service’s Healthy People project3 in 2010. The project, 
which set a vision and strategy for improved health outcomes by 2020, listed as one of their 
goals a desire to “achieve health equity, eliminate disparities, and improve the health of all 
groups.” The elimination of these disparities and inequity is to be assessed across the following 
categories: race/ethnicity; gender; socioeconomic status; disability status; lesbian, gay bisexual, 
and transgender status; and geography. Several of these categories—in particular, some races, 
LGBT status, and some geographies—can be indicative of small populations. 
 
The National Cancer Institute (NCI)4 and Health Resources and Services Administration (HRSA)5 
both provide a wealth of information about measuring diversity of health outcomes and about 
measuring diversity in access to health care. Diversity is usually established by comparisons. A 
diversity measure of a small population may be compared to that of the U.S. population, or 
comparisons may be made among the diversity measures for its subpopulations. For example a 
small population of interest might be people whose work exposes them to a particular hazard, 

                                                           
     1This is a living document prepared as background for the workshop by staff of the Committee on National 
Statistics, National Academy of Sciences, Engineering and Medicine with substantial input from sponsors, steering 
committee members and presenters.   
     2Authors are co-sponsors of this workshop. 
     3See, https://www.healthypeople.gov/sites/default/files/HP2020_brochure_with_LHI_508_FNL.pdf (December 
2017). 
     4See, https://www.cancer.gov/about-nci/organization/crchd/about-health-disparities. 
     5See, https://bhw.hrsa.gov/shortage-designation/muap. 

https://www.healthypeople.gov/sites/default/files/HP2020_brochure_with_LHI_508_FNL.pdf
https://www.cancer.gov/about-nci/organization/crchd/about-health-disparities
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such as miners in a particular area or type of mine who experience poor health outcomes. Small 
populations can also occur from combinations of characteristics, e.g., members of American 
Indian and Alaska Native tribal groups who live in small distinct communities; immigrants who 
are “undocumented” by country of origin;  individuals at risk for HIV by category (men who 
have sex with men, sex workers, illicit drug users.) As such, the range of possibilities is large and 
contingent on a researcher’s specification of a research question and other covariates for 
control or study. 
 
Small populations and the inference challenges associated with small sample size are inevitable 
due to variation in incidence of disease, prevalence of health-related behaviors, and 
heterogeneity in population characteristics. Promoting and strengthening research with small 
populations is of particular importance because substantial health disparities may arise from 
the combination of disparities in many small and distinct demographic groups. Lack of evidence 
concerning etiology of outcomes and most effective treatments for such groups may 
perpetuate disparities.  
 
Different Kinds of Health Research 
 
Commonly used approaches in public health -- surveillance/epidemiological studies and 
intervention studies – involve different types of inferences.  Public health surveillance and 
epidemiological studies are generally accomplished through observational studies of the health 
status and health needs of population groups, either using existing data sources or designing 
surveys to collect needed information from a target population. These studies are strictly 
observational, with no attempt by the researcher to affect the outcome.  On the other hand, 
intervention studies examine the effect of a treatment, behavior modification or treatment 
delivery option on an outcome.  Examining the effects of an intervention requires a carefully 
designed study that may be referred to as an intervention, prevention, behavioral study, 
implementation study or clinical trial.   
 
Surveillance/Epidemiological Study 
 
The goal of observational studies for surveillance is typically descriptive: to estimate the 
percentage of some target population or subpopulation within a geography, or the percentage 
of that population with health disparities or certain health outcomes. Epidemiological 
observational studies are analytical, seeking to estimate associations, risk factors, odds ratios, 
or relative risks. They may include cohort studies, case control studies, or cross-sectional 
analysis. Typically, available survey data, administrative records, registries, electronic health 
records, and other data may be used for surveillance studies or as a guide to selecting qualified 
individuals to survey/enroll in epidemiological studies.   
 
For small populations, these studies may be challenged to find available data. The question of 
finding people for rare population research has been well addressed by the survey research 
community.  In this type of survey research, “small” might depend on how the population is 
perceived in relation to either a larger group, such as the rest of the US population or 
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partitioned into subgroups by features such as race/ethnicity, geography or socioeconomic 
status. In his introductory chapter to the monograph on hard-to-survey populations, 
Tourangeau noted that “problems [in sampling] arise when a target population represents a 
small fraction of the frame population.” Tourangeau et al. (2014, p. 4). 
 
Recently there has been considerable interest in conducting surveillance on so-called “hidden” 
populations—those that are not easily identifiable from administrative records and 
household/self-report surveys because individuals therein are reluctant to self-identify. In 
statistical terms, for these populations there is no sampling frame. Examples include the 
homeless, migrant workers, immigrants and various gender preference minorities. While survey 
research traditionally relies on probability sampling from a frame to make sure estimates that 
are derived are unbiased and generalizable to the target population, that method cannot be 
used to sample from hidden populations because information about the identify of individuals 
in the group is either not available or cannot be reliably ascertained from survey respondent’s 
reports. There are non-probability sampling approaches for reaching them, such as respondent-
driven sampling, venue-based sampling, and on-line sampling; however, these techniques raise 
questions about potential bias and lack of generalizability if used to estimate a population size 
or disparity level. Lack of sample frames is a problem that requires more fundamental methods 
and data source work to be done, even to understand the basic issues about the population and 
its health. 
 
In addition to issues with size, dispersion, and accessibility, small populations may also be hard-
to-reach because their unwillingness to participate in research studies, or because of negative 
histories with social institutions and with past research. Tourangeau et al. (2014) listed many 
examples of the challenges with surveying these groups and possible methods that may be 
used. In general, this monograph provides a useful taxonomy for distinguishing and surveying 
hard-to-survey populations.   
 
Intervention Study 
 
For the purpose of this workshop “intervention study” is meant to define any study with a goal 
to establish a causal effect of a treatment applied to individuals. The randomized controlled 
trial (RCT) is the gold standard in health intervention research. Other examples of intervention 
studies are prevention, behavioral, and implementation studies with different approaches to 
randomization. Clinical trials to establish drug efficacy are the most well-known examples of 
intervention studies and frequently use randomized controlled trials (RCT). The challenge, 
especially with small populations or small samples, include a number of logistical and ethical 
issues that can arise, along with inefficiencies in how the RCT makes use of information that can 
result in low power and low external validity. An RCT is also impractical in some real world 
settings such as dissemination and implementation studies.  Recent alternative designs 
(stepped wedge, interrupted time series, regression discontinuity, and dynamic waitlist) make 
use of optimization strategies to more efficiently use available information to maximize power 
with modest sample size. All of these new approaches have their strengths and weaknesses 
that should be carefully considered in any given situation. 
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IOM (2001) lists the following situations that might warrant a small clinical trial: rare diseases, 
unique study populations, individually tailored therapies, environments that are isolated, 
emergency situations, and public health urgency. The same situations might result in small 
samples for any type of intervention trial. IOM (2001) also provides a summary of statistical 
issues, designs and analysis approaches that might be useful for small clinical trials and provides 
the following recommendations for researchers designing such studies: define the research 
question; tailor the design; clarify methods of reporting of results; perform corroborative 
statistical analysis; and exercise caution in interpretation. IOM (2001, p 10) also recommended 
more federal funding of research on alternative designs for small sample studies. 
 
The need to address methodological challenges concerning small populations is predicated on 
determining whether or not a “small” population is meaningfully different and should be 
studied. Answers to this question arise from concerns of populations, funders and researchers. 
These may differ. For the researchers and funders, answers to the “meaningfully different” 
question may arise from the significant amount of prior analysis including surveillance studies, 
epidemiological studies, laboratory studies, etc. that occur prior to funding. IOM (2010, pp. 2, 3, 
and 5-9) proposes that the L.E.A.D framework (for Locate Evidence, Evaluate Evidence, 
Assemble Evidence, and Inform Decisions) be followed when designing a study. It goes on to 
specify that first the researcher must identify the question to be answered by the study. Then 
the following steps should be followed: (1) Locate all the types of evidence that could be useful 
in answering the question. (2) Evaluate the quality of the evidence, especially its level of 
certainty (internal validity) and generalizability. (3) Develop a transparent and comprehensive 
summary of the evidence related to why an action should be taken, what that action should be, 
and how it should be taken. If evidence is limited, examine the potential for blending it with 
theory, professional experience, and local wisdom. (4) Use the summary to inform the decision-
making process. Explicitly or implicitly, plans and proposals for research on small populations 
must address the meaningfully different criteria and consider the different needs of the 
relevant stakeholders. Lack of clarity concerning this issue may well be the source of some of 
the frustration felt over funding patterns addressing health in small populations.   
 
If evidence is limited other options might be more initial data source work, accumulation of 
data over multiple small studies or efforts to understand mechanism in biological studies. 
Accumulation of data over multiple small studies might be challenging because slow 
accumulations of results require data harmonization and may be subject to secular change. 
Identification of appropriate biomarkers or intermediate endpoints may allow studies with 
larger or more easily obtainable outcomes.   
 
In specifying the target population of the study, researchers may consider whether the research 
question would support the combination of the “small population” with others to make the 
study more manageable. A population may not be small if it can be combined with similar 
groups from other geographic areas. For example, developing interventions for Nicaraguan 
immigrants in the US might prove difficult because of the small population size. However, if 
relevant social, psychological and biological research suggested that the intervention approach 
was appropriate for Central American immigrants generally then the scope of the study might 
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be expanded. Even in this case, whether or not to combine groups is a difficult question. There 
are huge differences in the environments in different Central American countries and 
immigrants in different parts of the U.S. experience health care differently. Proposals to group 
demographic subgroups in order to strengthen etiological or intervention studies require 
considerable discussion and sensitivity, especially where there has been history of injustice and 
health disparities.  
 
In some instances, however, researchers may be even more challenged when subgroups of the 
small target population are ethno-culturally distinct. This cultural distinctiveness can require 
adapted or culturally grounded interventions for the subgroups, requiring small sample 
intervention research to test if the new intervention is effective by subgroup. This is typically 
the case for subpopulations, for example, for an American Indian, Alaska Native, and Native 
Hawaiian group, or for a rural Scotch-Irish Appalachian population.   
 
A further challenge involves contextual variables such as toxic exposures from a single factory 
or busy roadway or neighborhood characteristics such as lead levels in homes or neighborhood 
poverty. Because such exposures may occur over small areas, they may either define a small 
population of interest in itself (e.g., residents near a specific factory or mine) or they may result 
in confounding or other statistical issues for studies of small populations.   
 
However small populations are defined, intervention studies with these groups will likely 
necessitate small sample research. Study designs are often underpowered due to their sample 
sizes. As noted by Fok et al. (2015),  
 

“It is therefore tempting to define “small” merely in terms of statistical power. 
However, lack of power may result from weak effects as much as from sample 
size. A sample size that is adequate for a medication study with strong effects 
may be insufficient for a psychosocial prevention trial with more modest effect 
sizes.”  

 
The goals of this work shop include clarifying the overall taxonomy of small population 
challenges and articulating opportunities and gaps in efforts to address them. 
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EDITORIAL

Small Is
Essential:
Importance of
Subpopulation
Research in
Cancer Control

The ability to harness the benefits
of “big data” has had a revolu-
tionary impact on science, with its
focus on the volume and variety
of data sources, and application of
both traditional and innovative
analytic methods appropriate for
large, aggregated data sets. We
are concerned, however, about
the opposite: “small data,” for
which the size, dispersion, or
accessibility of the population
of interest makes it difficult to
obtain adequate sample sizes to
test specific research questions.
Examples include racial or ethnic
subpopulations (e.g., Honduran
Latin Americans), populations
occurring in specific geographic
areas (e.g., reservations), and
populations that have relatively
rare characteristics (e.g., trans-
gender persons). A great chal-
lenge is determining when a small
group is of practical or theoretical
interest (Figure 1). We define
“practical and theoretical inter-
est” broadly to include issues
involving social justice, biologi-
cal or geographic factors, and
disease burden.1 Ultimately, it is
critical to ensure that all seg-
ments of the US population
benefit from this research and
from the latest technologic ad-
vances in cancer care services
and delivery.

INCLUDING
UNDERREPRESENTED
GROUPS IN RESEARCH

An example of the potential
negative ramifications of not in-
cluding underrepresented groups
in research—or inappropriately
aggregating them across groups—
comes from the study of racial

and ethnic health disparities and
issues of equity in the United
States. Intervention research often
does not include a wide range
of racial/ethnic subgroups; so it is
not feasible to test whether an
intervention created specifically
for the majority group is also
efficacious for the subgroups.
Likewise, the ability to test
whether an intervention can be
altered for a particular subgroup
is also often not possible. Epide-
miological and surveillance re-
search usually involves the inclu-
sion of “minority or underserved
populations” in addition to White
or non-Hispanic White (NHW)
groups. While this has allowed for
a better understanding of these
smaller populations and provides
some progress toward addressing
health inequities, there remain
pockets of communities that are
severely underrepresented within
the broader “minority and under-
served populations.”2---6

As a further example, although
Asian Americans as a whole have
high incomes and good health
outcomes overall when compared
with NHWs, Hispanics, African
Americans, and American Indian/
Alaska Natives, this generalized
statistic masks the fact that sub-
groups of Asian Americans, such
as the Cambodians and Hmong,
lag severely behind other Asian
Americans.3,4,7,8 Even within the
NHW population there are com-
munities that have long been dis-
advantaged (such as those living
in Appalachian states), with low
levels of income, literacy, and
health outcomes.9---11 These sub-
groups have generally been omit-
ted or excluded from the research
process because of challenges with

identification and recruitment.
Through this commentary, we
hope to encourage research in
subpopulations; we recommend
both the development of new
methods and the innovative use of
existing methodological and ana-
lytic strategies across both inter-
vention and epidemiological
research.

ALTERNATIVE STUDY
DESIGNS AND ANALYSIS
PROCEDURES

There is growing recognition
that to implement interventions in
small populations, it may be nec-
essary to consider alternative
study designs, such as the use of
single-case designs attributing
propensity scores, and random-
ized group designs. In 2013,
many of the studies submitted to
the Division of Cancer Control
and Population Sciences at the
National Cancer Institute (NCI) on
subpopulation research that did
not score well in peer review re-
ceived comments that the ran-
domized clinical trial design
was not appropriate because the
sample size was insufficient to
detect changes in the effect of
the intervention. This criticism
raises the question of whether
these studies would be better
suited for alternatives to the stan-
dard randomized control trial de-
sign, such as single-case, within-
subject controls, and a variety of
quasi-experimental designs.

One solution for testing inter-
ventions in small samples is to
focus on within-rather than
between-group designs. Because
a within-group design uses the
sample as its own control, there is
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no need for a separate control
group, reducing by up to half the
sample size required for accurate
statistical comparisons. Among
group designs, there are a number
of quasi-experimental approaches
that could be considered, includ-
ing interrupted time series12---15

and stepped wedge designs, the
latter being particularly useful for
studies in which there are distinct
and dispersed cohorts or commu-
nities in which the intervention
can be rolled out in a staggered
manner.16,17 Single-case studies
involving a series of N-of-1 trials
could be used to test intervention
adaptations in an iterative manner,
and Bayesian estimates can be
produced from this series of trials
to evaluate the potential gener-
alizability of the findings to the
subpopulation.18 Within-subject

designs require more intensive
longitudinal data than typically
obtained through between-subject
designs, but the advent of tech-
nologies for capturing temporally
dense data, such as ecological
momentary assessment and pas-
sive sensor technologies, makes
these approaches more viable.
Such data could also be used
in conjunction with multilevel
analyses of behavior across dif-
ferent spatial areas. This kind
of study design can be statisti-
cally powerful, even with modest
numbers of samples per geo-
graphic unit.19

For epidemiological research,
innovative recruitment methods
may be very useful. For example,
respondent-driven sampling20,21

has been successfully employed
to identify and recruit groups for

studies in which there is no exist-
ing sample frame, such as drug
addicts or ethnic subgroups. In-
novative analytic approaches,
such as integrative data analysis,22

could be employed where inde-
pendent data sets are combined
together and analyzed as a whole
to produce adequate representa-
tion and sample sizes. Integrative
data analysis can also be used
to combine data across multiple
iterations of the same national
survey where any one sample
does not constitute an adequate
sample size.

