

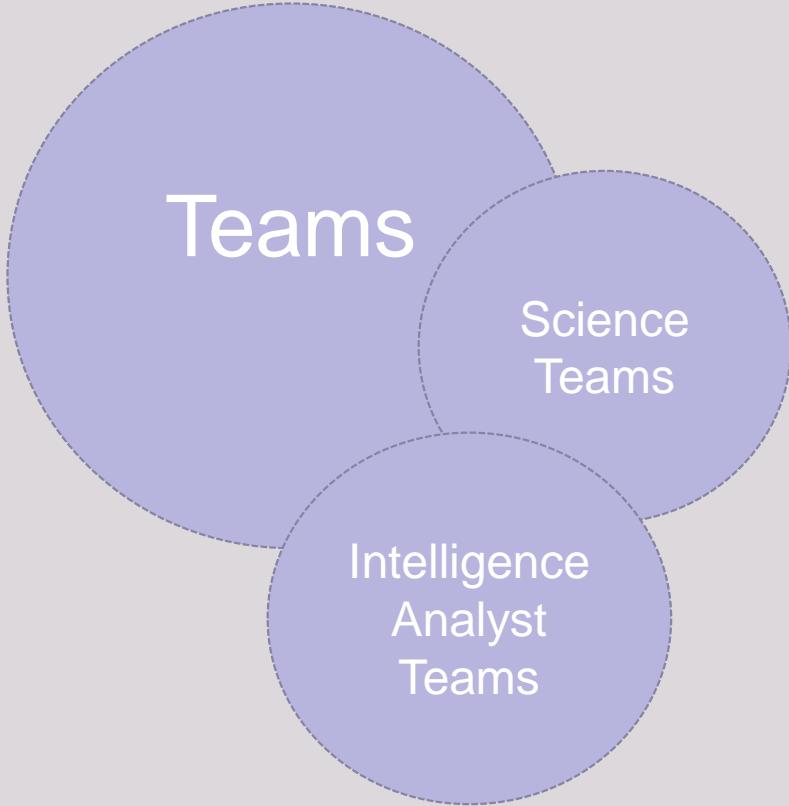
Supporting Individuals and Enhancing Teams

Kara L. Hall, PhD

Director, Science of Team Science (SciTS)

Director, Theories Initiative

Health Scientist


Program Director

Behavioral Research Program
Division of Cancer Control and Population Sciences
National Cancer Institute

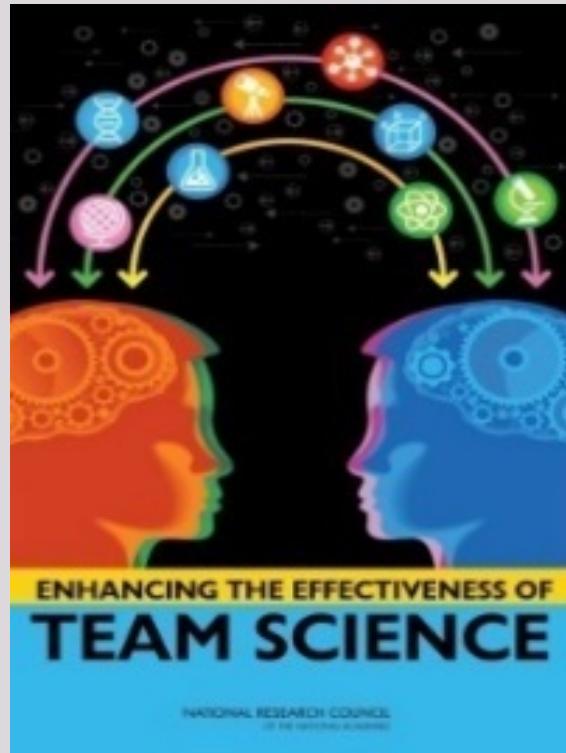
The Science of Team Science is a cross-disciplinary field of study that aims to: (1) *generate an evidence-base* and (2) *develop translational applications* to help maximize the efficiency, effectiveness of team science

- **What is the added value of team science?** Can it ask and answer new questions, produce more comprehensive knowledge, generate more effective applied solutions?
- **What team processes (e.g., communication, coordination approaches)** help maximize scientific innovation and productivity?
- **What characteristics and skills of team leaders and team members** facilitate successful team functioning?
- How can **funding agencies and universities** most effectively facilitate and support team science, in order to advance discovery? **What policies are needed?**

- What can we learn from studies across all types of teams?
- How are science teams unique from other teams and similar to IA teams?
- What are the transportable considerations from teams to IA teams?
- What are the implications for supporting IA work?

