

Using Geospatial Methods with Other Health and Environmental Data to Identify Populations

**Ellen K. Cromley, PhD
Consultant, Health Geographer**

ellen.cromley@gmail.com

Purpose and Outline

To illustrate the use of geospatial methods to identify populations from data sources other than electronic health records or the U.S. Census

- The spatial view of data and spatial sampling
- Locating populations--
 - From their places of residence
 - From administrative records
 - From their social networks
 - From their activity locations and activity spaces
 - Taking into account environmental exposure
- Where can we go from here?

Views of Data: Tabular

Tabular View of Two Databases (The Same)

NAME	GRADE	NAME	GRADE
Andy	B	Andy	B
Bob	B	Bob	B
Carmela	C	Carmela	C
Dave	A	Dave	A
Ed	A	Ed	A
Felicia	C	Felicia	C
Gordon	A	Gordon	A
Hank	B	Hank	B
Inez	C	Inez	C

Views of Data: Statistical

Statistical View of Two Databases (The Same)

Grade Frequency

A	3
B	3
C	3

Grade Frequency

A	3
B	3
C	3

Views of Data: Spatial

Spatial View of Two Databases (Not the Same)

Teacher

B	C	A
C	A	B
A	B	C

Teacher

A	A	A
B	B	B
C	C	C

- The locations of the observations are part of the data record
- The location data are necessary to support spatial data analysis

Implications for Sampling

- Samples **in** geographic space

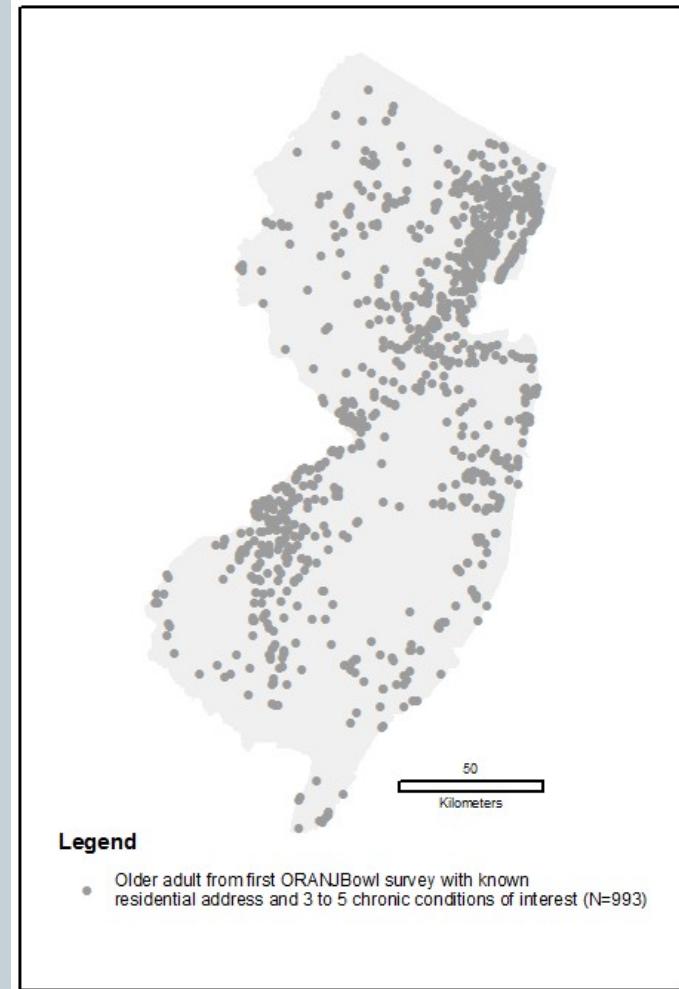
Such samples select observations from a population that is itself geographically distributed

Every sample of people or other entities located on the earth's surface is **implicitly** a spatial sample