ADDRESSING THE
CHALLENGE OF SMALL
DATA

The National Institutes of
Health (NIH)—and by extension

the NCI—has an obligation to
conduct research to improve the
health of all Americans, not just
the health of the majority popu-
lation or those who are easy to
identify. We therefore recommend
the development and the use of
methodological and analytic pro-
cedures to allow subpopulations to
be meaningfully included in re-
search. Figure 1 illustrates a model
for determining when a “small”
group is of research interest.
However, it is also clear that other
entities need to be involved in
identifying populations of interest
and in developing initiatives to
address these groups, not just
those who are responsible for
grant funding decisions. For ex-
ample, at the NIH, training for peer
reviewers in study sections may be
needed to ensure that they are
knowledgeable about these inno-
vative methods so that sound, rig-
orous scientific applications that
employ them are understood and
scored appropriately.

In addressing the above issues,
NCI is planning a workshop to
address three areas related to
small populations:

(1) identification, recruitment,
and retention strategies;

(2) epidemiological design and
analytic approaches for small
samples; and

(3) intervention design and ana-
lytic approaches for subpop-
ulations.

Based on the products of this
workshop and responses to this
editorial, the NCI will explore
next steps to strengthen subpop-
ulation research. j

Shobha Srinivasan, PhD
Richard P. Moser, PhD

Gordon Willis, PhD
William Riley, PhD

Mark Alexander, MSc
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1. Merging data

2. Linking data

3. Other?  
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data possible based on theory or

empirical evidence?  

Is it feasible to increase the sample size
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appropriate method for small data
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Challenge: Application 

• Small Area Estimation 

• General Bayesian Methods
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• Qualitative Research 

• Single case designs (N-of-1)
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Gaps in Science

• More work needed to

understand meaningful

differences (e.g., based on

biology)  
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methods for
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and analysis 
• What existing

methods/nontraditional

methods being used

elsewhere that can be

adopted/adapted? 

Is the small group of practical/theoretical interest? That is,

should we either study this group separately or include it in a

multigroup epidemiological or intervention study?   
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Apply integrative analytic methods

for aggregated data 

No

FIGURE 1—Research with small data: identifying challenges.
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Gomez Slides

Data Issues in Studying Small 
Populations

Challenges, Opportunities, and a Case Study

Scarlett Lin Gomez, MPH, PhD

Department of Epidemiology & Biostatistics, 
University of California, San Francisco

Case study: cancer statistics in 
Asian Americans
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From “The Rise of Asian Americans.”  Pew Report. 2012

A rapidly 
growing 

population

From “A Community of Contrasts. Asian Americans, Native Hawaiians and Pacific Islanders in California.” 
Asian American Center for Advancing Justice. 2013. 

% limited English 
proficient range from 52% 

among Burmese and 
Vietnamese to 18% 
among Japanese. 

Tremendous 
heterogeneity & 

hidden 
socioeconomic 

disparities
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From “A Community of Contrasts. Asian Americans, Native Hawaiians and Pacific Islanders in California.” 
Asian American Center for Advancing Justice. 2013. 

The number of poor AAs 
increased 50% between 2007 

and 2011.

Breast cancer incidence patterns in Asian 

American women
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Breast cancer incidence rates*, 
California, 1988-2004

Race/Ethnicity Rate (95% CI)

N-H White 146.1 (145.5-146.7)

Asian ** 82.7 (81.6-83.8)

* Rates, per 100,000, adjusted to the US 2000 standard
** Asian = Chinese + Japanese + Filipina + Korean + Vietnamese + South Asian

Breast cancer incidence rates*, 
California, 1988-2004

Race/Ethnicity Rate (95% CI)

N-H White 146.1 (145.5-146.7)

Asian ** 82.7 (81.6-83.8)

Chinese 73.5 (71.6-75.4)

Japanese 102.5 (99.3-105.9)

Filipina 100.4 (98.1-102.8)

Korean 46.3 (43.8-49.0)

South Asian 77.0 (72.1-82.1)

Vietnamese 59.9 (56.7-63.1)

* Rates, per 100,000, adjusted to the US 2000 standard
** Asian = Chinese + Japanese + Filipina + Korean + Vietnamese + South Asian
From: Gomez et al. Am J Public Health 2010
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Breast cancer incidence rates*, 
California, 1988-2004

Race/
ethnicity

Combined 
(US+foreign 
born)

US-born Foreign-
born

Rate ratio 
(95% CI) 
(US/foreign)

N-H White 146.1 - - -
Asian** 82.7 120.6 76.3 1.6 (1.5-1.6)

Chinese 73.5 122.1 66.3 1.8 (1.7-2.0)

Japanese 102.5 106.1 103.1 1.0 (1.0-1.1)

Filipina 100.4 129.5 98.2 1.3 (1.2-1.4)

* Rates, per 100,000, adjusted to the US 2000 standard
** Asian = Chinese + Japanese + Filipina + Korean + Vietnamese + South Asian
From: Gomez et al. Am J Public Health 2010

Breast cancer incidence rates* by 
age, California, 1988-2004

Race/ethnicity <44 yrs 45-54 yrs >55 yrs
N-H White 27.1 240.7 449.2
US-born

Chinese 39.8 276.9 275.6
Japanese 23.9 205.8 294.2
Filipina 43.1 334.3 263.8

Foreign-born
Chinese 18.9 161.2 167.9
Japanese 24.8 196.0 283.6
Filipina 25.9 215.1 245.0

Rates, per 100,000, adjusted to the US 2000 standard
From: Gomez et al. Am J Public Health 2010
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Breast cancer trends by nativity, 1990-
2004, California

Annual % change

Filipina=4.3*

Chinese=1.97*

Japanese=1.24

*Significant

N-H White

Annual % change

Japanese=1.23

Filipina=0.8*

S. Asian=not calc

Chinese=0.97*
Vietnamese=2.35

Korean=4.24*

*Stat.Significant

Year of diagnosis

US-born Foreign-born

Journal of the National Cancer Institute 2013
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Cancer incidence trends by Asian American group, females, 
SEER 13, 1990-2008

Asian Indian & 
Pakistani

Chinese Filipina Japanese

Cancer incidence trends by Asian American group, females, 
SEER 13, 1990-2008

Kampuchean Korean Laotian Vietnamese
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Breast cancer mortality, U.S., 2003-2011

Thompson et al., CEBP 2016
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Incidence rates over time of invasive breast cancer among Asian 
American ethnic groups and non-Hispanic Whites, California, 1988-2013

Gomez et al. BCRT 2017
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Higher incidence of breast cancer in 
young Asian American women?
• 3 studies showed higher incidence rates in young 
Asian American women (~age <50) relative to non-
Hispanic White women*

• More pronounced in US-born Asian American 
women (Gomez et al. AJPH 2010)

• Recent international analysis shows trend may be due 
to cohort (Sung et al. JNCI 2015) or period (Wang et al. 
Int J Env Res Pub Health 2015) effects of increasing 
breast cancer rates among Asian populations 
worldwide, not age-specific effect

• due to changing risk factors

*Liu et al. Int J Cancer 2012; Reynolds et al. Eth & Dis 2011; Gomez et al. AJPH 2010

Higher incidence of breast cancer in 
young Asian American women (cont)?

*Gomez et al. BCRT 2017

Filipina Japanese
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Disparities among distinct ethnic groups

• More HER2Neu+ tumors?
• Higher proportional prevalence of HER2Neu+ 

tumors (Telli et al. BCRT 2010)
• Compared to non-Hispanic white women, Filipinas 

and older Vietnamese women had higher 
incidence rates of some HER2+ subtypes (Gomez 
et al., BCRT 2017)

• Increasing rates of distant stage disease among 
Filipinas (2.1% per year) (Gomez et al., BCRT 2017)

Conclusions

Disaggregated data by ethnicity, nativity, and age 
shows that:

Vastly differing patterns in incidence, 
mortality, and incidence and mortality trends 
across sub-populations.

Burden of breast cancer is not low among 
Asians!
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“I was diagnosed with breast cancer 5 years ago. When 
the doctor told me that I had breast cancer I was in 
shock because I thought this is a white women/old 
people disease. Later, I was even more surprised 
to find out that many of the Asian women I knew had 
breast cancer, but nobody talked about it.” 

(personal communication from a breast cancer survivor)

Cancer research in Asian Americans, 
Native Hawaiians, Pacific Islanders:
Challenges & opportunities
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Gaps in research

• NCI portfolio review showed virtually no 
studies of cancer etiology focused on this 
population (Nguyen, Srinivasan, et al., CEBP 2014)

• Lack of representation in current NCI-funded 
Cancer Epidemiology Cohorts and other 
cohorts

• Multiethnic Cohort (MEC) includes only Japanese 
Americans and Native Hawaiians (with sufficient 
numbers for ethnic-specific analyses)
• Many cohorts in Asia, but none in the U.S.

Challenges

• Small numbers in many ethnic groups

•How granular can we go?

• Ethnicity information (often) not captured in 

health surveys, registries, hospital data

• Lack of standardization in data collection

• Other relevant data not captured, e.g., nativity, 

immigration factors, language, SES
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Size + heterogeneity = Opportunities for 
accelerating cancer discoveries

• Heterogeneity (risk factors, disease risk) within 
population provides potential opportunities for 
identifying novel risk factors
• Research into what determines favorable 
prognosis despite poor prognosis tumor biology
• Potential of migrant studies, longitudinal 
studies, intergenerational studies

“My 1991 diagnosis was only obtained after I sought a second 
opinion, following a surgical oncologist's "refusal" to 
biopsy a very prominent and palpable breast lump. The 
reasons he refused to perform the biopsy was because I 
was "too young to have breast cancer", had "no family 
history of cancer", and “besides, Asian women don't get 
breast cancer". I believe the latter statement was made 
because of his familiarity with NCI SEER race/ethnic 
cancer data for "API" populations, which -- as you are well 
aware -- were then and continue to be reported in the 
aggregate. I have that surgeon to thank for turning me 
into a fierce cancer advocate” (personal communication 
from Susan Shinagawa, cancer survivor)
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Thank you!

Scarlett.gomez@ucsf.edu
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1

Fielding studies in underrepresented populations: 
challenges and considerations

Lisa B. Signorello, ScD

Senior Biomedical Scientist

Acting Director, Cancer Prevention Fellowship Program

Division of Cancer Prevention, NCI/NIH

2

The views expressed in this presentation reflect 
those of the author and do not necessarily reflect 
the official views of the National Cancer Institute, 
the National Institutes of Health, the U.S. 
Department of Health and Human Services, or the 
federal government.
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2

3

Southern Community Cohort Study (SCCS)
R01 CA092447 PI: Blot, Zheng
~85,000 participants in a longitudinal study

Signorello et al., J Nat Med Assoc, 2005

4

US subgroup populations

African American 

Health differences 

Not well represented in population-based cancer research 

Access challenges

PoorRural

13% 13%19%
Proportion 
of US 
population
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5

Srinivasan et al., AJPH, 2015

Commonalities

6

Some commonalities: Hard-to-Reach and Small Groups

Gaps in knowledge

Untapped or overtapped populations

Study design / methodology: 

1. Identify and access population

2. Recruitment

3. Data collection

4. Retention 

Intensified efforts
Planning
Developmental groundwork
Time and resources

New strategies?
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4

65% African American
61% household income < $15,000
33% less than a high school education

8

Community-based, in-person recruitment 

Community engagement

Trust building

Making it win:win
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5

Medical Director
Community hireCEO

Director of Nursing

CHC Engagement



Signorello Slides

6



Signorello Slides

7

Montgomery Primary Health Care Center, Montgomery, AL

St. Matthews Family Health Center, St. Matthews, SC
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15

Data Collection (what and how)

Primary data collection, and the need for tailoring. 

Exposures Unique
Understanding the context
Focus groups, other foundational work
Develop and validate questions or instruments
Develop new geospatial indices
Develop new biomarkers

Exposures Not unique
Language
Cultural slang / colloquialisms
Literacy
Need validation in the specific population
Questions or instruments need adaptation

16

Refining the SCCS Food Frequency Questionnaire (FFQ)

White females

1. Broccoli, raw (15.2%)

2. Cauliflower, raw (10.3%)

3. Broccoli, cooked, from fresh, no fat added (9.5%)

Black females

1. Cabbage, green, cooked, fat added (21.4%)

2. Cabbage, green, cooked, fat added in cooking (18.0%)

3. Broccoli, cooked, NS as to form, fat not added in cooking (8.3%)

Signorello et al., AJE, 2009

Using data files from the 24-hour dietary recalls conducted within NHANES 
III (1988–1994), CSFII (1994–1996; day 1 recalls), NHANES 1999–2000, 
NHANES 2001–2002, and NHANES 2003–2004 (day 1 recalls)

SCCS FFQ Item “Broccoli, cabbage, brussels sprouts, or cauliflower”
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Retention

Hard to reach can mean hard to reach again

 Collect more contact information

 Offer avenues “in” to update information or collect follow-up data

 Expand the options of where you look

 New technologies?

www.cancer.gov www.cancer.gov/espanol
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1

The Feasibility of Using 
Electronic Health 
Records (EHRs) and 
Other Electronic Health 
Data for Research on 
Small Populations

January 18, 2018

Kelly J. Devers, Ph.D.

2

Outline

 Importance of Studying Small Populations

 Challenges in Studying Small Populations 

 Growing Availability of Electronic Health Record (EHR) and other 
Electronic Health Data

 Potential Uses of EHR and Other Electronic Health Data

 Future Research
– Conditions for Greater Use of EHRs and Electronic Health Data

– Potential Next Steps
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3

Asian-American Sub-Populations

 Challenges exist in obtaining adequate sample sizes to 
conduct analysis on Asian Americans overall and for sub-
populations

 There also is a lack of consistent race/ethnicity categories  
used in data collection

 Instances where sub-population analysis has been 
possible reveal major difference in health 

4

Pan-Asian Cohort Study: Preliminary Findings

Source: Pan Asian Cohort Study. “Preliminary Findings for Diabetes Prevalence.” Palo Alto Medical Foundation. 
Accessed March 1, 2013. http://www.pamf.org/pacs/men.jpg. 
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5

Lesbian, Gay, Bisexual, and Transgender Populations

 Many of the health issues and research challenges facing 
this population are related to stigma

 Historically caused hesitation in collecting data on LGBT status 
and has prevented this population from identifying themselves

 Historic lack of standard definitions by which to identify 
this population through surveys 

 Questions regarding behavior, attraction, and identity all result in 
different responses and each has important implications for health

 Available research shows differences in needs and 
disparities in care and outcomes

6

Adolescents with Autism Spectrum Disorders

 Much research has concentrated on diagnosis of these 
disorders

 But, little is known about health and health care during the 
transition to adulthood for individuals with ASDs, a critical 
time for their future well-being

 The cross-sectional nature of most surveys, as well as 
inconsistency in how disability is measured among 
children and adults, make it impossible to follow this 
population over time in most existing survey data
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Rural Populations

 Geographic isolation and low population density has 
limited both economic opportunities and access to health 
services for rural populations

 Rural populations face significant challenges such as the 
health care needs of aging populations and unique 
environment health issues

 Variations in how to define the boundaries of rural areas 
complicates the study of this population

 E.g., Definitions may not align with county boundaries, the 
smallest geographic unit used in most surveys

8

Limitations of National Surveys for Small Populations
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Percent of Office-based Physicians (Panel A) and Acute Care 
Hospitals (Panel B) with EHR Systems

Source: Washington, V. et al., “The HITECH Era and the Path Forward,” N Engl J Med 2017; 377:904-906, 
September 7, 2017

10

Office-based Physicians with a Certified Electronic Health Record System, 

by Physician Specialty: United States, 2013-2014
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At least 8 out of 10 small, rural, and critical access 
hospitals adopted a Basic EHR

Percent of non-federal acute care hospitals with adoption of at least a Basic EHR 
system by hospital type 

Source: ONC/American Hospital Association (AHA), AHA Annual Survey Information Technology Supplement. 
Source: Henry, J. et al. “ Adoption of Electronic Health Record Systems among U.S. Non-Federal Acute Care Hospitals: 
2008-2015,”  ONC Data Brief, No. 35, May 2016 

12

Office-based physicians with EHR systems who shared patient health 

information electronically with other providers: United States, 2014

SOURCE: CDC/NCHS, National Electronic Health Records Survey, 2014 
Jamoom, EW, Yang, N, and E. Hing, “Adoption of certified electronic health record system and electronic information sharing 
in physician offices: United States, 2013 and 2014. NCHS data brief, no 236, Hyattsville, MD: National Center for Health 
Statistics, 2016
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EHRs and Other Electronic Health Data are Potentially Rich and 
Powerful Resources to Identify and Study Small Populations

Source: Jensen PB, Jensen LJ, and Brunak S. Mining electronic health records: towards better research 
applications and clinical care. Nature Reviews, June 2012 (13): 395-403. 