Academic Teams, Intelligence Analyst Teams

Similarities


- Knowledge/intellectual work
- Products
 - Publications, reports, briefs
 - Presentations, briefings
 - Advisory meetings, expert input

Distinctions

- Academic researchers
 - Researchers as “free agents”
 - Tenure and promotion process
- Intelligence analysts
 - Leadership history and culture (e.g., leaders from branches of military)
 - Power dynamics (e.g., clearance classification levels)

Dimensions of Team Science

That Create Unique Profiles & Challenges

DIMENSION	RANGE	
Diversity	HOMOGENEOUS	HETEROGENEOUS
Integration	UNIDISCIPLINARY	TRANSDISCIPLINARY
Size	SMALL (2)	MEGA (1000s)
Proximity	CO-LOCATED	GLOBALLY DISTRIBUTED
Goal alignment	ALIGNED	DIVERGENT OR MISALIGNED
Boundaries	STABLE	FLUID
Task interdependence	LOW	HIGH

A Continuum of Disciplinary Integration

Transdisciplinary

Researchers from *different disciplines* work *jointly* to develop & use a shared conceptual framework that synthesizes & extends discipline-specific theories, concepts, & methods to create *new approaches* to address a common problem

Across
Disciplines

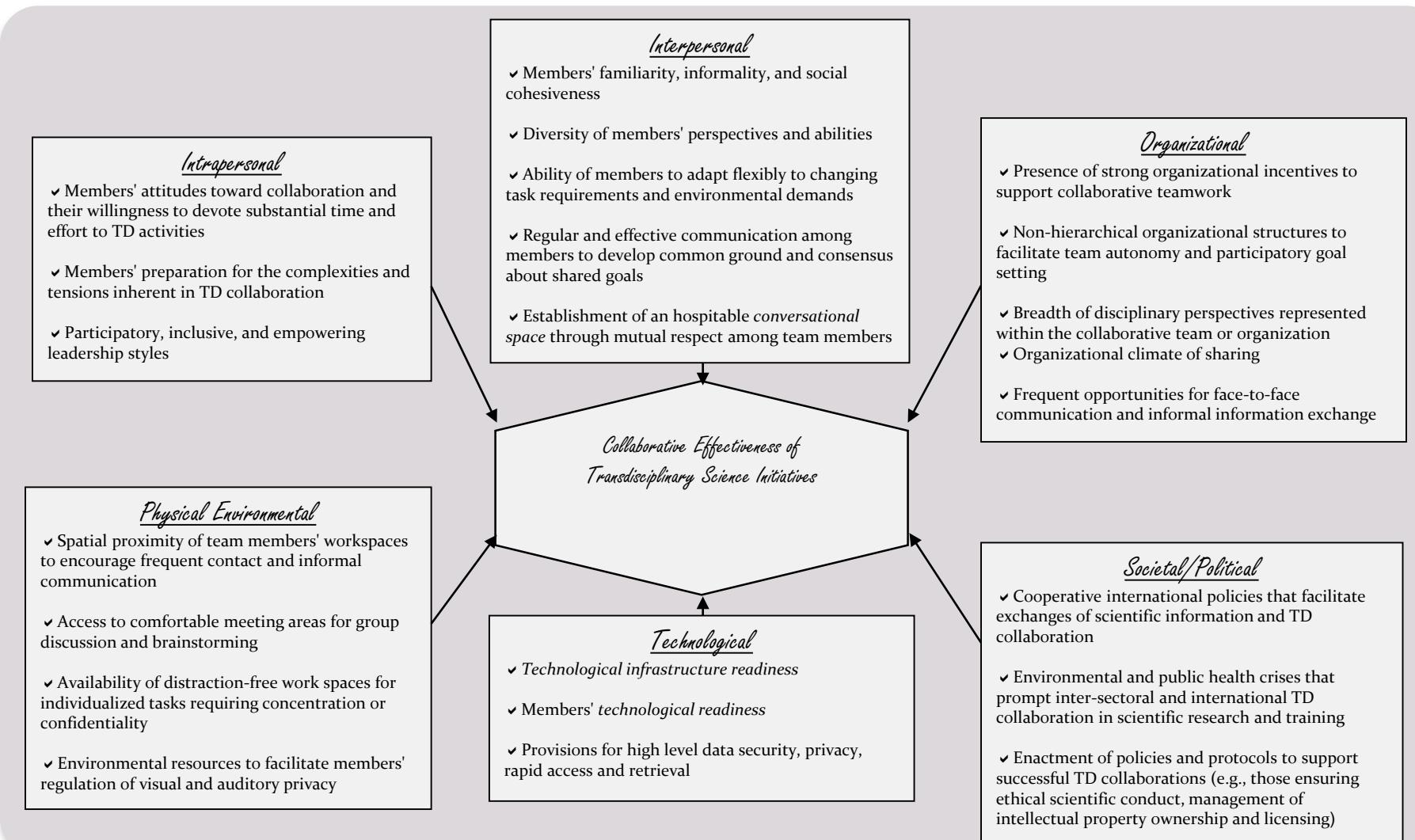
Multidisciplinary

Researchers from *different disciplines* work *sequentially*, each from their own discipline-specific perspective, with a goal of eventually combining results to address a common problem

Within

Interdisciplinary

Researchers from *different disciplines* work *jointly* to address a common problem. Some integration of perspectives occurs, but contributions remain anchored in their own disciplines



Unidisciplinary

Researchers from a *single discipline* work together to address a common problem

Collaboration is Complex

Multi-level Contextual Factors

Findings from the Science of Team Science (SciTS)

EXAMPLES

Boundary Spanning Collaborations

Greater Scientific Impact

- **Countries: International teams** and teams from more locations generally yield higher impact publications
 - with certain countries (e.g., US) and universities (R1) increasing the likelihood of positive impacts
- **Universities:** Publications with authorship teams spanning different universities produced higher impact work than comparable co-located teams or solo scientists
- **Departments:** One study found that although the number of departments had a negative effect on a specific type of innovation impact (patents), prior experience among team members reverses this effect