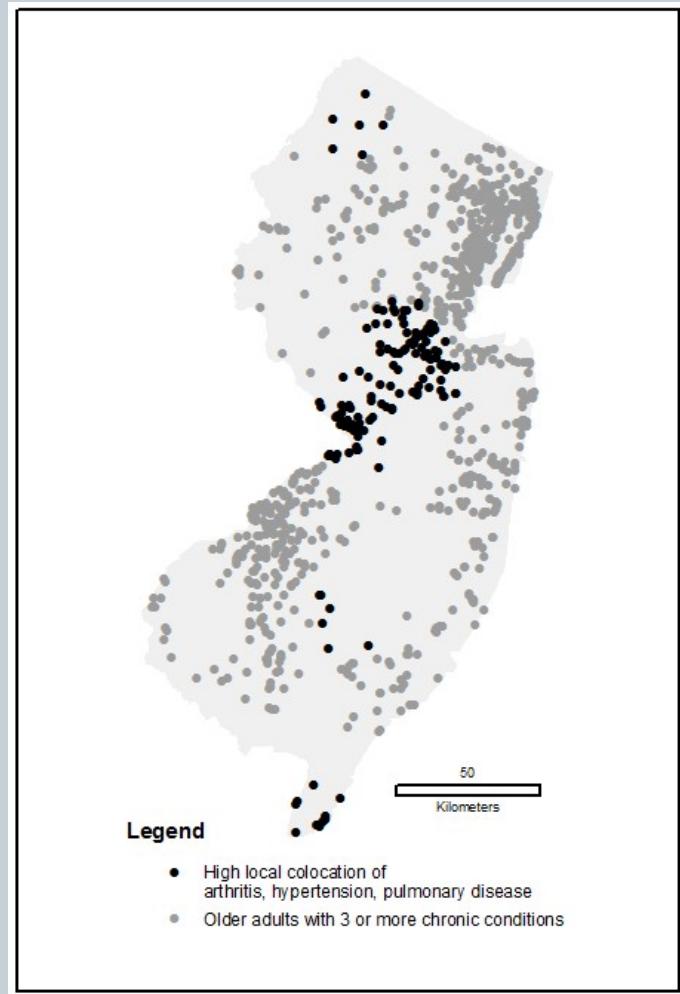
A random sample of all people is not a random sample of all places unless people are uniformly distributed

- Geospatial technologies make the spatial basis of evidence **explicit** so that the sample captures the spatial characteristics of the population

Studies Based on Residential Locations



- Locating older adults with multiple chronic conditions
- ORANJBowl telephone survey rachelpruchno.net/OB.html
- Residential locations of participants from first survey geocoded to census block centroids
- Combinations of three of the following: arthritis, diabetes, heart disease, hypertension, pulmonary disease



Locating People with Multiple Conditions

- Identified older adults with 3-5 chronic conditions
- Calculated local colocation quotients as a local measure of spatial association of conditions among older adults
- Mapped and tested the significance of any observed areas of spatial association

Spatial Patterns of Multiple Chronic Conditions

- Statewide proportion of older adults with 3-5 chronic conditions including arthritis-hypertension-pulmonary disease was 38 %
- Proportion of highlighted 155 older adults with 3-5 chronic conditions including arthritis-hypertension-pulmonary disease was 50 %

Studies of People in Group Quarters

- People who do not live in housing units reside in group quarters (Census Bureau definition)
- Types
 - Institutional**—prisons, nursing homes, inpatient mental health facilities
 - Non-institutional**--college dormitories, military barracks, group homes, shelters
- Size and distribution vary widely in space