14

Characteristics of EHRs and Other Electronic Health 
Data That Make Them Useful for Research

 Potential to reach larger samples of individuals, perhaps 
in some case approaching the majority of the population 
or sub-populations of interest

 Many types of data including:

 Claims and administrative data

 Clinically rich, detailed information

 Patient reported data

 Ability to identify sub-populations in novel ways

 E.g. Natural language processing

 Potential to link with other data sources (e.g., surveys)

 Potential longitudinality of some data sets
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Examples of EHRs and Electronic Health Data to 
Study Illustrative Populations

 Asian Americans

 Pan Asian Cohort Study, on which the earlier diabetes results are based, 
is an EHR based study

 Kaiser Permanent Northwest collects information about primary language 
spoken at home as well as need for translation services, and has 
standardized this variable across health plans so someone could easily 
look up language sub-groups, such as patients who speak Tagalog

 At University of Vermont, refugee and immigrant patients have been 
identified through billing data where interpreters were used

16

Pan Asian Cohort Study Design and Methods: 

Virtual EHR Cohort of Asian and White Patients Age 35 and Older

Source: Palo Alto Medical Foundation, Sutter Health, Pan Asian Cohort Study
http://www.pamf.org/pacs/design.html
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Examples of EHRs and Electronic Health Data to 
Study Illustrative Populations

 Lesbian, Gay, Bisexual, and Transgender Populations

 Vanderbilt University Medical Center found that the time between when 
patients were first seen and when their LGBT status appeared in their 
medical records averaged 30 months

 Now using national language processing (NLP) of unstructured EHR data 
to identify and analyze information about sexual orientation, gender 
identity, and sexual behavior

 Both Vanderbilt and UC-Davis health systems are collecting information 
about patient’s sexual orientation through EHR patient portals as well

 Stage 3 Meaningful Use certified EHRs are required to add gender 
identity, sexual orientation capabilities

18

Examples of EHRs and Electronic Health Data to 
Study Illustrative Populations

 Adolescents with Autism Spectrum Disorder

 Kaiser Permanente in Northern California has developed a list of valid autism  
diagnoses based on ICD codes and who made the diagnosis 

 The EHR sub-network of the Pediatric Research in Office Settings network, known 
as ePROS, led by the American Academy of Pediatrics 

 Rural Populations

 Kaiser Permanente Northwest studied rural Hispanic patients whose primary 
language is Spanish, among whom drug seeking behavior has been a particular 
problem

 Intermountain Health has studied rural residents with three or more chronic 
conditions

 Oregon Community Health Information Network (OHIN), a network of nearly all 
federally qualified health centers (FQHCs) in the state of Oregon, is also studying 
drug seeking behavior by those who attempt to obtain opiate-containing drug 
products from multiple FQHCs and also harness the system for other studies of 
rural and racial/ethnic sub-populations
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Technical Conditions Required for Research Using 
EHRs and Other Electronic Health Data

 Data extraction and formatting

 Processing free-text data

 Missing data and data quality

 Restricted data

 Legacy systems and longitudinal data

 Expertise

20

Privacy and Security Conditions Required for Research Using 
EHRs and Other Electronic Health Data

 Legal landscape

 HIPPA and the Common Rule

 Opportunities for patients to make meaningful choices

 De-identified data

 Data governance

 Ownership, control, and regulation
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Organizational Conditions Required for Research 
Combining Multiple Data Sources

 Using EHR and other electronic health data from multiple 
organizations

 Interoperability of EHR systems

 Research networks

 Regional health information exchanges

 Linking EHR and other electronic health data with other 
data sources

 Patient registries 

 Genetic data

 Other Data Sources, including surveys and claims

22

Example: The Cancer Research Network (CRN) 
Virtual Data Warehouse

Source: Hornbrook et al. “Building a Virtual Cancer Research Organization.” 
Journal of the National Cancer Institute Monographs. 2005 (35), 12-25 



Devers Slides

12

23

Potential for Future Research on Small Populations

 Data validation

 New tools and/or methods

 Descriptive studies

 Outcomes research

 Stakeholder engagement and collaboration

 Legal framework and other policy issues

24

Summary and Conclusion

Many of the conditions required for harnessing the power of 
EHRs and other electronic data for research on the health 
and health care needs of the American people, and key 
small populations, are present or closer to being realized.

While some significant barriers remain, innovative solutions 
and promising approaches are being developed in the 
public and private sectors.

We have identified possible suggestions and next steps for 
moving the field forward.
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Thank You!

For Further Information Contact: 
Kelly J. Devers, Ph.D., M.A.
Senior Fellowrc.org
Devers-Kelly@norc.org  
301-634-9523



The geography of small populations: Issues 
in defining an appropriate geographic 
context

Christopher S. Fowler
Assistant Professor of Geography and Demography
csfowler@psu.edu

Contextual variables are a key way that 
geography  is incorporated into health research



With contextual measures, it is important to 
get the SCALE right

Contextual measures assume that 
BOUNDARIES are meaningful

Detroit 
School 
District

Grosse 
Pointe 
Park 

School 
District



This is not always a reasonable assumption

Census Tracts in Seattle, WA

555555555555555555555555

How we define contextual observations can 
condition outcomes



Outline

Motivation

Why contextual variables may be appropriate for 
‘small populations’

Visualizing the effects of scale and boundary 
choices on contextual variables

Addressing uncertainty in contextual variables

Contextual variables may be useful when 
direct access to a population is not possible

Individual test scores or blood lead level may be ideal 

…but a lot can be learned from a home address or other 
locational information available in administrative data

Example Contextual Variables:
• Demographic characteristics (Census)
• Environmental Toxicity (EPA)
• Educational Context (SABINS, Census)
• Crime (NCHS)
• Economy (BLS)



Example: Environmental Toxicity for poor 
kids in rural places

Airborne chemical toxicity in NC for 2007
800 m2 grid cells

Outline

Motivation

Why contextual variables may be appropriate for 
‘small populations’

Visualizing the effects of scale and boundary 
choices on contextual variables

Addressing uncertainty in contextual variables



Contextual variables need to match the 
process they expect to evaluate

• At small scales (small populations) variability is 
higher

• At too large scales there is regression to the mean

Demographic measures tend to have higher 
intensity and higher variability at small scales. 

Fowler, Christopher S. (2015) “Segregation as a multiscalar phenomenon and its implications for    
neighborhood-scale research: the case of South Seattle 1990-2010” Urban Geography. 37
(1), 1-25.

Radius for which contextual measure is collected
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centered on a 100’ by 100’ cell in Seattle, WA



Context changes a lot by the time we get to 
units the size of Census tracts

Neighborhood Size (nearest xx persons)
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Boundaries vary in quality

• Some research questions have clearly defined 
geographic boundaries
– Variation in property tax rates municipalities, school 

districts, counties, states, etc.

• Others do not…
– Rural vs. urban differentials need to draw the line 

between “urban” and “rural”

• Other issues
– Edge effects equally valid for the household at the 

center and the one along the border? 
– Scale Does the size match the social phenomenon 

being studied?



Boundaries: Often the solution is as simple as 
mapping the boundaries and determining 
their suitability visually.

Outline

Motivation

Why contextual variables may be appropriate for 
‘small populations’

Visualizing the effects of scale and boundary 
choices on contextual variables

Addressing uncertainty in contextual variables



Addressing uncertainty in the use of 
contextual variables

• Problem: How do we know if we have the right scale 
or the right boundaries?

• Scale Solution: Run the analysis using different 
scales
– Blocks, Block Groups, Tracts for Demographic Data
– e.g. Root, E. D. (2012). Moving neighborhoods and health 

research forward: using geographic methods to examine 
the role of spatial scale in neighborhood effects on 
health. Annals of the Association of American 
Geographers, 102(5), 986-995

Boundary Solution: How much do boundaries 
matter for the statistics being calculated

• The tract has 1000 people in it.
• For each of those 1000 people calculate the context 

based on their 1000 NEAREST NEIGHBORS



Standard Deviation of Individual Context

The degree to which individual experience varies 
within a geographic unit

c = contextual unit (like tract)
k= number of people in the unit

Tract-level 
variation in SDIC 
for City of Seattle 
and surrounding 
area.

‘Worst Case’ Scenario: 
Egocentric measures 
of Percent Black at 
0% and 100% within 
the same tract

20

Percent 
Black

 Entropy

Percent 
Hispanic



The uneven geography of context: County 
average of tract-level SDIC for Pct. Black

c = contextual unit (tract)
k= number of people in the unit

Acknowledgements

NIH ([R24-HD041025NSF-Census Research Network: 
Spatial Science Node. NSF #1132008

David Folch , Nathan Frey, Nicholas Nagle, Seth Spielman

“Early Life Stress and the Environmental Origins of 
Disease: A Population-based Prospective Longitudinal 
Study of Children in Rural Poverty.” NIH #1UG3OD023332-
01 

David Folch, Levon Mikaelian, Clancy Blair



Cromley Slides

1

Ellen K. Cromley, PhD
Consultant,  Health Geographer

ellen.cromley@gmail.com

Using Geospatial Methods with 
Other Health and Environmental 

Data to Identify Populations

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Purpose and Outline

 The spatial view of data and spatial sampling

 Locating populations--
From their places of residence
From administrative records
From their social networks
From their activity locations and activity spaces
Taking into account environmental exposure

 Where can we go from here?

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

To illustrate the use of geospatial methods to identify 
populations from data sources other than electronic 
health records or the U.S. Census
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Views of Data: Tabular

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Tabular View of Two Databases (The Same) 
NAME GRADE NAME GRADE
Andy B  Andy B 
Bob B  Bob B 
Carmela C  Carmela C 
Dave A Dave A
Ed A Ed A
Felicia C  Felicia C 
Gordon A  Gordon A 
Hank B Hank B
Inez C Inez C
 

Views of Data: Statistical

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Statistical View of Two Databases (The Same) 
Grade Frequency  Grade Frequency 
A 3  A 3 
B 3  B 3 
C 3  C 3 
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Views of Data: Spatial

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Spatial View of Two Databases (Not the Same) 
Teacher  Teacher 

B C A  A A A 
C A B  B B B 
A B C  C C C 

 

 The locations of the observations are part of the data record

 The location data are necessary to support spatial data analysis

Implications for Sampling

 Samples in geographic space
Such samples select observations from a population that is itself 
geographically distributed 

Every sample of people or other entities located on the earth’s 
surface is implicitly a spatial sample

A random sample of all people is not a random sample of all places 
unless people are uniformly distributed

 Geospatial technologies make the spatial basis of evidence 
explicit so that the sample captures the spatial characteristics 
of the population

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Studies Based on Residential Locations

 Locating older adults with multiple 
chronic conditions

 ORANJBowl telephone survey
rachelpruchno.net/OB.html

 Residential locations of participants 
from first survey geocoded to census 
block centroids

 Combinations of three of the following: 
arthritis, diabetes, heart disease, 
hypertension, pulmonary disease

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Locating People with Multiple Conditions

 Identified older adults with 3-5 
chronic conditions

 Calculated local colocation 
quotients as a local measure of 
spatial association of conditions 
among older adults

 Mapped and tested the 
significance of any observed 
areas of spatial association

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Spatial Patterns of Multiple Chronic Conditions

 Statewide proportion of older 
adults with 3-5 chronic 
conditions including arthritis-
hypertension-pulmonary disease 
was 38 %

 Proportion of highlighted 155 
older adults with 3-5 chronic 
conditions including arthritis-
hypertension-pulmonary disease 
was 50 %

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Studies of People in Group Quarters

 People who do not live in housing units reside in 
group quarters (Census Bureau definition)

 Types
Institutional—prisons, nursing homes, inpatient 
mental health facilities
Non-institutional--college dormitories, military 
barracks, group homes, shelters

 Size and distribution vary widely in space

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Long Term Care Facilities in Massachusetts

 Data from MassGIS
www.mass.gov/orgs/massgis-bureau-of-geographic-information

 “Global” view of capacity
N = 740 facilities
Total beds = 65,272

Mean = 88.2
Median = 83
Min = 3, Max = 366
Standard deviation = 52.4

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Spatial Distribution of Facilities by Size

 “Local” view of capacity

Is facility size 
important in 
sampling?

Is capacity the
same in every
region?

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Geographically Weighted Mean Capacities

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Studies Based on Administrative Records

 Definition (Statistics Canada | Statistique Canada)
Data collected for the purpose of carrying out various non-
statistical programs

 Examples
Vital records (births and deaths)
Registries (immunization records, tumor registries)
Health and social services records
Public safety reports (collisions, shootings, fires)

 Administrative record linkage

 Data privacy and confidentiality
Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Connecticut CODES Project

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

 Police accident 
reports from state 
DOT

 Map shows collisions 
on federal and state 
roads 1995-1996
(N=124,053)

 Where to target an 
intervention to 
reduce fixed-object 
collisions?

Identifying Collisions in Local Areas

 Geospatial methods

Used a box-shaped kernel based on stopping distance to 
group collisions along road segments 

Identified places with high numbers of collisions by type of 
collision

Eliminated overlapping “places”

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Fixed Object Collision Places

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

 10 places with 
highest 
frequency of 
fixed object 
collisions

 Geographically 
distinct

Local Proportions

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Place 
ID 

Fixed 
Object 

Rain or
Snow 

Dry Road Daylight Age
25-44

Male Too Fast
for Conditions 

1 0.29 
z=5.23 

0.46
z=11.19

0.46
z=-8.86

0.71
z=.65

0.52
z=2.82

0.60
z=-.09

0.27 
z=9.75 

2 0.91 
z=16.48 

0.66
z=8.87

0.10
z=-10.55

0.76
z=-.86

0.51
z=1.16

0.58
z=1.43

0.62 
z=13.61 

3 0.55 
z=9.75 

.39
z=3.82

0.48
z=-3.99

0.66
z=-.86

0.51
z=1.25

0.68
z=-.61

0.62 
z=9.87 

4 0.29 
z=3.48 

0.25
z=.38

0.65
z=-.18

0.67
z=-1.02

0.49
z=1.10

0.58
z=-.73

0.26 
z=5.81 

5 0.40 
z=6.65 

0.40
z=4.61

0.48
z=-4.73

0.52
z=-4.78

0.54
z=2.24

0.61
z=.14

0.29 
z=6.36 

6 0.70 
z=11.61 

0.69
z=9.52

0.20
z=-8.56

0.78
z=1.71

0.54
z=1.58

0.54
z=-1.18

0.57 
z=12.16 

7 0.37 
z=5.48 

0.38
z=3.95

0.57
z=-2.14

0.73
z=.84

0.48
z=.69

0.62
z=.26

0.31 
z=6.93 

8 0.35 
z=4.82 

0.39
z=4.42

0.49
z=-4.28

0.71
z=.37

0.52
z=1.52

0.52
z=-2.32

0.29 
z=6.27 

9 0.44 
z=6.78 

0.39
z=3.83

0.54
z=-2.62

0.64
z=-1.45

0.51
z=1.17

00.65
z=.90

0.27 
z=5.03 

10 0.22 
z=1.09 

0.29
z=1.75

0.62
z=-1.01

0.67
z=-.89

0.51
z=1.58

0.66
z=1.81

0.19 
z=2.84 

State 0.19 0.24 0.65 0.70 0.46 0.61 0.12 
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Local Odds Ratios