Generally, collaborations spanning organizational and contextual boundaries enhance the impact of the research.

- **Cross-disciplinary teams:**

- Found to be **more productive** than comparison teams, as indicated by publications
- Produce **more innovative** products than unidisciplinary teams
- Tend to generate publications with **greater scientific impact**
- **Greater cross-fertilization** via publications with broader reach and decreased specialization
- Identify **new previously unexplored areas** at the intersection of fields/domains

CD (particularly TD teams) are found to be more productive, innovative, yield greater scientific impact, and result in broader dissemination of results.

Team Size & Composition

Scientific progress and breakthroughs

- **Team size:** “small teams are more likely to produce articles, patents and software that **disrupt the system** by drawing inspiration from older and less popular ideas, while **larger teams build on, solve and refine important ideas** from the immediate past.”
- **Networks:** Nobel prize winning **breakthroughs** often come from **papers that are not highly cited** and emerge from a **small network** of researchers
- **History of collaboration:** Enhances impact and productivity, yet decreases breakthrough products
- **Newcomers:** A **combination of members** with a history of collaboration and new team members increase the likelihood of publishing in the most prominent journals

Team size and characteristics can influence the type of outcomes produced.

Cultural & Ethnic Diversity

Enhances Outcomes

- Papers published by authors from **different ethnic backgrounds** received **more citations** and were more likely to be published in journals with **higher impact factors**
- In **International collaboration** in European life scientists, cultural diversity among junior scientists has a **curvilinear** relationship on team **productivity** (i.e., # of publications).
- Teams with **moderate levels of diversity among Ph.D. students** were more productive than those with very high, or no diversity (there was no impact of postdoctoral cultural diversity).

Cultural/Ethnic diversity enhances outcomes.

Moderate levels of diversity appear to be better than no diversity or very high levels diversity.

Gender Diversity

Collaborative tendencies

- Women are more likely to **collaborate outside their discipline**.