Long Term Care Facilities in Massachusetts

- Data from MassGIS
- “Global” view of capacity

$N = 740$ facilities

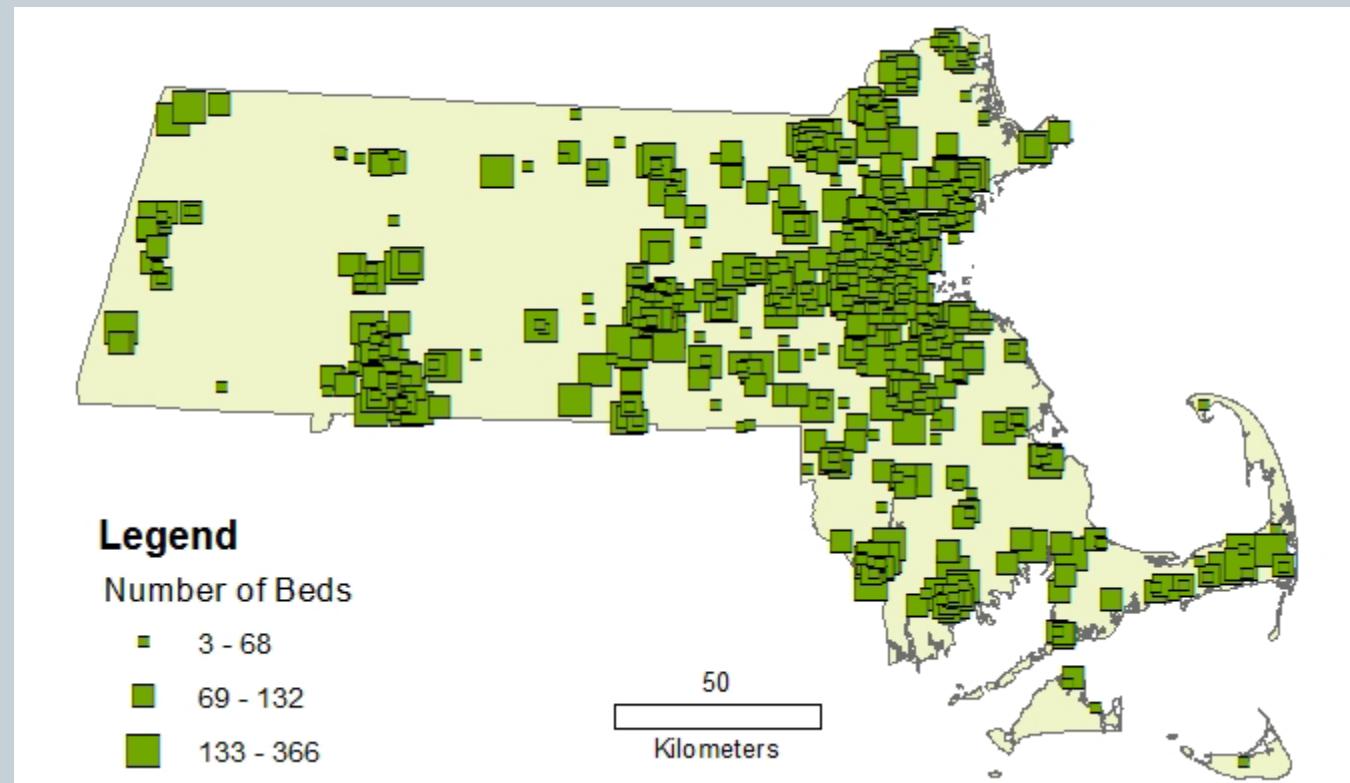
Total beds = 65,272

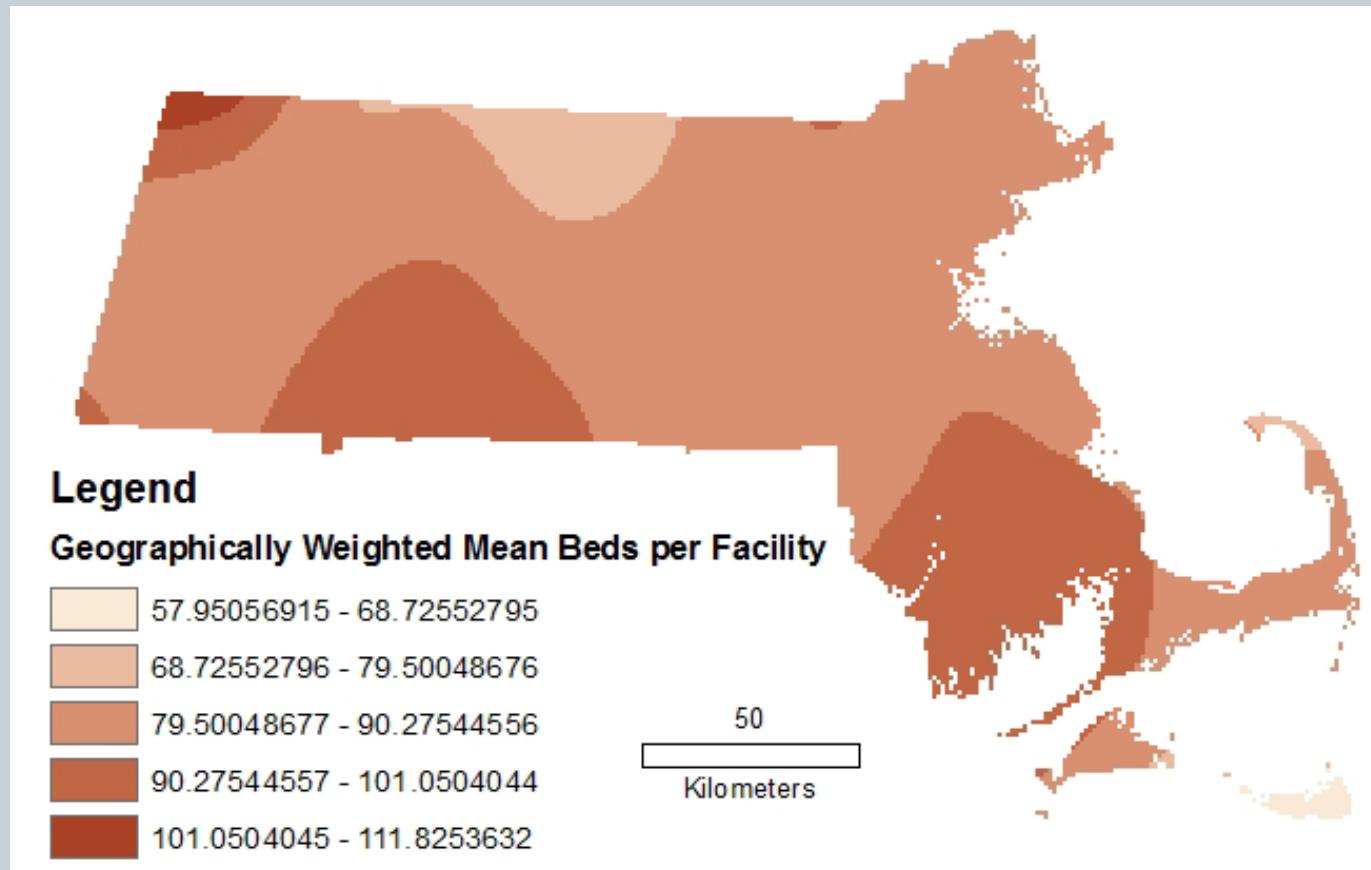
Mean = 88.2

Median = 83