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Place 
ID 

Rain or 
Snow 

Dry Road Daylight Age 
25-44 

Male Too Fast
for Conditions 

1 2.79 
z=4.91 

0.29
z=-5.58

0.45
z=-3.76

0.73
z=-1.56

0.87
z=-.69

11.09
z=10.08

2 2.83 
z=1.30 

0.22
z=-1.63

1.27
z=.27

0.00
z=.00

1.70
z=.66

4.71
z=1.78

3 4.80 
z=3.75 

0.17
z=-4.46

0.36
z=-2.52

1.34
z=.80

0.56
z=-1.54

17.50
z=5.65

4 2.89 
z=3.21 

0.19
z=-5.16

0.30
z=-3.82

1.25
z=.73

0.63
z=-1.53

8.62
z=6.14

5 3.06 
z=3.33 

.28
z=-3.74

.48
z=-2.27

1.32
z=.87

1.03
z=.09

3.11
z=3.17

6 1.05 
z=.09 

0.54
z=-1.10

0.23
z=-1.86

1.14
z=.27

1.14
z=.27

2.64
z=1.98

7 5.53 
z=4.65 

0.16
z=-4.87

1.03
z=.08

1.24
z=.65

.36
z=-2.90

16.55
z=6.41

8 3.04 
z=3.21 

0.32
z=-3.27

0.35
z=-.292

1.20
z=.55

1.20
z=.55

10.50
z=5.81

9 2.33 
z=2.25 

0.29
z=-3.28

0.46
z=-2.02

0.83
z=-.52

1.02
z=.06

3.32
z=2.85

10 0.94 
z=-.19 

0.78
z=-.81

0.32
z=-3.59

0.80
z=-.72

0.92
z=-.25

3.86
z=3.81

State Odds 
Ratio 

1.76 0.50 0.40 1.13 1.10 6.38

 

Error in Administrative Records

 Challenges
Errors due to inclusion criteria
Errors due to coding of thematic attributes
Errors in coding spatial attributes 

 Responses to challenges
Talk to the people who collect and code the data
Engage with agencies to improve data quality
“Adopt robust methods of analysis”–

Waldo Tobler, Analytic Cartographer, 
Member of the National Academy of Sciences

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Studies Based on Social Networks

 Social networks function in geographic space and they 
can be mapped

 In respondent-drive sampling, examine the 
distribution of locations for recruiting “seed” 
participants

 Include mechanisms for monitoring the spatial 
locations of network members recruited into the 
research study

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Studies Based on Activity Sites

 Places outside the home where people engage in 
activities can be used for locating populations

Health service delivery sites
Workplaces and schools
Bars
….and many more

 Geospatial methods can be used to map these venues 
to show their spatial distribution

 A critical consideration in venue-based research is 
understanding who is seen at these venues

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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The ASHRA Project

 Study of alcohol and 
sexual risk in three low-
income communities in 
Mumbai, India

 640 drank with friends
at places in one of the 
three study communities

 111 drank in other widely-
dispersed locations in the 
Mumbai region and 
elsewhere

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Locating People Who Share Activity Spaces

 Home base, activity sites, 
routes of travel

 Various ways we can locate 
populations for health 
research are represented 
in this graphic

 With geo-enabled devices, 
the information can be 
collected continuously in 
real time

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Grouping People Based on Activity Sites

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

 Make pair-wise comparisons of study participants

 Calculate an index of association based on co-
location in space or in time and space

 Analyze resulting similarity measures by using 
scaling techniques to group people with similar 
activity patterns in space or in time and space

I =
2 x (Number of activity sites in common)

Number of sites Person 1 + Number of sites Person 2

Exposure Studies

 Some epidemiological study designs require information on 
exposure (cohort and case-control studies)

 Dominant view of what geospatial methods contribute to 
health research

Map air quality made by taking samples of space

 Geospatial technology can be used to assess exposure 
without reference to such “maps”

Personal exposure monitoring
Monitoring environmental conditions at residences, other activity 
sites, or travel routes and assigning measurements to study 
subjects 

 Contextual analyses can be “geographic” but not “spatial”

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Where Can We Go from Here?

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

 The key impact of geospatial technologies has been 
to enable us to study large areas at high levels of 
detail (maintaining individual locations and 
attributes)

 Building spatial data commons

 Adopting a spatial analytic framework for health 
science explicitly addressing spatially varying 
processes

Building Data Commons 

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

 The Malaria Atlas Project aims to disseminate free, accurate 
and up-to-date information on malaria and associated topics, 
organized on a geographical basis (map.ox.ac.uk/)

Open access policies

Subscribes to 
GATHER



Cromley Slides

15

Putting it All Together:  Matlab

 Uses geospatial technology to determine
How cholera vaccine efficacy varies spatially in the study area
What ecological socio-environmental variables are related to cholera 
vaccine efficacy (which variables are effect modifiers?)
How protective efficacy varies with access to treatment facilities  
(is access a spatial confounder?)
Whether cholera incidence in the placebo group is related to vaccine
coverage rates (is herd immunity important?)

 Currently integrating social networks into a spatial 
analytic framework for vaccine trial evaluation

 Cholera vaccine efficacy as a spatially-varying process

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC

Questions?

Improving Health Research for Small Populations: A Workshop—National Academy of Sciences—January 18-19, 2018—Washington, DC
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Links 
 
In December, 2017, The Guardian published a very interesting piece titled “Bussed Out” on 
programs to bus homeless people from one city to another, complete with animated maps 
(www.theguardian.com/us‐news/ng‐interactive/2017/dec/20/bussed‐outamerica‐moves‐
homeless‐people‐country‐study). 
 
spatial health web site at the University of North Carolina 
(spatialhealth.web.unc.edu/projects/presentprojects/incorporating‐geographic‐context‐into‐
randomized‐controlled‐trials‐case‐studieson‐the‐rtss‐malaria‐and‐the‐oral‐cholera‐vaccines/) 
 

http://www.theguardian.com/us‐news/ng‐interactive/2017/dec/20/bussed‐outamerica‐moves‐homeless‐people‐country‐study
http://www.theguardian.com/us‐news/ng‐interactive/2017/dec/20/bussed‐outamerica‐moves‐homeless‐people‐country‐study
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Two Applications of 
Respondent Driven Sampling:

Ethnic Minorities and
Illicit Substance Users

Workshop on Improving Health Research for Small Populations
National Academy of Sciences, Engineering and Medicine
January 18, 2018

Workshop on Improving Health Research for Small Populations 1
S. Lee

Sunghee Lee, Ai Rene Ong, Michael Elliott
University of Michigan

Introduction

Workshop on Improving Health Research for Small Populations 2S. Lee
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Respondent Driven Sampling – 1 
• Growing interest in studying hard-to-reach, rare, 

elusive, hidden populations
– HIV at-risk population: MSMs, Sex workers, IDUs
– LGBT populations
– Recent immigrants

• No clear and practical solution with probability 
sampling
– High screening costs
– Hesitant to be identified

3Workshop on Improving Health Research for Small PopulationsS. Lee

Respondent Driven Sampling – 2 
• Proposed by Heckathorn (1997, 2002)
• Popular usage in public health
• Exploits social networks among rare population 

members for sampling purposes
– Sampled members also play a role of a recruiter
– Incentivized recruitment from own network through 

coupons and this continues in waves/chains
– Recruitment assumed to be random within each 

individual’s network and to follow memory-less Markov 
chain and reach equilibrium

• Under these assumptions, unbiased estimators can be obtained 
after equilibrium using weights equal to the number of nodes 
for a subject’s recruiter.

4Workshop on Improving Health Research for Small PopulationsS. Lee
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Respondent Driven Sampling – 3

Workshop on Improving Health Research for Small Populations 5
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S. Lee

Respondent Driven Sampling – 4

Workshop on Improving Health Research for Small Populations 6
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S. Lee
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Network Sampling vs. RDS
Similar:
• Rely on social networks
Different:
• Network specification

– NS: biological siblings, immediate family members
– RDS: jazz musicians

• Who selects the sample
– NS: researchers
– RDS: study participants

7Workshop on Improving Health Research for Small PopulationsS. Lee

Application 1:
Project PATH (Positive Attitudes Towards Health)

Funded by the National Science Foundation (GRANT NUMBER SES-1461470)

Workshop on Improving Health Research for Small Populations 8S. Lee
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PATH Data Collection
• Injection drug users in Southeast Michigan
• Phone screener 
 In-person screener + Main interview + ~3 Coupons 
 In-person follow-up interview

• Data collection sites
– Detroit: Urban; Tues, Thur @ Detroit Center
– Macomb: Suburban; Weds @ County PH Depart 
– St. Clair: Rural; Mon (+Weds) @ County PH Depart
– 4 interviewers rotating between sites

• Field Period: 5/1/2017 – 10/31/2017
Workshop on Improving Health Research for Small Populations 9S. Lee

PATH Data Collection Progress

Workshop on Improving Health Research for Small Populations -10-

285
(22 seeds)

106
(14 seeds)

19
(10 seeds)

S. Lee
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Demographics

Detroit St Clair/
Macomb

Age (avg) 56 yrs 40 yrs
Age: <30 years old 2% 32%
Male 68% 53%
Non-Hispanic White 11% 73%
Non-Hispanic Black 81% 16%
Education: <High School 32% 18%
Employed 8% 18%
Ever homeless past 12 mos 40% 56%

Workshop on Improving Health Research for Small Populations 11S. Lee

Substance Use

Workshop on Improving Health Research for Small Populations 12

Most frequently used: Heroin
98% Detroit 
78% St. Clair/Macomb

S. Lee
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Application 2:
Health and Life Study of Koreans (HLSK)
Funded by the National Science Foundation (GRANT NUMBER SES-1461470)

Workshop on Improving Health Research for Small Populations 13S. Lee

HLSK
• Targets foreign-born Korean American adults in

– Los Angeles County
– State of Michigan

• Web-RDS survey 
http://sites.lsa.umich.edu/korean-healthlife-study/
– Unique number required for participation
– Incentive payment through checks  

• Target n=800 (currently ~600)
• Benchmarks from American Community Survey

Workshop on Improving Health Research for Small Populations 14S. Lee
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HLSK Formative Research
• 3 rounds of focus group discussions

– ~30 participants; 2 rounds in Korean and 1 in English
– Discussion focused on

• Web surveys 
 URL, Web site contents, etc.

• Concept of RDS
• Coupons 
 Up to 2 coupons
 “Expire” in 2 weeks

• Level of incentives 
 $20 for main, $5 for follow-up, $0 for recruitment

HLSK Data Collection
• Started with 12 seeds in LA in June 2016
• MI added in November 2016

• LA seeds (initially)
– Recruited through referral
– Balanced on gender, age, dominant language
– In-person introduction about the study

 It became clear the protocols would not work
– Provide recruitment incentives
– Add more seeds
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HLSK Data Collection Progress

Workshop on Improving Health Research for Small Populations -17-S. Lee

n=306
110 seeds
578 coupons

n=249
85 seeds
477 coupons

HLSK vs. ACS – 1 
• American Community Survey 2011-2015 data
• HLSK sample estimates

– Unweighted (UW)
– RDS-I
– Weighted: RDS-II 
– Weighted: Post-stratification (PS) by age, sex, educ
– Weighted: RDS-II + PS
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HLSK vs. ACS – 2 

Workshop on Improving Health Research for Small Populations -19-S. Lee

ACS

HLSK vs. ACS – 3 

Workshop on Improving Health Research for Small Populations -20-S. Lee

ACS
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HLSK vs. ACS – 4 

Workshop on Improving Health Research for Small Populations -21-S. Lee

ACS

Summary

Workshop on Improving Health Research for Small Populations 22S. Lee
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What did we learn?
• Non-cooperation is an issue for generating long 

chains (memorylessness unlikely)
• Had to improvise to make RDS “work”
• Sample size (hence, chain length) is a random 

variable affected by many (mostly unknown) 
factors

• Inferences limited
• YET, difficult-to sample groups can be recruited

– E.g., highly-educated young recent immigrants

Where should we go?
• Non-cooperation is critical for

– meeting theoretical assumptions (hence, inferences)
– study design
– replications of the same study

• Yet to be addressed in the literature and 
accounted for in inferences
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Thank you
sungheel@umich.edu

Workshop on Improving Health Research for Small Populations 25S. Lee
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Venue-Based and On-line 
Sampling 

Patrick S. Sullivan, DVM, PhD 
Department of Epidemiology

January 18, 2018

Source: Beyrer, Mayer, Sanchez, 
Sullivan, Guest eds.  Lancet 2012.
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Diagnoses of HIV Infection among Men Who Have Sex with Men,
by Age at Diagnosis, 2010–2015—United States and 6 Dependent Areas

Note: Data have been statistically adjusted to account for missing transmission category. Data on men who have sex with men do not include 
men with HIV infection attributed to male-to-male sexual contact and injection drug use.

How to sample MSM for HIV prevention 
research?
• Venue-based sampling
• Online sampling – General social media
• Virtual venues (sex-seeking apps)
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Source: Public Health Reports 122 1_suppl (2007): 39-47 

Venue Based Sampling

• Formative work – venue enumeration
• Observations
• Development of venue-day-time periods
• Construction of sampling frame of VDTs
• Development of sampling calendar
• Selection of sample
• Within venues: systematic, flow-based sampling
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From: Age-Specific Race and Ethnicity Disparities in HIV Infection and Awareness Among Men Who Have Sex 
With Men—20 US Cities, 2008–2014
J Infect Dis. 2015;213(5):776-783. doi:10.1093/infdis/jiv500

Human immunodeficiency virus (HIV) prevalence among 18–24-year-old men who 
have sex with men (MSM) who were interviewed in 2008, 2011, and 2014, by year 
of interview, National HIV Behavioral Surveillance, 20 US cities. 

VBS: Place matters

Source: Delaney et al, J Med Internet Res 2014;16(11):e249)
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Online studies undersample Black and 
Hispanic MSM 

Source: Sullivan et al, J Med Int Res 2011; 13(2):e28 
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Source: Sullivan et al, J Med Int Res 2011; 13(2):e28 

Source: Sullivan et al, J Med Int Res 2011; 13(2):e28 
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Source: Sullivan et al, J Med Int Res 2011; 13(2):e28 

Characteristics of MSM recruited through general social networking, 
general gay interest, gay social networking, and sex-seeking apps, 2016
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• How to men recruited through Facebook, versus those recruited 
through VBS, differ in terms of STI and HIV prevalence, retention, and 
risk behaviors?

Source: Hernandez-Romieu et al, J Med Int Res 2014: 3(3):e37

Risk and testing behaviors among Facebook 
versus VBS recruited, Atlanta, 2011-2014

• # male partners
• Condomless sex 

partners

FB < VBS
• HIV+
• Rectal STI
• Syphilis
• Main partners
• Casual partners
• HIV testing
• Retention

FB = VBS
--

FB > VBS

Source: Hernandez-Romieu et al, J Med Int Res 2014: 3(3):e37
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Summary

• MSM constitute the major risk group in the US HIV epidemic
• Black MSM, Hispanic MSM and young MSM are disproportionately impacted by 

HIV
• Historically MSM have been recruited through venues associated with risk (bars, 

clubs)
• Venue-based sampling is a systematic approach to sampling MSM
• Online sampling can access Black and Hispanic MSM, but are generally 

underrecruited. 
• Race-concordant ads may increase recruitment efficiency for online recruitment 

for Black MSM
• Black MSM are more prone to loss to follow up within surveys and in prospective 

studies
• Online-recruited and venue-recruited samples of MSM can be combined 

Acknowledgements
• Eli Rosenberg
• Travis Sanchez
• Aaron Siegler
• Christine Khosropour
• Kevin Delaney
• Alfonso Hernandez-

Romieu
• PRISM Health Staff
• Research Participants

NIAID
NIMH

NICHD
NIDA
CDC

Emory CFAR
The MAC AIDS Fund

Gilead Sciences

Supported by 



elefurgy
Typewritten Text
F

elefurgy
Typewritten Text



Health in Small Populations Workshop 
January 18-19, 2018 

TAB F 
 

SESSION 4: New and Emerging Designs for Intervention Studies 
 
Presentations in this tab: 
 

Designs for Dissemination and Implementation Research for Small Populations 
Amy M. Kilbourne, University of Michigan 
 
Addressing the Challenges of Research with Small Populations 
Diane Korngiebel, University of Washington 

 
 



Kilbourne Slides

1

Designs for Dissemination and 
Implementation Research for 

Small Populations

Amy M. Kilbourne, PhD, MPH

Department of Psychiatry, University of Michigan

VA Quality Enhancement Research Initiative (QUERI)

amykilbo@umich.edu

Outline

Implementation and dissemination science overview

Intervention study designs for implementation research, e.g.,

Hybrid designs

Stepped-wedge

Sequential Multiple Assignment Trial (SMART) designs
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Setting the Stage

• Dissemination research is the scientific study of targeted 
distribution of information and intervention materials to a 
specific public health or clinical practice audience. The intent is 
to understand how best to spread and sustain knowledge and 
the associated evidence-based health interventions.