Collaborative success

- **Gender-Heterogeneous authorship** teams receive **34% more citations** than same-gender
- Scientific **teams with at least one female PI** are more likely to **win grant proposal** or produce more **innovative ideas**.

Rational for collaboration

- Males - # of collaborators = **instrumental** (e.g., reputation, complementary skills /knowledge) and **experience reasons** (e.g., know the collaborator for a long time)
- Both male and female scientists collaborate because of **mentoring reasons** such as helping graduate students

Women collaborate more than men, particularly ID.

Gender diversity leads to better outcomes.

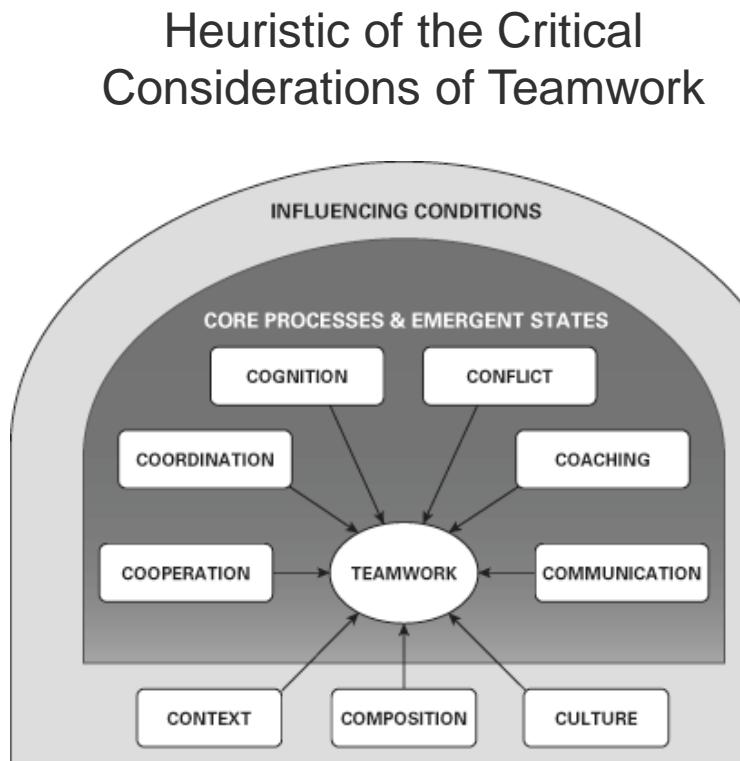
Coordination, Coordination, Coordination