Min = 3, Max = 366

Standard deviation = 52.4

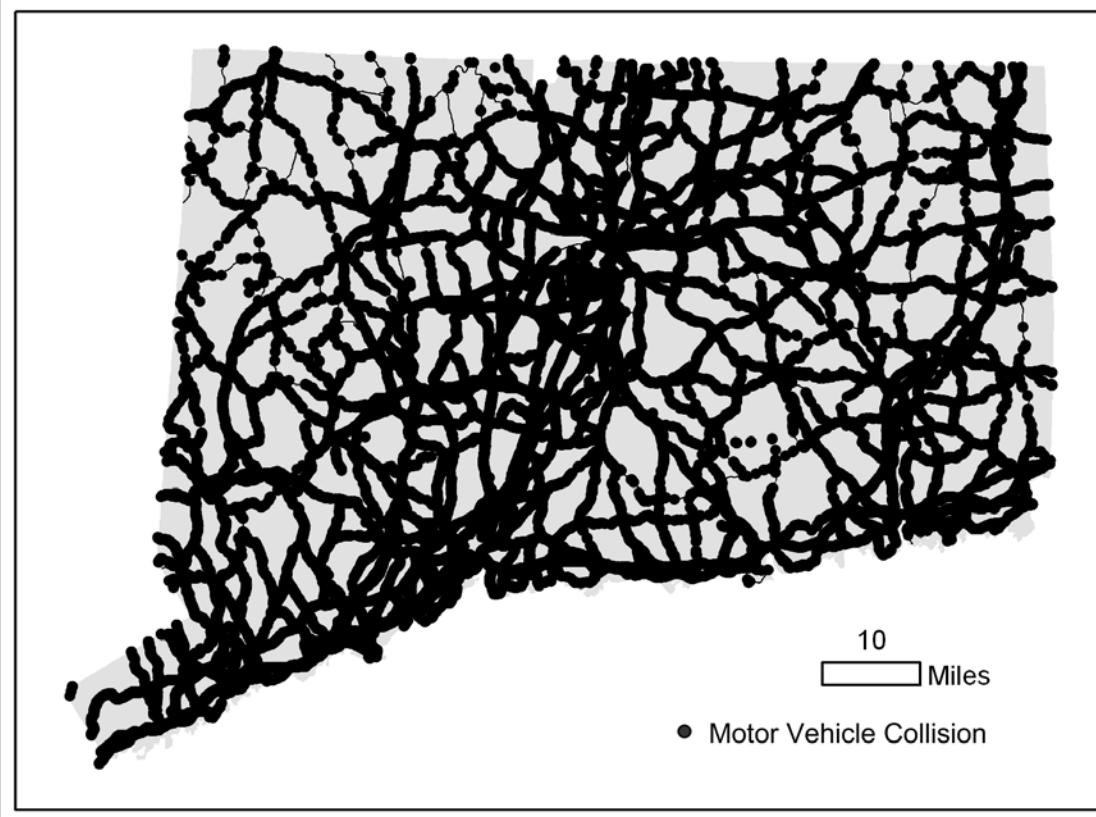

Spatial Distribution of Facilities by Size


- “Local” view of capacity

Is facility size important in sampling?

Is capacity the same in every region?

