

Visualization & Perception Across Scales

Danielle Albers Szafir
Department of Information Science
danielle.szafir@colorado.edu

More Analysts
(& Fewer Experts)

More (& Different) Data

More Questions

Why don't we just compute the answer?

Data Sample 1:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 2:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 3:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 4:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 1:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 3:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 2:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

Data Sample 4:

Mean(x) = 9

Variance(x) = 11

Correlation(x, y) = 0.816

Regression: $y = 3 + 0.5x$

**Statistical tools are powerful,
but people understand patterns**

How we represent data changes the questions we can answer

These questions shift as the available data grows

We can manage scales using two strategies:

- 1. Harness Human Vision**
- 2. Collaborate with Computation**

How we represent data changes the questions we can answer

These questions shift as the available data grows

We can manage scales using two strategies:

1. Harness Human Vision
2. Collaborate with Computation

How much bigger is A than B?

How we represent data affects the patterns people see

How we represent data changes the questions we can answer

These questions shift as the available data grows

We can manage scales using two strategies:

1. Harness Human Vision
2. Collaborate with Computation

<http://www.nytimes.com/newsgraphics/2014/01/05/poverty-map/?ref=multimedia>

Low-Level Tasks → Individual Values

High-Level Tasks → Combine Many Values

Visual Aggregation Task

	Identification (Outlier)	Summary (Mean)	Segmentation (Clustering)	Structure Estimation (Trends)
Visual Feature	Position 	 	 	
	Size 	 	 	
	Orientation 	 	 	
	Color & Luminance 	 	 	

Encodings

Tasks

X

Maxima

Minima

Range

Average

Variance

Outliers

What month has the **highest sales day**?

What month has the **highest sales on average**?

What month has the **highest sales on average?**

What month has the **highest sales day**?

**Position for
Point Tasks**

**Color for
Summary Tasks**

How you map the data impacts what statistics people see

How we represent data changes the questions we can answer

These questions shift as the available data grows

We can manage scales using two strategies:

- 1. Harness Human Vision**
- 2. Collaborate with Computation**

All the world's a stage,
And all the men and women merely players:
They have their exits and their entrances;
And one man in his time plays many parts,
His acts being seven ages. At first the infant,
Mewling and puking in the nurse's arms.
And then the whining school-boy, with his satchel
And shining morning face, creeping like snail
Unwillingly to school. And then the lover,
Sighing like furnace, with a woeful ballad
Made to his mistress' eyebrow. Then a soldier,
Full of strange oaths and bearded like the pard,
Jealous in honour, sudden and quick in quarrel,
Seeking the bubble reputation
Even in the cannon's mouth.

Important Texts

She: A History of Adventure: 15 chapters

Large Digitized Collections

Google N-Grams: 5,195,769 books

Google Books Ngram Viewer

Graph these comma-separated phrases: case-insensitive

between and from the corpus with smoothing of

Turning texts into sequences

All the world's a stage,
And all the men and women merely players:
They have their exits and their entrances,

all the world a stage
and all the men and women merely players
they have their exits and their entrances

all the world a stage and all the men and women merely

Time

Popularity Rank
(High to Low)

Szafir, Stuffer, Sohail, & Gleicher 2016

Scales matter because

Scales change questions we ask

Scales change representations that work

Scales require multiple perspectives on data

How we represent data changes the questions we can answer

These questions shift as the available data grows

We can manage scales using two strategies:

- 1. Harness Human Vision**
- 2. Collaborate with Computation**

**Statistical methods scale well, but
their processes are often opaque**

**People bring context and expertise,
but are slow**

How can we combine statistical scalability with contexts from domain expertise?

The figure displays a 3D surface plot of a large question mark. The surface is covered with a grid of numerical values, ranging from -12.1 to 1.143. The plot is set against a black background with a white grid. The question mark is oriented vertically, with its stem pointing downwards and its bowl pointing upwards. The numbers are represented by small white dots on the surface, creating a digital texture. The overall effect is a high-tech, data-oriented representation of a classic symbol.

Develop new data fusion and machine learning methods for collaborative human-machine perception in remote sensing

Apply methods from unmanned autonomous vehicles domain to SBIRS/OPIR domain

Analysts

Intuitively **push** information to automation

Information Flow

Query analysts to **pull** critical missing data

Automation

Region: Israel
Lat: 32.09° N -- Lon: 34.77° E

RECENTER VIEW HIDE SATELLITE CONTEXT

Region Stream
Frames: 0 / 100

STREAM

PAUSE STREAM

For 10-15 second frame updates,
human + automation can accurately
classify targets ~3 minutes earlier

Stage 1 Stage 2

Flat Field Background Suppression Measure

Elements Console Sources Network Performance Memory Application Security Audits

> shadow-root (open)

ad>...</head>

dy> == \$0

audio id="myAudio">...</audio>

div id="main_div">...</div>

div id="main_uncertainty_container">...</div>

body>

Styles Computed Event Listeners DOM Breakpoints Properties »

Filter

element.style {

}

body {

font-size: 1.5em;

line-height: 1.6;

[skeleton.css](#)

Open Questions

How do we quantify cognitive and perceptual elements of data analysis? How do we make that data actionable?

What do we do with imperfect data?

What factors of models allow people to collaboratively interact with automated models?

Open Questions

How do we quantify cognitive and perceptual elements of data analysis? How do we make that data actionable?

What do we do with imperfect data?

What factors of models allow people to collaboratively interact with automated models?

Thank You!

Danielle Albers Szafir
danielle.szafir@colorado.edu
@dalbersszafir

Funding:
National Science Foundation
US Air Force SMC
Mellon Foundation

Demos & Papers:
<http://danielleszafir.com>
<http://cmci.colorado.edu/visualab>