• Implementation research is the scientific study of the use of 
strategies to promote the uptake of evidence-based health
interventions in clinical and community settings in order to 
improve patient/population outcomes.

From: NIH PAR 16-238: Dissemination and Implementation Research in Health (R01)

Designs for Implementation & 
Dissemination Intervention Research

• Randomized controlled trial (RCT)

• Pragmatic clinical trials (PCT)

• Interrupted time series (ITS)

• Dynamic wait list design (DWLD)

• Regression point displacement design (RPDD)

• Stepped-wedge designs

• Hybrid Effectiveness/Implementation Designs

• Sequential Multiple Assignment Randomized Trial/adaptive designs
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Study Designs for Implementation Strategies

Implementation strategies: technical 
and interpersonal methods that help 
providers adapt/adopt, sustain, and 
scale effective practices into routine care

• Bottom-up (frontline engagement)
• Top-down (leadership engagement)

Hybrid Designs

SMART & 
Adaptive Designs 

Stepped-
wedge

Why Research on Implementation Strategies? 
Effective Practices are Not Routinely Implemented for Small Populations

80% of medical research dollars do not result in public 
health impact.

—Chalmers & Glasziou, Lancet 2009

Value 
20₵

$1

Value <10₵

50% non-implementation

From Mark Bauer, MD, 
VA Boston HSR&D Center
Harvard Medical School
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Implementation Science Addresses the 
Research-to-Practice Gap

Challenge Implementation 
Strategies to Consider

Design Barrier

Interventions not 
designed for small 
populations

Tools to adapt to local 
settings/populations

Sufficient numbers 
of sites

Interventions rolled out
with limited planning

Provider training, 
facilitation, community 
engagement

Policy imperative, 
urgency to “do 
something” 

Intervention reach
hard to sustain

Policy incentives,
organizational change

Data 
access/reliability

Hybrid Effectiveness/
Implementation Designs

• Compare implementation strategies

• Address limits of step-wise research (speed research  practice)

• Promote external validity

• Blend effectiveness, implementation stages

Curran, et. al.  Effectiveness-Implementation Hybrid Designs. Med Care 2012
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Types of Hybrid Designs

Hybrid Effectiveness/Implementation Designs
Type I Type II Type III

Design 
Characteristic

Test clinical intervention Test clinical &
implementation strategies

Test implementation 
strategy

Question Is treatment effective 
versus usual care (UC)?

Is treatment delivered 
through tailored provider 
coaching effective vs UC?

Does provider coaching 
vs. training alone improve 
treatment uptake?

Unit of 
analyses

Patient Providers/clinics Providers/clinics

Primary 
outcomes

Health outcomes Process measures Provider Uptake, 
Sustainability

Key
Advantage

“Cleanest” in 
determining intervention 
effectiveness

Ideal when there is time-
sensitive need to roll out 
intervention

All participants get 
intervention, focus on what 
will it take to sustain
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Hybrid Type I Example: 
National Implementation of Collaborative Care Model (CCM) for Aetna 

Enrollees with Mood Disorders from Small Group Practices

Collaborative 
Care Model

Care 
Management

Self-
management 

support

Usual Care

Wellness 
mailings
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(PHQ-9): CCM vs. Usual Care

Kilbourne AM et al, BMC Psychol, 2014

Hybrid Type II Example: 
Implementing Doctor-Office Collaborative Care to Improve Pediatric 

Behavioral Health Outcomes

DOCC

Care 
Management

Family 
Support

Provider 
Training & 

Consultation

Usual Care

Standard 
primary care

Kolko DJ et al, Pediatrics 2014
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Hybrid Type III Examples: 
Enhanced Replicating Effective Programs (REP) Implementation Strategy

• REP was developed by the Centers for Disease Control to rapidly translate prevention programs to community-based settings 
(Social Learning Theory, Rogers’ Diffusion model) (Kegeles 2000; Kilbourne 2007)

• Enhanced REP added Facilitation (regular coaching by implementation expert) to support providers in implementation self-
efficacy through identifying/mitigating barriers to adoption, building coalitions at sites, and enhancing communication with leaders 
(Kilbourne et al Implementation Science 2014)

Pre-implementation

Identification of quality 
gaps/barriers

Customize best 
practices- local input

Package intervention
Manual core elements
Menu options (adapt)

Implementation

Orientation
Cross-functional team

Training
Technical assistance 

Facilitation 
(Enhanced REP)

Provider mentoring

Dissemination

Further diffusion, 
spread

Sustainability

Budget impact

Hybrid Type III Example #1:
Implementation Strategies and Uptake of HIV Prevention 

Interventions in AIDS Service Organizations
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Kelly J, et al. AJPH 2000
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Hybrid Type III Example #2: 
Immediate vs. Delayed Enhanced REP Implementation Strategy to 

Improve Uptake of Outreach Program for Veterans with SMI

Hybrid Type III Example #2: 
Immediate vs. Delayed Enhanced REP Implementation Strategy to 

Improve Uptake of Outreach Program for Veterans with SMI

Phase I

Phase II
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• All participants receive uniform intervention
• Start-time is randomized
• Ideal when resources are too limited to intervene at same time

Stepped-Wedge Designs Overview

Stepped-Wedge Design Advantages
Budgetary:

• Resources too limited to intervene at the same time at all 
participants/sites

Policy:
• Policy imperative to have all participants receive 

intervention
Pragmatic:

• Advantageous for recruiting & retention to have all 
participants receive intervention

Ethical:
• Intervention clearly causes more good than harm for 

participants, rather than equipoise
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Stepped-Wedge Design Example:
Provider Facilitation -Collaborative Care in Mental Health Clinics

Fa
ci

lit
at

or
 1

Fa
ci

lit
at

or
 2

Fa
ci

lit
at

or
 3

Sequential Multiple Assignment Trials (SMART) 
Towards Precision Implementation

• Multi-stage trials; same subjects throughout

• Each stage corresponds to a critical decision point

• Pre-specified measure of responsiveness

• Treatment options at randomization restricted depending on 
history of responsiveness

• Subjects randomized to set of treatment options

The goal of a SMART is to inform 
development of adaptive intervention strategies
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When to Use SMART Designs for 
Implementation

Often insufficient evidence/theory to decide:

• Which implementation strategy(ies) should I start with?

• What should I do for sites that are non-responsive to first-
line implementation strategy?

• What should I do for sites that are responsive to first-line 
implementation?

SMART designs
can help to answer these questions.

Adaptive Implementation Interventions: 
Example: Adaptive Implementation of 

Effective Programs Trial (ADEPT) Study

The question: 

What is the best way to implement a collaborative 
care model (Life Goals) in community-based 
practices to improve patient mental health 
outcomes? 

Kilbourne AM et al. (2014). Implementation Science, 9(1), 132; R01 MH 099898
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ADEPT Setting:
Small Practices in Michigan & Colorado

Example: Adaptive Implementation of 
Effective Programs Trial (ADEPT)

Implementation strategy options:

• Replicating Effective Programs (REP)

• External Facilitation (EF)

• External + Internal Facilitation (EF/IF) Most expensive

Least expensive
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Adaptive Implementation Interventions: 
Rationale for ADEPT

Prior evidence says:
• REP will work for some sites, but likely not most

• But we don’t really know which…

• Most sites will need more support than REP

But we don’t know:
• What do we do when REP doesn’t work? 

• Step up directly to EF/IF or to EF? (Aim 1)
• What if we step up to EF but sites still don’t respond? (Aim 2)

ADEPT Study Design

REP

R

Follow-up 
assessments

REP+EF

REP+EF/IF

R

Follow-up 
assessments

Continue
REP+EF

Step up to 
REP+EF/IF

A

B

C

Follow-up 
assessments

Continue
REP+EF/IF

D

E

Start of 
study

6 month 
assessment

12 month 
assessment

18 month 
assessment

Phase 1 Phase 2 Phase 3

Response: 
<50% of patients receiving ≥3 LG sessions
Implementation strategies:
REP=Replicating Effective Programs
EF=External facilitation
IF=Internal facilitation

Follow-up 
assessments

Experimental 
condition

Responders

Non-Responders

Non-Responders

Responders

Non-Responders

Responders

Kilbourne AM et al. (2014). Implementation Science, 9(1), 132.
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ADEPT Study Design: Aim 1
Is EF+IF better than EF alone for non-responding sites?

REP

R

Follow-up 
assessments

REP+EF

REP+EF/IF

R

Follow-up 
assessments

Continue
REP+EF

Step up to 
REP+EF/IF

A

B

C

Follow-up 
assessments

Continue
REP+EF/IF

D

E

Start of 
study

6 month 
assessment

12 month 
assessment

18 month 
assessment

Phase 1 Phase 2 Phase 3

Response: 
<50% of patients receiving ≥3 LG sessions
Implementation strategies:
REP=Replicating Effective Programs
EF=External facilitation
IF=Internal facilitation

Follow-up 
assessments

Experimental 
condition

Responders

Non-Responders

Non-Responders

Responders

Non-Responders

Responders

ADEPT Study Design: Aim 2
Is continuing EF+IF or EF alone better for non-responding sites?

REP

R

Follow-up 
assessments

REP+EF

REP+EF/IF

R

Follow-up 
assessments

Continue
REP+EF

Step up to 
REP+EF/IF

A

B

C

Follow-up 
assessments

Continue
REP+EF/IF

D

E

Start of 
study

6 month 
assessment

12 month 
assessment

18 month 
assessment

Phase 1 Phase 2 Phase 3

Response: 
<50% of patients receiving ≥3 LG sessions
Implementation strategies:
REP=Replicating Effective Programs
EF=External facilitation
IF=Internal facilitation

Follow-up 
assessments

Experimental 
condition

Responders

Non-Responders

Non-Responders

Responders

Non-Responders

Responders



Kilbourne Slides

15

Future Directions

• Enhancing reach: community organizations, schools, etc.

• Implementation strategies: everyone gets something

• Randomization: stakeholder timelines

• Data capture strategies

THANK YOU!
Contributors:
Shawna Smith, PhD, UM Dept. of Psychiatry, Institute for Social Research 
Daniel Almirall, PhD, UM Institute for Social Research
Mark Bauer, MD, VA Boston and Harvard Medical School

Funding: NIMH R01 MH099898, R01 MH114203, VA HSRD 11-232

Disclosure: The views expressed are those of the authors and do not 
necessarily represent the views of the Veterans Administration

Contact: amykilbo@umich.edu
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Diane M. Korngiebel, University of Washington, Seattle

ADDRESSING THE CHALLENGES OF 
RESEARCH WITH SMALL 
POPULATIONS

Improving Health Research for Small Populations Workshop
Washington, DC, Jan. 18-19, 2018

Focus for presentation (Srinivasan, et al., 2015)
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Talk agenda

 Bioethics and small populations research

 Small populations and data aggregation
 The “data cycle”

 Data challenges when population numbers are small

 Qualitative methods and data aggregation

 Summary of case study findings

 Role of co-production and some approaches

Visiting three “pillars” of bioethics in a small 
populations context

Should we study this group separately?
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Beneficence and non-maleficence

 Does the population benefit from separate study?
 Relevant data
 Tailored interventions
 Resources to address local needs

 Could there be harm from separate study?
 Inadequate numbers for meaningful results
 Potential use of data to stigmatize group

 Could there be harm if not studied separately? 
 Invisibility to research agendas, resource allocators
 Inappropriate interventions with low uptake
 Perpetuation of disparity

Respect for autonomy

 Does the population have an ethno-cultural 
community identity? 

 Other community identity (i.e., beyond hard to 
reach)?

 Health disparities research must:
 Respect individual autonomy 

 And community autonomy and identity

The idea of  autonomy and respect should be expanded 
beyond the traditional application to individuals.
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Justice and equity

 Has the small population experienced disadvantage 
as a population or group? 
 For example, consider the social determinants of health 

(SDOH)

 Could health disparities research inform resource 
distribution to address SDOH?
 Not necessarily more healthcare (Woolf, et al., 2007 )

Opportunities to address injustice and inequity 
should guide health disparities research.

Justice and equity and the role of qualitative 
methods

Small populations & data aggregation
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The (lack of) data cycle (Taualii et al., 2014)

Goal BREAK THE CYCLE

 Lack of data 
 inequitable 
distribution of 
resources 
increased 
health 
disparities

Data collection challenges (Korngiebel, et al., 2015)

 Low survey response rates (state, regional, 
national)

 Ethnic and racial misclassification
 Including ad hoc assigning of “category” by 

outsiders

Current methods do not support the collection of  
accurate data for small populations.

Challenge REVISE CURRENT METHODS
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Data aggregation challenges

 Groups of unequal size are collapsed
E.g., Asians (96%)/Pacific Islanders (4%)

 Issues of smaller group subsumed by larger

 Or imposed categories neglect context
E.g., Native Hawaiians and other Pacific Islanders

Some SDOH may be shared but some may not

Current methods do not support relevant 
aggregation of  data for small populations.

Challenge DISPARITIES ARE MASKED

What is valid data? 

 Defining valid data
 Privileging types of data  gatekeeping
 Aggregation  gatekeeping

 Ways of knowing (See for example, Walker and Bigelow, 2011)

 Role of qualitative data
 Context 
 Perspective

Some data are considered more “valid” than 
others. 

Challenge EXPAND IDEA OF “DATA”
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“THE TAKE HOME POINT IS THAT DATA SHOULD BE ETHICAL—AND 
DO NO HARM. SMALL, LARGE, WHATEVER FORM IT TAKES, IT 
SHOULD NEVER INFLICT HARM ON A PEOPLE. 

THAT ETHICAL STANCE SOMETIMES REQUIRES US TO WORK WITH 
DATA IN WAYS WE MIGHT NOT HAVE LEARNED IN BIOSTATS
COURSES THAT VALUED THE NORMAL DISTRIBUTION. 

WE SOMETIMES HAVE TO DIG DEEPER, AND ALWAYS WITH 
HUMILITY, RESPECT, AND KINDNESS.”

~DR. MAILE TAUALII

What tribal partners recommended

Case study: aggregation insights
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Mixing it up: a case study (Van Dyke, et al. 2016)

 2009 conference with Indigenous and Tribal 
health leaders to identify the issue

 2011 bioethics administrative supplement to 
U54

 2012-2013: Data collection and analysis 

 2014-2016: Tribal review and publications

Study timeline

Mixing it up: a case study

 Five tribes 
 Varying sizes

 Engagement approach: Tribal Participatory 
Research (Fisher and Ball, 2003)

 What characteristics should be considered 
when data are aggregated?

Communities share their criteria for improved data 
aggregation.

Goal MORE RELEVANT DATA
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The qualitative approach

 Data collection
 Key informant interviews and focus groups

Analysis
 Single coding with study team review
 Consensus resolution
 Member checking

Qualitative methodologies direct engagement.

Goal MORE RELEVANT DATA

What we learned

 Tribal partners identified significant variables 
Geographic proximity
Community type (urban/rural; coastal/inland)
Culture
Presence/absence of contaminated environment
Type/severity of health concerns
Access to health care
Generational cohort

Many factors might inform data aggregation.

Result ADDED RELEVANCE 
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Geographic proximity was important…

 Community type (urban/rural; coastal/inland)

 Presence/absence of contaminated 
environment

Goal ADDED RELEVANCE 

…but was not the whole story.

Health-related

 Types of health concerns

 Severity of health concerns

 Access to health care

Communities can already identify priority health 
concerns.

Goal ADDED RELEVANCE 
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By focusing on co-production and co-creation in 
our approaches, frameworks, and 
methodologies.

How do we leverage the community wisdom 
of small populations?

The future is co-production (Turakhia and Combs, 2017)

 Generating value together
 The data aggregation method above is an example of co-

production
 Users and communities co-shape and co-make 

interventions/products/services
 Such approaches prioritize and invest in collaborations with 

those most affected by data, research, interventions.