Geographically Weighted Mean Capacities



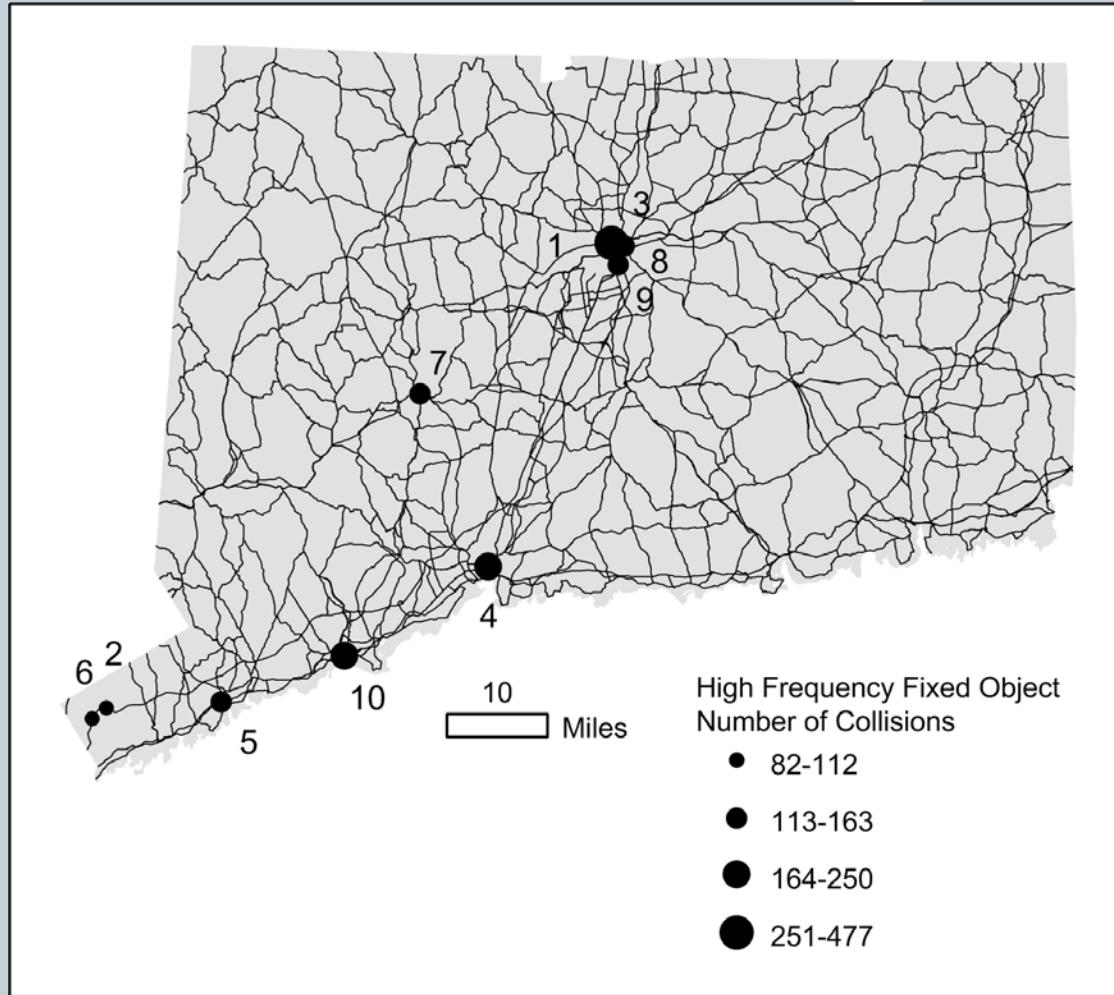
Studies Based on Administrative Records

- **Definition (Statistics Canada | Statistique Canada)**
Data collected for the purpose of carrying out various non-statistical programs
- **Examples**
Vital records (births and deaths)
Registries (immunization records, tumor registries)
Health and social services records
Public safety reports (collisions, shootings, fires)
- **Administrative record linkage**
- **Data privacy and confidentiality**

Connecticut CODES Project

- Police accident reports from state DOT
- Map shows collisions on federal and state roads 1995-1996 (N=124,053)
- Where to target an intervention to reduce fixed-object collisions?

Identifying Collisions in Local Areas


- **Geospatial methods**

Used a box-shaped kernel based on stopping distance to group collisions along road segments

Identified places with high numbers of collisions by type of collision

Eliminated overlapping “places”

Fixed Object Collision Places

- 10 places with highest frequency of fixed object collisions
- Geographically distinct

Local Proportions

Place ID	Fixed Object	Rain or Snow	Dry Road	Daylight	Age 25-44	Male	Too Fast for Conditions
1	0.29 z=5.23	0.46 z=11.19	0.46 z=-8.86	0.71 z=.65	0.52 z=2.82	0.60 z=-.09	0.27 z=9.75
2	0.91 z=16.48	0.66 z=8.87	0.10 z=-10.55	0.76 z=-.86	0.51 z=1.16	0.58 z=1.43	0.62 z=13.61
3	0.55 z=9.75	.39 z=3.82	0.48 z=-3.99	0.66 z=-.86	0.51 z=1.25	0.68 z=-.61	0.62 z=9.87
4	0.29 z=3.48	0.25 z=.38	0.65 z=-.18	0.67 z=-1.02	0.49 z=1.10	0.58 z=-.73	0.26 z=5.81
5	0.40 z=6.65	0.40 z=4.61	0.48 z=-4.73	0.52 z=-4.78	0.54 z=2.24	0.61 z=.14	0.29 z=6.36
6	0.70 z=11.61	0.69 z=9.52	0.20 z=-8.56	0.78 z=1.71	0.54 z=1.58	0.54 z=-1.18	0.57 z=12.16
7	0.37 z=5.48	0.38 z=3.95	0.57 z=-2.14	0.73 z=.84	0.48 z=.69	0.62 z=.26	0.31 z=6.93
8	0.35 z=4.82	0.39 z=4.42	0.49 z=-4.28	0.71 z=.37	0.52 z=1.52	0.52 z=-2.32	0.29 z=6.27
9	0.44 z=6.78	0.39 z=3.83	0.54 z=-2.62	0.64 z=-1.45	0.51 z=1.17	00.65 z=.90	0.27 z=5.03
10	0.22 z=1.09	0.29 z=1.75	0.62 z=-1.01	0.67 z=-.89	0.51 z=1.58	0.66 z=1.81	0.19 z=2.84
State	0.19	0.24	0.65	0.70	0.46	0.61	0.12