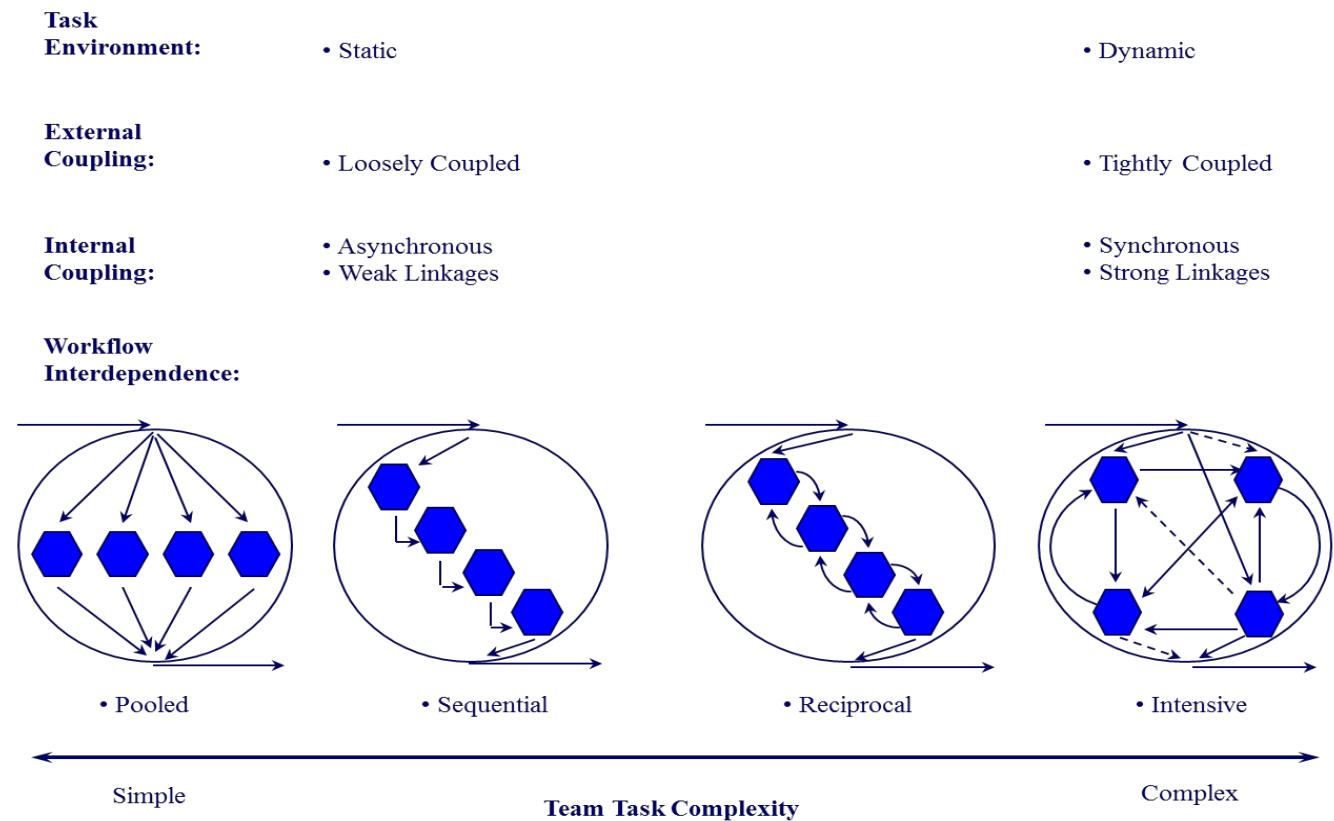
Enhances success

- The projects that used **more coordination mechanisms** had **more successful outcomes**
- Yet, the **greater number of universities** involved in a collaboration **predicted fewer coordination activities and fewer project outcomes**
 - *Dispersed projects that used more coordination mechanisms were more successful* than dispersed projects that used fewer coordination mechanisms
- **Increases in complexity** such as communication, team dynamics, organizational and global bureaucratization occur as the number of team dimensions (e.g., size, disciplines, distribution) increase.
 - *Thereby, complex teams require more resources for coordination and management.*

The use of coordination mechanisms is critical for success.

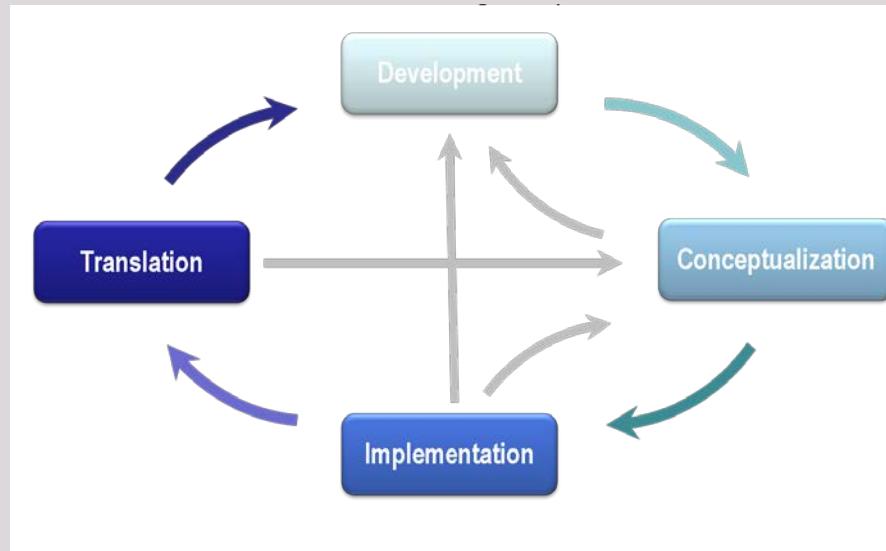
The number of coordination mechanisms should increase as the complexity of the project increases.