Collaborative co-creation is the future of health 
research and health care interventions and delivery—
and may have particular relevance for small 
populations. 

Goal INVESTMENT  OUTCOMES
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Co-production (table adapted from Israilov and Cho, 2017)

FOCUS PARTNERSHIPS ADD VALUE 

Challenges Benefits
Addressing data 
“hierarchy”

Qualitative context improves local 
relevance

Engagement takes 
time

Stakeholder investment in 
activity/intervention/policy

Recognizing diverse 
expertise

Stakeholders learn from each other; 
no “one” expert

Achieving 
consensus

Development of transparent and 
inclusive process

Approaches from the social sciences…

 A values-based approach
 All partners contribute expertise to defining the issue 

and determining the action to take
 Communities are constantly consulted

Before: what is the priority?
During: Set-up, data, collection, analysis
After: Review and dissemination of results; what next?

An example: Community-based participatory 
research (CBPR) (Israel, et al., 1998)

Goal IMPROVE HEALTH
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…and industry…

 Example: User-Centered Design (contextual design; 
user-centered system design; user experience) (Nielsen 
Norman Group)

 Researches the “lived” context of an intervention 
 Focus on end users & key stakeholders working 

together to create and refine
 Use of diverse data collection techniques (IDEO) 

 improved resonance of collection methods

Some industry approaches may be particularly 
helpful in partnerships with small populations. 

Goal IMPROVE HEALTH 

…interwoven.
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ISSUES AND CHALLENGES ASSOCIATED 
WITH RECRUITMENT AND RETENTION 
FOR HEALTH RESEARCH

Vetta L. Sanders Thompson, 
Brown School
January 19, 2018

Department of Surgery
Division of Public Health Sciences

SITEMAN CANCER CENTER

Objectives

Outline the issues that affect recruitment and 
retention of participants to research.

Identify solutions to these issues 

Provide examples of solutions
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SITEMAN CANCER CENTER

Challenges to Retention and Recruitment

• Attitudes towards:
–Research

–Researchers

–Institutions

–Universities

• Research knowledge and literacy

• Outreach strategies and engagement
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SITEMAN CANCER CENTER

Basic Requirements for Success

• Flexibility to adjust study recruitment to account for 
differences in location, behavior, media, technology use, etc.
– Basic knowledge of a client socio-cultural position

• Communities and participants have to be met with openness 
and acceptance.

- Right staff, materials and approach

• Long lasting partnerships are helpful.  
– The challenge for researchers is to work in such a way that 

trust is developed and maintained.
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SITEMAN CANCER CENTER

Basic Requirements for Success

• Make the ask

• Know your audience

• Go where they are

• Build the relationship

SITEMAN CANCER CENTER

Make The Ask

• Staffs need to come from a variety of backgrounds;

• Staff needs to have people skills. 

• Maintained continuing contact with study 
participants;
–Birthdays, holidays, Facebook and twitter sites that were fun.

• Case management model – a source of referral and 
support.
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SITEMAN CANCER CENTER

Make the Ask

• Health provider connections and support

• Endorsements can be important – political, health, 
business, church, community

• Right media for the market – racial & 

ethnic minority media; right frequency
–Are you talking to me?

• Right incentives, including non-cash incentives

SITEMAN CANCER CENTER

Know Your Audience
 Education, research literacy
 Media preferences
 Region of the country
 Group diversity

 Immigration status
 Level of acculturation
 Identity

 Gender, age and generation
 Technology use
 Media



Thompson Slides

5

SITEMAN CANCER CENTER

Learning About Your Audience: The NCS Experience

1. PARTICIPATION WITH AND WITHIN THE COMMUNITY
– Carving out a respected place in the community for the study through 

awareness raising efforts.

2. MIRROR THE COMMUNITY 
– The makeup of the NCS staff mirrors the demographics and norms of the 

community; 
– Community norms and demographics should be considered for mass 

communication and outreach, screening and recruitment, and when 
maintaining continuous contact with study participants. 

3. TRAINING
– Consistent relationships with study participants and staff who were 

responsive and informed often assisted in participants’ ability to see as 
trustworthy.

SITEMAN CANCER CENTER

Go Where They Are: CECCR

• We go where people are everyday; 
• Identify in ZIP codes with racial/ethnic, low-income 

residents.
–health centers, 
–laundry mats, 
–beauty salons & barber shops 

• Neighborhood Voice Mobile Unit (NVMU) 
–The NVMU is a shuttle-type vehicle customized for research
–Allows engagement in the communities.
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SITEMAN CANCER CENTER

Go Where They Are:
Survey of Multicultural Factors Affecting African American 

Colorectal Cancer Screening

• Effective call lists
–Targeted list sample, created using random digit dial (RDD) 

generated lists
–Matched to a market research data 
–Developed to assure that proportional to the geographical 

distribution of the African Americans 
–Used a separate RDD list in calling to reduce biases produced 

by a listed sample. 

SITEMAN CANCER CENTER

Go Where They Are: Feasibility Study
• Internet use is widespread and could be a channel to reach and 

disseminate health information to AA men;

• There are disparities in internet use and limited literature exists on 
how to best address this divide. 

• Our data suggest that disseminating information online is not a very 
effective way to reach older African American men, with limited 
education. 

• We do not recommend using websites among this population, 

• Email was effective in getting participants to the website, even 
though they expressed a preference for phone messages. 
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SITEMAN CANCER CENTER

Build the Partnership

Implemented a community based participatory research training 
program for community members.

Promoted the role of underserved populations in research by 
enhancing the capacity for community based participatory 
research.

Bridge Washington University in St. Louis (WUSTL) researchers 
and community based organizations and community health 
workers serving the St. Louis Greater Metropolitan area to 
address health disparities.

SITEMAN CANCER CENTER

Community Research Fellows 
Training Program (CRFT)
• Train community members to become good consumers of 

research.

• Understand how to use research as a tool in improving health 
outcomes in communities.

• Increase community members understanding of how to work 
with academic researchers. 
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SITEMAN CANCER CENTER

CRFT

17 Multidisciplinary faculty have trained four cohorts (122 community 
members) through a semester long public health research training 
course. 

Created a pool of trained community members who collaborate with 
academic researchers and other 
health practitioners on community 
research advisory boards, councils 
and institutional review boards. 

Patient Research Advisory Board
(PRAB)
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SITEMAN CANCER CENTER

Goal and Objectives
The St. Louis Patient Research Advisory Board (PRAB)

1.Serve in an advisory role to academic researchers on issues of 
community engagement, building trust, and ethical considerations of 
research and study design. 

2.Provide a forum that allows for mutually beneficial  communication 
between community stakeholders and academic researchers on 
meaningful, relevant clinical concerns

3.PRAB informs, guides and reviews grant proposals

4.PRAB will fosters academic community linkages and disseminates 
information about clinical research findings pertinent to the community.

Questions?
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An Equal Opportunity University

Improving Health 
Research in Rural 
Areas: The Case of Kentucky

F. Douglas Scutchfield, MD

Bosomworth Professor Emeritus 

Colleges of  Public Health and 
Medicine 

Scutch@uky.edu

An Equal Opportunity University

The Case of Kentucky
4 M people, 120 Counties; Largest Jefferson 762,000 

Smallest Robertson 2155; Median Marion 19,820
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An Equal Opportunity University

Kentucky Area Development Districts
KY BRFS Data

Kentucky Area Development District (ADD) 
Profiles Kentucky Behavioral Risk Factor 
Survey (KyBRFS) 

An Equal Opportunity University

Appalachia Kentucky
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An Equal Opportunity University

County Health Rankings

An Equal Opportunity University

Community engaged research

Community Engaged Research 

• is a collaborative process between the researcher 
and community partner designed to benefit the 
community and advance knowledge

• it identifies the assets of  stakeholders and 
incorporates them in the design and conduct of  

the research process; asset mapping

• includes community based participatory research 
and participatory action research.
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An Equal Opportunity University

Community Asset Mapping
• asset mapping is a tool that relies on a core belief  of  asset

based community development; assets suited to advancing
those communities 

• assets include physical and economic assets, stories, local 
residents, local associations, local institutions. 

An Equal Opportunity University

Community Engaged 
Research
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An Equal Opportunity University

Location of Existing UK Outreach and 
Community Activities

An Equal Opportunity University

UK Research Outreach: Patient and 
Population Illustrations

• UK Center of  Excellence in Rural Health (Hazard)

• CTSA/CCTS Research Liaison (ATRN-ETSU, Marshall, WVU, OSU, Ohio 
University, UC)  (Hazard and Morehead-Research Study Coordinator)

• UK/Kentucky Regional Medical School Program (Morehead, Bowling Green, 
Covington, Hazard)

• Markey Cancer Center Outreach

• UK Cooperative Extension (Project HEEL)

• Area Health Education Centers (Morehead, Hazard, Covington, Mt Vernon)

• Research Networks (KAN, KPHREN, Dentistry, Rehabilitation)



Scutchfield Slides

6

An Equal Opportunity University

Illustrations of  opportunities and Mature 
Coalitions

An Equal Opportunity University

PHAB Accreditation Standards

Standard 1.1 Participate in or Lead a Collaborative 
Process Resulting in a Comprehensive Community 
Health Assessment

Standard 5.2 Conduct a Comprehensive Planning 
Process Resulting in a Tribal/State/Community 
Health Improvement Plan
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An Equal Opportunity University

PHAB Accreditation of Local Health 
Departments in Kentucky

An Equal Opportunity University

Non-profit Hospitals and CHNA

• Recent changes in legislation (ACA) now require that non-profit hospitals 
explicitly and publicly demonstrate community benefit by conducting a 
community health needs assessment (CHNA) and adopting an implementation 
strategy to meet the identified community health needs. 

• ACA added new requirements that 501(c)(3) hospitals must conduct a CHNA 
at least once every three years in order to assess community need and annually 
file information regarding progress toward addressing identified needs. 

• This can involve partnerships with other clinical, public health, and population 
health focused organizations
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An Equal Opportunity University

MODELS OF COLLABORATION INVOLVING
HOSPITALS, PUBLIC HEALTH DEPARTMENTS, AND OTHERS

Improving Community Health through Successful Partnerships

• To identify, compare, and contrast exceptional models of  
collaboration involving community hospitals, public health departments, and 
other stakeholders who share commitment to improving community health and 
determine the key lessons learned from their experience.

• Identify models of  collaboration in improving community health that are 
operational and considered to be highly successful;

• Produce insights that will assist policy makers and leaders of  public and 
private organizations in building strong, successful partnerships designed to 
improve community health.

• http://www.uky.edu/publichealth/studyOverview.php

An Equal Opportunity University

Illustrative Coalition Effort: Markey Cancer 
Center and Cancer Coalitions
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An Equal Opportunity University

Kentucky Regional Comprehensive Cancer 
Control

• The Kentucky Cancer Consortium (KCC) focuses on multi-regional and state-
level efforts in cancer control. KCC is funded through CDC. 

• The Kentucky Cancer Program (KCP) is a state-funded, university-affiliated, 
and community-based regional cancer control program, focused at the regional 
and local level.

• KCP operates through a network of  13 regional offices staffed by cancer control 
specialists who lead cancer prevention and control initiatives for all of  
Kentucky's 120 counties. 

• KCP works closely with 15 District Cancer Councils across the state to analyze 
local cancer data, identify and prioritize the community's cancer needs, and 
develop interventions/solutions.

• KCP is jointly administered by the University of  Kentucky Lucille Parker 
Markey Cancer Center and the University of  Louisville James Graham 
Brown Cancer Center. 

An Equal Opportunity University

Kentucky Cancer Consortium

• The mission of  the Kentucky Cancer Consortium shall be to achieve 
reductions in the incidence, morbidity and mortality of  cancer in Kentucky 
through a comprehensive, integrated and coordinated approach to cancer 
control. This approach covers the cancer continuum from prevention, early 
detection, treatment and care.

• The Consortium is Kentucky’s state comprehensive cancer control coalition -
a statewide partnership of  70+ diverse organizations united to reduce the 
burden of  cancer in Kentucky. 

• The Consortium provides a common forum for like-minded organizations to 
take collective action. Through group consensus at Consortium meetings, 
statewide cancer control events, and evaluation, the Consortium determines 
common priorities, prevents overlap, maximizes resources, and evaluates 
impact. 
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An Equal Opportunity University

Markey Cancer Center 
Clinical Liaison

An Equal Opportunity University

Measures of Success: Colorectal Cancer 
Screening and Incidence
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An Equal Opportunity University

Keys to Success

• Rural focused dissemination and implementation science

– Extensive formative research, training, resources, funding, technical 
assistance

• Sustainability

• Coordination of  activities and players / silos of  funding and initiatives 
within CRC

– Benefit of  KCC to bring together and lead all of  these partners

• Innovative use of  “other settings”, community-based networks and 
staff, and health communication in combination with personal-touch

• Capitalize on community-clinical linkages

• Patient-centered communication / patient navigation

An Equal Opportunity University

That’s all folks!
Questions? 

Scutch@uky.edu
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Using Technology for Recruitment, 
Retention, Data Collection and 

Intervention Delivery

Kathi Mooney, PhD, RN
Huntsman Cancer Institute

University of Utah
Salt Lake City, Utah

COLLEGE of NURSING

The Huntsman Cancer Institute 
Catchment Area 

• Includes 5 Intermountain West states 
covering 17% of the US continental 
landmass 

•30% of patients being treated at the 
Huntsman Cancer Institute live in 
rural/frontier communities

• Sparse population densities:
Utah = 35.5 people/mi2

Nevada = 26.3 people/mi2

Idaho = 20.0 people/mi2

Montana = 7.1 people/mi2

Wyoming = 6.0 people/mi2

• Utah population- 3 million people 
• Utah encompasses nearly 85,000 mi2

• 96% of Utah is rural (<100 persons/mi2)
• 70% of Utah is frontier (<7 persons/mi2)
• Utah is home to 7 Native American 
tribes/nations
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Recruitment
• Connecting to the target 

population- trust
• Marketing the opportunity
• Engaging the target population
• Social media

• Methods of recruitment
• Examples: Army of Women Susan 

Love Foundation; Apple/Stanford 
Heart Study

• Patient-facing portal of the 
electronic health record

• Video/Video sharing
• Example: ORIEN Total Cancer Care 

Cohort

• Combine person-based and 
technology-based methods

• Social media use issues
• Network and venue bias
• Snowball sampling bias
• Accuracy of reported data 
• Abuse of incentives

Retention
• Automated reminders; 

encouragement from influentials

• Updates, boosters, newsletters

• Just enough- not too much

• Use of technology to track 
accrual and retention

• Research management systems

Technology delivery modes:

• Mobile phone text

• Automated telephone 
message- smart or not

• Email

• Patient-facing portals of 
the electronic health 
record

• Social media

• Telecommunication  
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Data Collection
• Electronic capture of patient-

reported data-
• Multiple platforms- phone, internet, 

app, research management 
systems

• Ecological Momentary 
Assessment (EMA)

• Computer Adaptive Testing (CAT)
• Electronically Activated Recorder 

(EAR)

• Automated monitoring-
wearable, home, community 
sensor data

• Telecommunication  

• Advantage to collect many data 
points very quickly 

Intervention Delivery

• Multiple platforms

• Treatment fidelity

• Easily adapted 

• Scalability

• Use of adaptive designs to 
test a variety of interventions

• Can combine data collection 
with intervention delivery 
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An example of technology-assisted retention, data 
collection, and intervention delivery 

Symptom Care at Home (SCH)- a 
remote symptom monitoring and 
automated self-management 
coaching platform with alerts to 
clinicians for poorly controlled 
cancer symptoms

NCI funding: RO1CA120558, R01 CA89474, 
PO1CA138317
Publications: Mooney et al. Cancer Med 
2017; Mar. 6(3):537-546; Mooney et al. 
Support Care Cancer 2014; 2(9):2343-2350.