Local Odds Ratios

Place ID	Rain or Snow	Dry Road	Daylight	Age 25-44	Male	Too Fast for Conditions
1	2.79 z=4.91	0.29 z=-5.58	0.45 z=-3.76	0.73 z=-1.56	0.87 z=-.69	11.09 z=10.08
2	2.83 z=1.30	0.22 z=-1.63	1.27 z=.27	0.00 z=.00	1.70 z=.66	4.71 z=1.78
3	4.80 z=3.75	0.17 z=-4.46	0.36 z=-2.52	1.34 z=.80	0.56 z=-1.54	17.50 z=5.65
4	2.89 z=3.21	0.19 z=-5.16	0.30 z=-3.82	1.25 z=.73	0.63 z=-1.53	8.62 z=6.14
5	3.06 z=3.33	.28 z=-3.74	.48 z=-2.27	1.32 z=.87	1.03 z=.09	3.11 z=3.17
6	1.05 z=.09	0.54 z=-1.10	0.23 z=-1.86	1.14 z=.27	1.14 z=.27	2.64 z=1.98
7	5.53 z=4.65	0.16 z=-4.87	1.03 z=.08	1.24 z=.65	.36 z=-2.90	16.55 z=6.41
8	3.04 z=3.21	0.32 z=-3.27	0.35 z=-.292	1.20 z=.55	1.20 z=.55	10.50 z=5.81
9	2.33 z=2.25	0.29 z=-3.28	0.46 z=-2.02	0.83 z=-.52	1.02 z=.06	3.32 z=2.85
10	0.94 z=-.19	0.78 z=-.81	0.32 z=-3.59	0.80 z=-.72	0.92 z=-.25	3.86 z=3.81
State Odds Ratio	1.76	0.50	0.40	1.13	1.10	6.38

Error in Administrative Records

- **Challenges**

- Errors due to inclusion criteria

- Errors due to coding of thematic attributes

- Errors in coding spatial attributes

- **Responses to challenges**

- Talk to the people who collect and code the data

- Engage with agencies to improve data quality

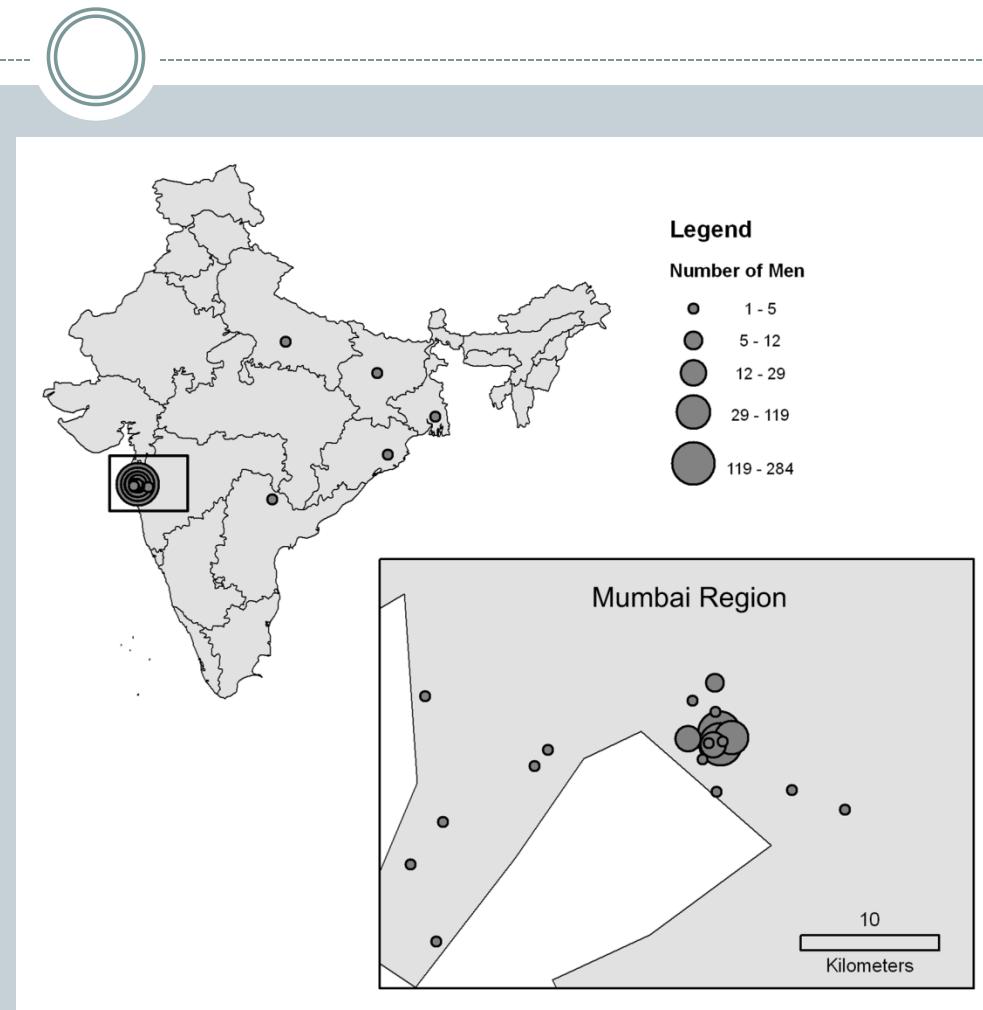
- “Adopt robust methods of analysis”—

- Waldo Tobler, Analytic Cartographer,

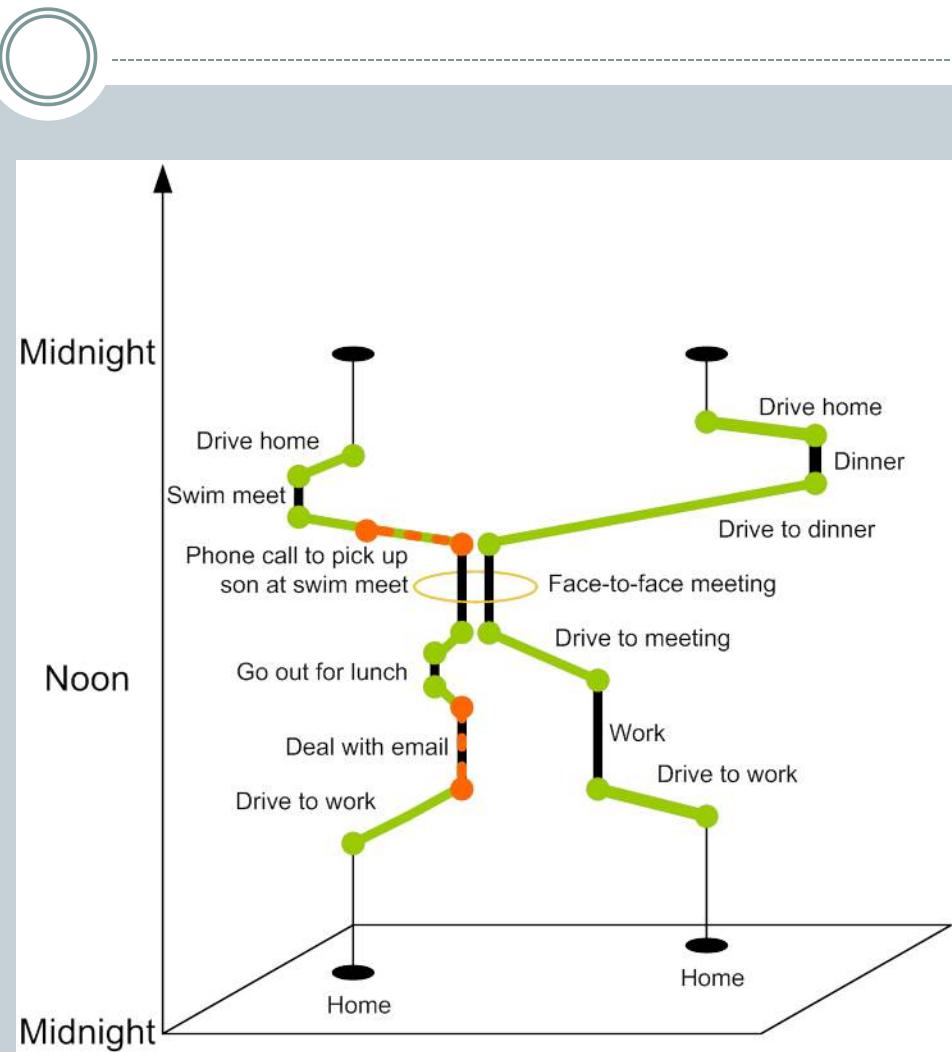
- Member of the National Academy of Sciences

Studies Based on Social Networks

- Social networks function in geographic space and they can be mapped
- In respondent-drive sampling, examine the distribution of locations for recruiting “seed” participants
- Include mechanisms for monitoring the spatial locations of network members recruited into the research study


Studies Based on Activity Sites

- Places outside the home where people engage in activities can be used for locating populations
 - Health service delivery sites
 - Workplaces and schools
 - Bars
 -and many more
- Geospatial methods can be used to map these venues to show their spatial distribution
- A critical consideration in venue-based research is understanding who is seen at these venues


The ASHRA Project

- Study of alcohol and sexual risk in three low-income communities in Mumbai, India
- 640 drank with friends at places in one of the three study communities
- 111 drank in other widely-dispersed locations in the Mumbai region and elsewhere

Locating People Who Share Activity Spaces

- Home base, activity sites, routes of travel
- Various ways we can locate populations for health research are represented in this graphic
- With geo-enabled devices, the information can be collected continuously in real time