Extending Care beyond the Cancer 
Center Walls Symptom Care at Home

Telephone based- automated voice 
response system (IVR)- soon to 
include web and app platforms
1. Daily automated monitoring of 
common symptoms (presence, severity 
(1-10), drill-down for rapid triage) of 
patient and caregiver
2. Automated algorithm-based patient or 
caregiver coaching based on reported 
symptoms and intensity. Short-term and 
long-term behavioral change coaching
3. Automated alerting of clinicians for 
poorly controlled symptoms- symptom 
graphs for patterns and guideline-based 
decision support system for intensifying 
symptom management
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Significant Benefit for Patients

For Chemotherapy (n=358)

• Significantly less symptom 
severity than usual care; p <.001

• 67% less severe symptom 
days than UC (8-10 severity,   
(0-10 scale); p<.001

• 40% less moderate symptom 
days than UC (4-7 severity); 
p<.001 

• 60% more mild days than UC
(1-3 severity);  p=.006

• 25% more asymptomatic days 
than UC;(0- not present) p=.006

• Benefit extended across 
geography and race

For Hospice/End of Life (n=298)

• Significantly less symptom 
severity for patients as reported 
by the family caregiver than usual 
hospice care; p=.03

• Rapid onset of patient benefit 
compared to usual hospice care; 
p<.02

Calls 5 min. avg. length Calls 11 min. avg. length
90% daily call adherence 73% daily call adherence

Large Mental Health Benefit for Men
Potential value of technology over face to face

•Men gain a significant mental health advantage from automated 
monitoring and support for emotional concerns during treatment 
(SF36 mental health subscale)
• Gender x benefit interaction favoring men (p=.016)
• SCH men gained 5.2 scale points per month (p=.003), 21 scale 
points overall (4 months)
• 21 scale points overall (0-100)= 11.7 gain in normed T-score 
where 3.0 is the minimally important difference (MID)
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Family Caregiver vitality 
maintained during caregiving

Lower fatigue, better sleep, and less 
activity disruption (p<.001)

• 51% reduction in the number of daily 
moderate-to-severe symptoms for family 
caregivers (p<.001)

• In SCH (but not UC), caregiver symptom 
reduction mediated a reduction in patient 
symptoms, p=.027

• Supporting caregiver’s health translates to                                  
improved patient symptom outcomes; both are 
benefited                                          

• 6 months after death of spouse, SCH spouses 
showed better bereavement outcomes than 
UC spouses (p=.01) 

People will engage and benefit from technology

• I did my calls at the end of the day and it was a 
release of sorts for me…the time I spent alone at 
night to reflect on mom’s day and how she did.

• Good outlet/input for me-pointing out I wasn’t alone 
and she was not really unusual.

• It gave me a sense of confidence that what I was 
seeing and feeling was ‘normal’.

• It helped calm me when I was having a bad day.

Hospice Family Caregiver post-intervention interviews:
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• Being able to anonymously tell someone what 
is going on made it easier to be helped.

• It felt like someone else was listening to what I 
had to say. Another person on the team.

• It made me realize I was forgetting who he had 
been. I was just seeing him as a sick person-
that was so helpful so I could change.

• It got me through the hardest time in my life.

Technology can assist in improving health 
research in small, hidden, and hard to reach 
populations

• Technology has been used successfully in each and across 
research phases

• Use technology that is familiar to the target population
• Health technology is a growth industry, we need 

equivalent advances in health research use
• Engage participants/communities in how to improve the 

technology 
• If it didn’t work, don’t assume it was the technology-

technology is the vehicle not the content or intervention
• There is a need for further research examining best 

practices in technology use for recruitment, retention, 
data collection and intervention delivery
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Recruitment, Retention and 
Collection of Data with a 
Focus on Small or Hard to 

Reach Populations          

Tracy Onega, PhD, 
MA, MS

Geisel School of Medicine at 
Dartmouth & the Norris 
Cotton Cancer Center
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Framing the Issues

Small

Hard-to-reach

Prevalence – rare, unique, infrequent

Physical – remote, incommunicado, unable

Geographic – fixed, floating, concentrated, diffuse

Social/cultural/linguistic/economic – stigma, legality, interest 

Three distinct 
populations?

With distinct issues
and approaches?

Identify commonalities to move forward with joint 
approaches 

Identify important distinctions that need to be 
approached in unique ways

Improving Research in Small/HTR Populations
……..a tale of two tasks…….
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Commonalities in Reaching Populations

• Mixture (albeit varying) of ‘boots on the ground’ with 
remote reach

• Increasingly relying on technology

• Always predicated on knowledge of population

• Data collection / measurement objective(s)

• Must work across phases: recruitment, retention, etc.

Distinctions in Reaching Populations

• Settings – urban, rural, specific venues, distributed

• Sampling frame – individuals, providers, communities

• Sampling strategy – snowball, RDS, IFWS, etc.

• Technology v. human components variably effective

• Barriers vary: linguistic, cultural, technological, 
geographic, etc.

• Heterogeneous criteria for “small and/or hard-to-reach”
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Recruitment Retention Intervention

Data Collection

Informing and improving methods                   informing outcomes/effectiveness

Recruitment Data 
Collection

Retention Intervention

Model of Components

Innovative Strategies

Technology-based

Dr. Mooney

• Social media, EHRs, 
wearables, remote 
sensors, video, 
telecommunications

Relationship-based 

Dr. Sanders Thompson

• Research fellows training 
program (CRFT)

• Mirroring community 

Dr. Scutchfield

• CHNA 

• Hub and spoke model
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For Dr. Mooney
• You have a nice example of combining person-based and 

technology-based methods. Are there populations and/or 
settings when person precedes technology or vice-versa 
for best effectiveness? 

• You incorporate data collection across phases.  This 
seems crucial, but what unique challenges does this 
pose?

Posing Key Questions

For Dr. Scutchfield
You gave excellent examples of community partnerships. 
These efforts seem broadly targeted, which can maximize 
‘reach’.  Can you comment on whether ‘casting the wide 
net’ misses some populations of interest, and how you 
would know. 

The ‘hub and spoke’ model, such as with the Markey 
Cancer Center and Cancer Coalitions seems to work well.  
What are its best applications and limitations in terms of 
reaching small/HTR populations? 

Posing Key Questions
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For Dr. Sanders Thompson
You gave a wonderful example of matching the right media 
for your ‘market’ and knowing your audience

▪ Is this all done a priori, iteratively, ………….
▪ What are the implications for cost/feasibility and ‘getting it 

right’ as well as potentially alienation populations/individuals if 
you don’t tailor correctly and how do you balance that?

For populations for which you can’t “go where they are” 
and/or mirror the audience – what then? 

▪ Virtual v actual “going where they are”
▪ Can something similar be adapted to online communities –

technology/social media-savvy embedded individuals?

Posing Key Questions

For All Speakers 
• What are we doing about populations we can’t reach?  

Do we know who and/or where they are?

• Is there a comprehensive compilation of small and hard-
to-reach populations, such that we can track/address:
▪ Which have been reached and how?

▪ Which haven’t?

▪ For which do we have evidence – or even information – on how 
to recruit, retain, and intervene?

Posing Key Questions
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• What technologies actually work, and according to 
what factors (age, race, geography, etc.)

• Tall order to determine effective strategies specific to 
populations, data needs, AND by phase. 
What intentionality should we as researchers bring to this? (need-based    

prioritization, low hanging fruit, piecemeal, etc.)

Where Do We Go From Here?

• What existing data & resources can we leverage:
▪ Web content mining

▪ Existing geospatial or governmental resources

▪ Online communities

• What data can/should we generate to inform best 
strategies?

• How can we best leverage/maximize what we learn? 

Additional Questions
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Design and Analysis Considerations 
in Research with Small Samples

Rick H. Hoyle
Department of Psychology & Neuroscience
Duke University

NAS Committee on National Statistics    
Improving Health Research for Small Populations: A Workshop

January 18-19, 2018

[2]

Topics

• When are analyses informative?
• What do we mean by “small”?
• Finite population correction
• Research strategies that address some concerns
• Multivariate models
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[3]

Analyses are informative when they . . .

• address the question that motivated the research . . .
• or, address a narrower or more preliminary question 

for which an analytic strategy can be justified given N
• use data that satisfy the assumptions of the analytic 

strategy
• are sufficiently powered to detect meaningful effects . . .

• or, reveal descriptively promising patterns in the data 
so that a new, more focused and informative study can 
be run

• produce results likely to generalize to the target 
population

[4]

What do we mean by “small”?

• Sample size is small when . . .
• estimates and tests would be unduly influenced by a 

small number of cases;
• it falls at or below the minimum required for valid 

estimates of parameters and/or standard errors;
• estimation results in nonconvergence or problematic 

parameter estimates;
• statistical tests are insufficiently powered to detect 

meaningful effects.
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[5]

Small and constrained

• small sample solutions are for circumstances when 
samples are small and constrained
• population of cases is small
• reaching cases requires substantial resources

• proposed solutions are not for circumstances in which 
sample size is not constrained; in such cases, increasing 
sample size is the preferred solution
• the compromises required when using small data are 

not justified when sample size is small but could be 
increased with reasonable time and effort

[6]

When constrained by population size

• sampling fraction, ݂ = ௡ே, where n = sample size and N = 

population size
• f = 1 = census
• as f approaches 1, standard error is adjusted downward to 

reflect reduction in sampling error due to large 
proportion of population in sample

• as f approaches 0, tests mirror those for samples assumed 
to be infinitely large

• when f > .05, power of statistical test can be improved 
through use of the finite population correction factorܥܲܨ = ܰ − ݊ܰ − 1
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[7]

Finite population correction factor (Cochran, 1977)

ܥܲܨ = ܰ − ݊ܰ − 1
• applied to standard error for tests of parameter estimates
• example, σM = 10, N = 200, n varies

n f FPC σM
175 .875 .354 3.54

150 .750 .501 5.01

125 .625 .614 6.14

100 .500 .709 7.09

75 .325 .793 7.93

50 .250 .868 8.68

25 .125 .938 9.38

10 .050 .977 9.77

[8]

Finite population correction factor

• can be used for study planning when working with finite 
population

• determine required sample size, nr, if assuming infinite 
population sampled with replacement

• derive sample size adjusted for planned use of FPC, na݊௔ = ݊௥1 + (݊௥ − 1)ܰ
N nr na na/nr

200 150 86 .57

200 125 77 .62

200 100 69 .69

200 75 55 .73

200 50 41 .82
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[9]

Finite population correction factor

• assumes random sampling without replacement
• accounts for reduction in sampling error as f increases 

toward 1.0
• allows inference about state of population at that point in 

time; not prediction of state of other populations or state 
of current population at a later point in time

[10]

Research strategies for addressing some concerns

ܶ = ݎ݋ݎݎ݁ ݀ݎܽ݀݊ܽݐݏ݁ݐܽ݉݅ݐݏ݁ ݎ݁ݐ݁݉ܽݎܽ݌
• options

• increase parameter estimate
• decrease standard error
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[11]

Increasing parameter estimate

ܶ = ݎ݋ݎݎ݁ ݀ݎܽ݀݊ܽݐݏ݁ݐܽ݉݅ݐݏ݁ ݎ݁ݐ݁݉ܽݎܽ݌
• strengthen treatment condition

• increase “dosage” of treatment
• choose inactive control condition

• focus treatment directly on causal mechanism
• choose reliable but sensitive outcome measure

• minimize attenuation due to unreliability
• maximize odds of detecting difference or change by 

using outcome that is responsive to change in 
conditions

[12]

Increasing parameter estimate

ܶ = ݎ݋ݎݎ݁ ݀ݎܽ݀݊ܽݐݏ݁ݐܽ݉݅ݐݏ݁ ݎ݁ݐ݁݉ܽݎܽ݌
treatment 
condition

long-term 
outcome

1

causal 
mechanism

2

proximal 
outcome

3

4

*
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[13]

Decreasing standard error

ܶ = ݎ݋ݎݎ݁ ݀ݎܽ݀݊ܽݐݏ݁ݐܽ݉݅ݐݏ݁ ݎ݁ݐ݁݉ܽݎܽ݌
• examples of standard errorߪெ = ଶ݊ݏ

ெభିெమߪ = ଵଶ݊ଵݏ + ଶଶ݊ଶݏ
• options when sample size is constrained

[14]

Leave no data unanalyzed

ܶ = ݎ݋ݎݎ݁ ݀ݎܽ݀݊ܽݐݏ݁ݐܽ݉݅ݐݏ݁ ݎ݁ݐ݁݉ܽݎܽ݌
ெߪ = ଶ݊ݏ

• ensure that the full sample is the analysis sample
• minimize attrition in prospective studies
• use modern methods for managing missing data

• multiple imputation
• model-based methods

• e.g., FIML in SEM
• incorporate missing data mechanism in model
• inclusion of auxiliary variables
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[15]

Account for unexplained variance in outcomeܻ = ଴ߚ + ଵݔଵߚ + ݁ி
ܨ = (݁ோ−݁ி)/(݀ ோ݂ − ݀ ி݂)݁ி/݀ ி݂

• reduce eF by including covariates associated with eF (i.e., 
variance in Y not accounted for by predictors of interest)ܻ = ଴ߚ + ଵݔଵߚ + .௖ଵݔଶߚ . . ௖௝ݔ௜ߚ + ݁ி

covariates

[16]

Multivariate models

• multilevel modeling
• growth modeling
• structural equation modeling
• person-level dynamic modeling
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[17]

Multivariate models

• generally considered large sample methods
• yet, increasing evidence of use with small samples
• reviews of behavioral science applications

• N of higher-level groups < 30 for 21% of MLM studies
• N < 100 for 33% of growth models
• N < 100 for 40% and < 200 for 60% of EFA studies
• N < 100 for 18% of SEM studies

• suggests research questions that . . .
• require data that are clustered;
• concern unobserved influences;
• focus on patterns of change over repeated assessments

[18]

Multilevel modeling

• making the following assumptions
• continuous measures
• ICC ≈ .20
• 4-8 predictors
• no missing data
• 2 or fewer cluster-level random effects

• < 40 clusters is considered small
• < 20 clusters should not be analyzed using standard 

methods
• clusters should have at least 5 observations
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[19]

Multilevel modeling

• solutions (McNeish, 2017)
• restricted maximum likelihood (REML)
• REML with Kenward-Roger correction
• wild cluster bootstrap

[20]

Growth modeling

• making the following assumptions
• continuous measures
• 4-8 observations per person
• random intercepts and slopes
• linear growth
• < 5 time-varying covariates

• N < 100 is considered small
• N < 50 should not be analyze using standard methods
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[21]

Growth modeling

• solutions
• depends on analytic framework
• typically SEM, discussed next

[22]

Structural equation modeling

• making the following assumptions
• continuous measures
• near-normal multivariate distribution

• and considering the following model characteristics
• magnitude of loadings on latent variables
• number of latent variables
• number of indicators per latent variable

• N < 200 is considered is small for moderate loadings (.5-.7) 
and moderately complex models (3-4 indicators of 3-4 
latent variables)

• N < 100 should not be analyzed using standard methods
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[23]

Structural equation modeling

• solutions
• do not interpret raw “χ2” value;  use Bartlett, Yuan, or 

Swain correction, which include N;  Yuan-correction 
performs well at Ns of 25 and 50

• use adjunct fit indices that perform well with small 
Ns—comparative fit index

• limit model complexity

[24]

Person-level dynamic modeling

• p-technique factor analysis—modeling of intraindividual 
variability across intensive, repeated observations
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[25]

Person-level dynamic modeling

• traditional p-technique factor analysis
• “sample” is a set of observations of one person (p) on 

a set of variables (e.g., measure of affect administered 
daily for three months yielding ≈ 90 observations)

• factor analysis of latent structure for the person
• multiple people can be “chained”
• limitation: does not account for effects of time

[26]

Person-level dynamic modeling

• dynamic p-technique factor analysis (Nelson et al., 2011)
• explicitly incorporates time to allow for modeling of 

intraindividual change over time
• uses lagged covariance matrices, permitting modeling of

• within-lag covariances between variables
• autoregressive covariances (stability)
• cross-lagged covariances (prospective relations 

between variables)
• person-level data can be chained or analyses done using 

multigroup SEM



Hoyle Slides

14

[27]

Person-level dynamic modeling

“DPT can allow for complex models that match the 
complexity of research hypotheses. Simply stated, DPT allows 
researchers to conduct sophisticated analyses, despite small 
numbers of participants. . . . Repeated measurement of a small 
number of individuals over time is often more feasible than 
studying large numbers of participants.”

Nelson, Aylward, & Rausch (2011)

[28]

Summary

• the outcome of statistical analysis/modeling should be 
informative; informative results are challenging to produce 
for small sample data

• what qualifies as a small sample varies as a function of a 
number of features of a study

• when N is small and constrained, the goal is to maximize 
the yield of the study through careful consideration of 
design, measurement, and analysis options

• health research often concerns patterns, processes, or 
structures that require the use of multivariate methods; 
such methods can sometimes produce informative results 
when N is small
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CNSTAT Workshop (January 18-19, 2018):

Improving Health Research for Small Populations

Bayesian Methods for Small Population Analysis

Thomas A. Louis, PhD
Department of Biostatistics

Johns Hopkins Bloomberg School of Public Health
www.biostat.jhsph.edu/˜tlouis/

tlouis@jhu.edu

p2

Pre-Summary

• Seldom can inferences from small populations stand on their own, because

estimates are unstable (have low precision)

◦ Also, large-sample assumptions/conveniences may not apply

• Modeling or other stabilization/(information enhancement) is necessary, and
there are a wide variety of strategies, including:

◦ Aggregation
◦ Regression both within and across populations
◦ Hierarchical (Bayesian/EB) modeling to ‘borrow information’ within and

between data sources
◦ Trimming survey weights

• Stabilization/enrichment targets include,

◦ Estimated regression slopes and residual variances
◦ A control group, using historical data
◦ Clinical trial subgroup estimates (Henderson et al., 2016)
◦ Transporting, e.g., adults−→ children
◦ Small Area (Domain) estimates (SAEs)
◦ Estimated SMRs and the challenges of low information
◦ Survey weights (Gelman, 2007)

• The Bayesian formalism is effective in meeting these goals
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Preview

The Bayesian formalism

• Modern Contraceptive Rates in Uganda
• Inferences on rates of bone loss
• Stabilizing variance estimates

Combine, don’t pool

• Historical controls in carcinogenicity testing

Making use of Big Data

• Embed a high-resolution study in a larger, lower-resolution one

Design-based inference loosens its grip on the survey world

• Combine survey estimates: SIPP aided by the ACS
• Small Area Income and Poverty Estimates (SAIPE)
• Alternative language determinations as required by Section 203 of the

voting rights act

Health Provider Profiling

• Shrinkage/stabilization can be controversial
• The challenges of low information

Closing

p4

Trading off Variance and Bias (for the linear model)

• K units (individuals, clusters, institutions, studies, regions, domains, . . . )

• Each with an underlying feature of interest (θk ):
◦ Poverty Rate, RR/SMR, TxEff, Residual Variance, . . .

• A direct (unbiased) estimate of it (Yk ), with estimated variance (σ̂2
k )

• Unit-specific attributes Xk (tax data, age, exposure) produce,

regression prediction = β̂Xk (e.g., β̂0 + β̂1Xk )

residual = Yk − β̂Xk

• Inviting three choices for estimating the θk :

Direct: Use the Yk (unbiased, but possibly unstable)
Regression: Use the regression (stable, but possibly biased)

Middle ground: A weighted average of Regression and Direct

θ̂k = regression prediction + (1− B̂k )× residual

= β̂Xk + (1 − B̂k ) · (Yk − β̂Xk )

B̂k = σ̂2
k/(σ̂

2
k + τ̂2)

τ̂2 = residual/unexplained variance, model lack of fit

• For general models use the Bayesian formalism
(Carlin and Louis, 2009; Gelman et al., 2013; Kadane, 2015)

elefurgy
Typewritten Text
Louis Slides

elefurgy
Typewritten Text
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Small Area Estimates
Modern Contraceptive Prevalence Rate (MCPR) in Uganda

• Performance Monitoring and Accountability 2020 (PMA2020) survey data

• Woman-specific information:≈ 13,100 inputs
(109 areas) ×(4 rounds) ×(≈ 30 women per round)

• Logistic regression with covariates and an area-specific random effect

Direct → Bayes (Direct - Regression) → (Bayes - Regression)

p6

Age-specific rate of bone loss Hui and Berger (1983)

• Woman/age–specific, locally linear slope estimates (+ means loss)

• Short follow-up, so slope and residual variance estimates are imprecise

• Use empirical Bayes to calm the variation
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p7

Stabilizing Variance Estimates
(Less controversial than stabilizing attributes of primary interest)

• The woman/age-specific, estimated residual variance is σ̂2
k

� With degrees of freedom, dk = #{measurements} − 2

• The σ2
k come from a (Gamma) prior with,

◦ Estimated mean m̂
◦ Estimated effective sample size M̂

• The empirical Bayes estimates are,

σ̃2
k = m̂ + (1− Bk )(σ̂

2
k − m̂)

Bk = M̂/(M̂ + dk )

˜dk ≈ Bkd+ + (1− Bk )dk

� The distribution of σ̃2
k isn’t chi-square, and a fully Bayesian analysis produces

the appropriate (hybrid) distribution

p8

Historical Controls (combine, don’t ‘pool’)

C E Total

Tumor 0 3 3
No Tumor 50 47 97

50 50 100

• Fisher’s exact one-sided P = 0.121

• But, pathologists get excited:

• The 3 tumors are ‘Biologically Significant’

• Statisticians protest:

• But, they aren’t ‘Statistically Significant’

We need to stop using these terms!
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p9

Include Historical Data

• There may be historical information for the same species/strain, same
Lab, recent time period with 0 tumors in 450 control rodents

• Pooling gives,

Pooled Analysis
C E Total

Tumor 0 3 3
No Tumor 500 47 547

500 50 550

• Fisher’s exact one-sided P
.
= .0075

• Convergence between biological and statistical significance

• The Bayesian formalism should be be used to bring in history,
in general, giving it only partial credit

p10

Bringing in history
Identify ‘relevant’ experiments, and use the Bayesian formalism

• Control rates come from a Beta distribution with

mean = μ

Variance =
μ(1− μ)

M + 1

• Use all the data to produce μ̂ and ̂M

• Augment concurrent control group by pseudo-data with mean μ̂ and
sample size ̂M (adaptive down-weighting of history)

• Female, Fisher F344 Male Rats, 70 historical experiments (Tarone, 1982)

Tumor N ̂M μ̂
̂M
N

Lung 1805 513 .022 28.4%
Stromal Polyp 1725 16 .147 0.9%

See Ibrahim et al. (2014) for a clinical trials example
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p11

Big Data and Data Synthesis

Chatterjee et al. (2016)

• Have a fine-grained study, with internally valid estimates

• And have stable, reduced dimension, external information

◦ e.g, a joint distribution of a subset of the within-study variables

• Constrain the within-study estimates to be compatible with the externally
determined (marginal) distributions in the spirit of,

◦ Stabilizing estimates in a contingency table by ‘benchmarking’ to marginal
distributions estimated from other data

◦ Using external prevalence data so that a case-control study can estimate
relative risk (RR) or a risk difference

• The key issue is whether stochastic features of the external data are sufficiently
similar to those for the internal data so that in the end MSE is reduced

• Resonates with external validity, representativity of a sample, transporting

within-sample estimates to a reference population, . . .
See, Keiding and Louis (2016); Keiding and Louis (2018)

Pearl and Bareinboim (2014); National Academies (2017)

p12

Combining Surveys
With other data, see Lohr and Raghunathan (2017)
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p14
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p15

SAIPE and Section203
(Bayesian) hierarchical modeling is essential

SAIPE: Small Area income and Poverty Estimates (Bell et al., 2016)

• Allocate $12+ billion a year

• ‘Direct’ Data are from the ACS and other surveys

• Xs are tax rates, etc.

Section 203 of the Voting Rights Act (Slud and Ashmead, 2017)

• In order to make the determinations, it is necessary to estimate the total
population of voting age persons who are citizens, of citizens who have limited
English proficiency, and of citizens with limited English proficiency who are
illiterate in approximately 8000 jurisdictions, 570 American Indian and Alaska
Native Areas (AIA/ANAs), and 12 Alaska Native Regional Corporations
(ANRCs), separately for 68 Language Minority Groups

• Total, potential, estimation domains ≈ 560,000 = 70× 8000

• Allowed to use only the census and the ACS

p16

USRDS, SMRs: MLEs and exact CIs
(1, 41, 81, . . . ordered MLEs)

• SMR = Standardized Mortality Ratio = observed/expected deaths

•••••••
•••••••

••••••••••••••••••••••
••••••••••••••••

••••••••••••••••••••••••••••••
•••••••••••••••••••••

••••••
•••••

•

•

• Sampling variability has a wide range over units
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p17

Bayesian analysis, ρ = SMR (Lin et al., 2009)

ρ̂mle , ρ̂pm, SE(ρ̂mle) using USRDS dialysis data

middle = MLE :: whisker = SE :: bottom = Posterior Meanddle = MLE :: whisker = SE :: bottom = Posterior Me

p18

Shrinkage can be controversial (Normand et al., 2016)

• Direct estimates with greatest uncertainty are shrunken closest to the regression
surface, potentially conferring undue benefits or punishments

• Especially troublesome when the model is mis-specified (always true!) and
sample size is informative so that the degree of shrinkage is ‘connected at the
hip’ to the underlying truth

• Standard model fitting gives more weight to the stable units, consequently the
units that ‘care about’ the regression model have less influence on it

• Recent approaches increase the weights for the relatively unstable units, paying
some variance, but improving estimation performance for mis-specified models
(Chen et al., 2015; Jiang et al., 2011)

elefurgy
Typewritten Text

elefurgy
Typewritten Text

elefurgy
Typewritten Text
Louis Slides

elefurgy
Typewritten Text



p19

Closing

• Statistics has always been about combining information; think X̄

• Careful development and assessment is necessary, and the Bayesian formalism is
an effective aid to navigation and inferential framework

• Advances in data science (annotation, harmonization, storage and retrieval),
computing (hardware & software), and statistical methods; make evermore
relevant,

All of statistics involves combining evidence over basic units to
make inferences for a population. The current challenge involves
broadening the scope of inputs and inferences in a scientifically
valid and credible manner. Development and application of these
meta-modeling strategies will challenge and inform in the next and
subsequent decades. (Louis, 1989)

• However,

Space-age procedures will not rescue stone-age data

#thank you

p20
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Outline

• What is a hidden population?
• Challenges of estimating the size of hidden populations
• Population size estimation methods

• Capture-recapture methods
• Object and service multipliers
• Network scale-up methods
• Successive Sampling-Population Size Estimation (SS-PSE) for 

respondent-driven sampling
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Hidden Populations

• Hidden populations may also be called:
• Hard-to-reach
• Hard-to-sample

• Members of hidden populations may engage in behaviors that are 
sometimes illegal or stigmatized and thus may tend to avoid 
disclosure of their membership and be unwilling to participate in 
surveys.

• Examples:
• Key populations at high risk for HIV, such as female sex workers (FSW), 

people who inject drugs (PWID), men who have sex with men (MSM)

2

Why Populations Size Estimation?

• To assess the existence or magnitude of an issue relating to the 
population

• To assess how resources should be allocated for better 
program planning and management

• To aid other estimation methods for these populations, which 
may require knowledge of N

• If repeated over time, to assess population dynamics

3



McLaughlin Slides

3

Challenges of Population Size Estimation

• A sampling frame may not exist
• Members of hidden populations may not identify themselves and 

members of the general population may not know whether or not 
their friends are members of the hidden population

• Those who participate in a sample may be different than those that 
do not

• May be more likely to observe people who are more visible/ highly connected
• Non-participants may be more isolated or even completely separate from 

those who do participate
• Populations are dynamic – both in time/space, and membership

• Timing matters for methods that rely on two samples

4

Current Methods for PSE

• No “gold standard” currently exists and 
many methods have been used, each with 
different strengths and weaknesses

• The particular approach chosen will 
depend on the population of interest and 
resources available

5

UNAIDS/WHO Working Group on Global HIV/AIDS and STI Surveillance 
(2010). Guidelines on Estimating the Size of Populations Most At Risk to HIV.
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How to Reach a Hidden Population

If we have no sampling frame, what do we do?

• Rely on a general population survey.
• Inefficient if we only are interested in the hidden population.
• Individuals may be unlikely to disclose status as a member of hidden population, and 

people may not know their friends’ statuses.
• Venue-based / time-location sampling: identify locations where members of a 

hidden population are likely to congregate. Sample locations instead of people.
• May be difficult to identify a list of venues.
• May miss individuals who do attend venues.

• Respondent-driven sampling: identify a few “seed” members of the hidden 
population, use restricted peer-recruitment to grow sample chains.

• May be biased by initial choice of seeds, volunteerism, dependence between individuals

6

Capture-Recapture
• Procedure

1. Map all the sites where the population 
can be found

2. Go to the sites and “tag” all the members 
of the population at the site

3. Return to the sites at a later date and 
retag all members of the population

4. Record size of each sample and overlap

7

Guidelines on Estimating the Size 
of Populations Most At Risk to HIV, 
p.17.

• Simplistic and requires many assumptions, e.g.
• Every member has an equal chance of being sampled
• Matching is reliable
• The two samples are independent

෡ܰ = ݊ଵ݊ଶ݉
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Multiplier Methods

• Service Multiplier Method (SMM) or Unique Object Multiplier 
Method (UOM)

• Relies on two sources of data
1. A count of population members who received some service (e.g. 

attended a clinic or program) or object (unique, memorable)
2. A representative survey of the population, such as RDS. In the 

survey, ask each individual if they received the service or object

8

෡ܰ = 		ݐ݆ܾܿ݁݋	ݎ݋	݁ܿ݅ݒݎ݁ݏ	݄݁ݐ	݃݊݅ݒ݅݁ܿ݁ݎ	݀݁ݐݎ݋݌݁ݎ	݋݄ݓ	݈݁݌݉ܽݏ	݂݋	%	ݐ݆ܾܿ݁݋	ݎ݋	݁ܿ݅ݒݎ݁ݏ	݄݁ݐ	݃݊݅ݒ݅݁ܿ݁ݎ	݈݁݌݋݁݌	݂݋	#

Multiplier Methods

• Challenges
• Requires that the two data sources be independent
• Obtaining a random sample of a population lacking a sampling frame
• Timing between the service/object distribution and the sample
• Everyone receiving the service/object must be a member of the hidden 

population

9
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Network Scale-Up Method (NSUM)

• Procedure:
1. In a general population survey, ask how many individuals each 

person knows and how many of those are in the hidden population.
2. Proportion of respondents’ contacts who are members of the hidden 

population is assumed to be equal to the population proportion. 
Multiply this by the known general population size.

• Requires the assumption that people in the general population 
are aware of whether or not their network members are 
members of the hidden population.

• Assumes network connections are formed at random.

10

Network Scape-Up Method (NSUM)

• Generalized scale-up estimator 
• Relies on both a general population 

survey and a hidden population 
survey (RDS)

• Total out-reports equals total in-
reports

• Still assumes that hidden 
population members have 
aggregate awareness about 
visibility

11Feehan, D. M. and Salganik, M. J. (2016). Generalizing the Network Scale-Up Method: A New Estimator for the Size of Hidden Populations.
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Successive Sampling-Population Size 
Estimation (SS-PSE)
• Use with data collected via one RDS study

• Cost-effective
• Can be done retroactively

• Bayesian framework where prior information about population 
size can be incorporated

• Good way to combine data from different sources
• Statistical model for uncertainty in estimates

12
Handcock, M. S., Gile, K. J., and Mar, C. M. (2014, 2015)

Successive Sampling-Population Size 
Estimation (SS-PSE)
• Conceptual overview

• People that are more visible (tend to have 
larger network size) are more likely to be 
sampled in RDS, and be sampled earlier

• Consider network size by wave
• If the frequency of larger network sizes 

decreases over RDS waves, the population is 
likely being depleted

• Population size likely larger
• If the frequency of larger network sizes does 

not decrease, there are still many people who 
have not yet been sampled

• Population size likely smaller

13
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Successive Sampling-Population Size 
Estimation (SS-PSE)
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Example posterior distribution for population size

• Challenges:
• Network sizes in RDS may not 

contain a lot of information about 
population size

• Relies on quality of RDS data
• Possibility of inconsistent expert prior 

beliefs

Future Directions for PSE Work

• Further sensitivity analysis, validation, and diagnostics for 
existing methods

• Further work on uncertainty estimates for existing methods
• Methods that incorporate multiple estimates
• Opportunities to develop new methods that incorporate

• New technology 
• Social media data

15
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