Grouping People Based on Activity Sites

- Make pair-wise comparisons of study participants
- Calculate an index of association based on co-location in space or in time and space

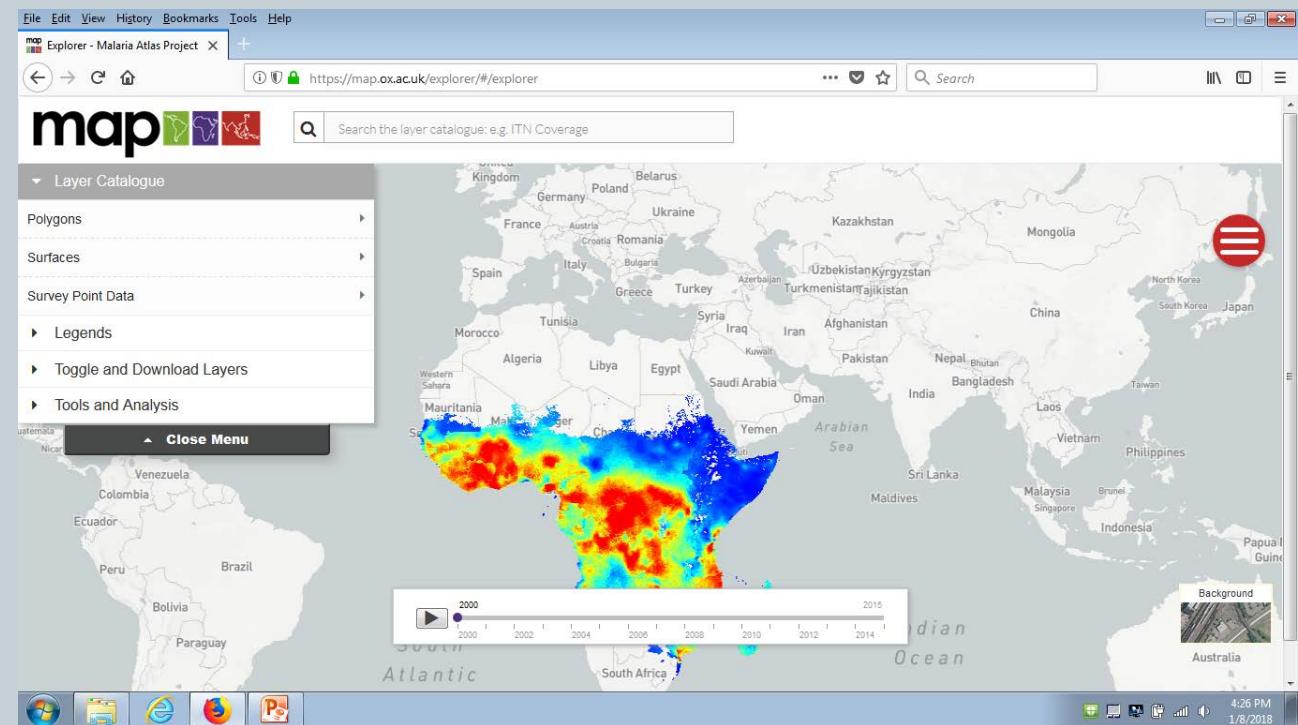
$$I = \frac{2 \times (\text{Number of activity sites in common})}{\text{Number of sites Person 1} + \text{Number of sites Person 2}}$$

- Analyze resulting similarity measures by using scaling techniques to group people with similar activity patterns in space or in time and space

Exposure Studies

- Some epidemiological study designs require information on exposure (cohort and case-control studies)
- Dominant view of what geospatial methods contribute to health research
 - Map air quality made by taking samples **of** space
- Geospatial technology can be used to assess exposure without reference to such “maps”
 - Personal exposure monitoring
 - Monitoring environmental conditions at residences, other activity sites, or travel routes and assigning measurements to study subjects
- Contextual analyses can be “geographic” but not “spatial”

Where Can We Go from Here?


- The key impact of geospatial technologies has been to enable us to study large areas at high levels of detail (maintaining individual locations and attributes)
- Building spatial data commons
- Adopting a spatial analytic framework for health science explicitly addressing spatially varying processes

Building Data Commons

- The Malaria Atlas Project aims to disseminate free, accurate and up-to-date information on malaria and associated topics, organized on a geographical basis (map.ox.ac.uk/)

Open access policies

Subscribes to
GATHER

Putting it All Together: Matlab

- **Uses geospatial technology to determine**
 - How cholera vaccine efficacy varies spatially in the study area
 - What ecological socio-environmental variables are related to cholera vaccine efficacy (which variables are effect modifiers?)
 - How protective efficacy varies with access to treatment facilities (is access a spatial confounder?)
 - Whether cholera incidence in the placebo group is related to vaccine coverage rates (is herd immunity important?)
- Currently integrating social networks into a spatial analytic framework for vaccine trial evaluation
- Cholera vaccine efficacy as a spatially-varying process

Questions?