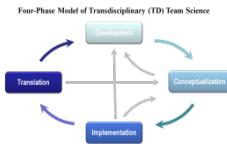

The power of measurement



- Outcomes, outputs, performance (e.g., bibliometrics)
 - Implications for research outcomes (enhanced outcomes for complex teams)
 - Implications for team behavior (we get what we measure, and what remains hidden)
 - Individual vs team measurement
 - Bias – success, relative failure
- Mediators and moderators
 - Influence on variability of findings
- Performance
 - Review, tenure and promotion

Key principles, concepts, typologies


Figure 3. Characteristics of Simple vs. Complex Team Workflows.


From: Bell, B. S., & Kozlowski, S. W. J. (2002). Virtual teams: Implications for leadership. *Group and Organization Management*, 27, 12-49.

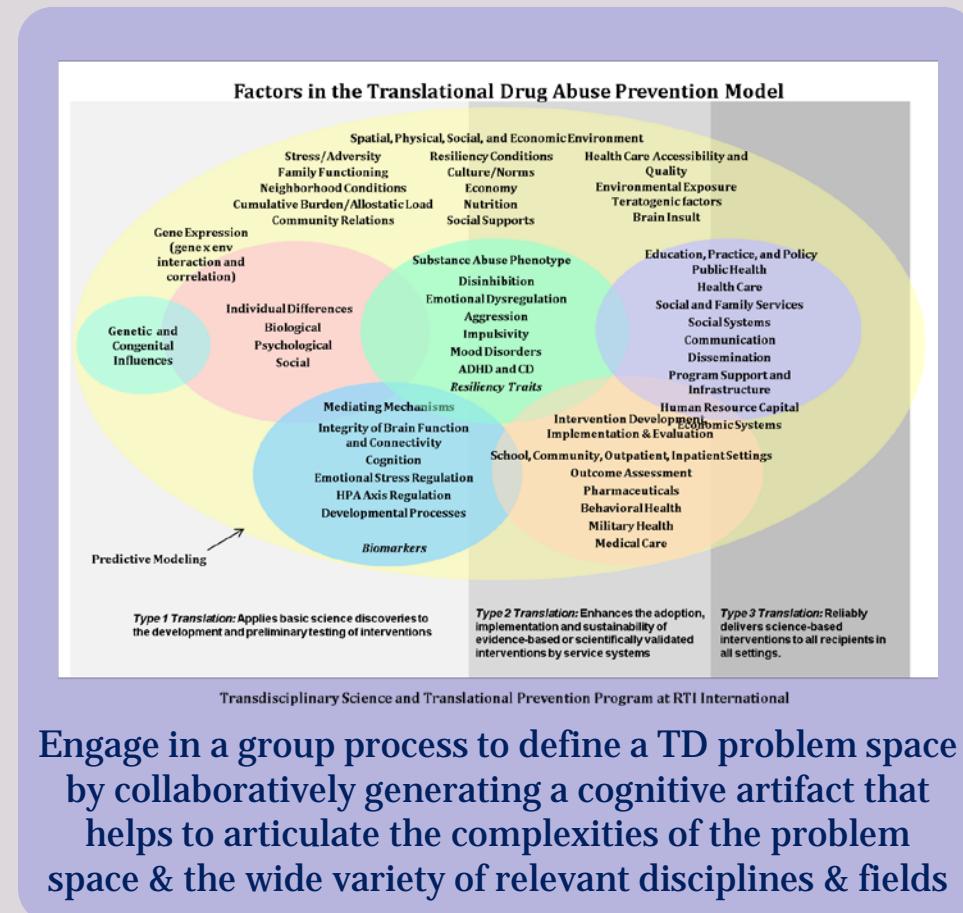
Contextualizing Team Principles

Four Phase Model of Transdisciplinary Research

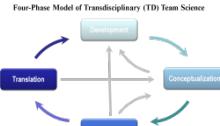
Heuristic for key processes and team types applied to intellectual work of science teams.

Development Phase:

Goals & Key Processes


Goal: Define the scientific or societal **problem space** of interest, including identifying the intricacies & interconnections of concepts that fall within the problem space & establishing the boundaries of the problem space to be addressed

Key Processes: Encourage information sharing & integrative knowledge creation among diverse participants


- Generate shared mission & goals
- Develop critical awareness
- Externalize group cognition
- Developing group environment of
- psychological safety

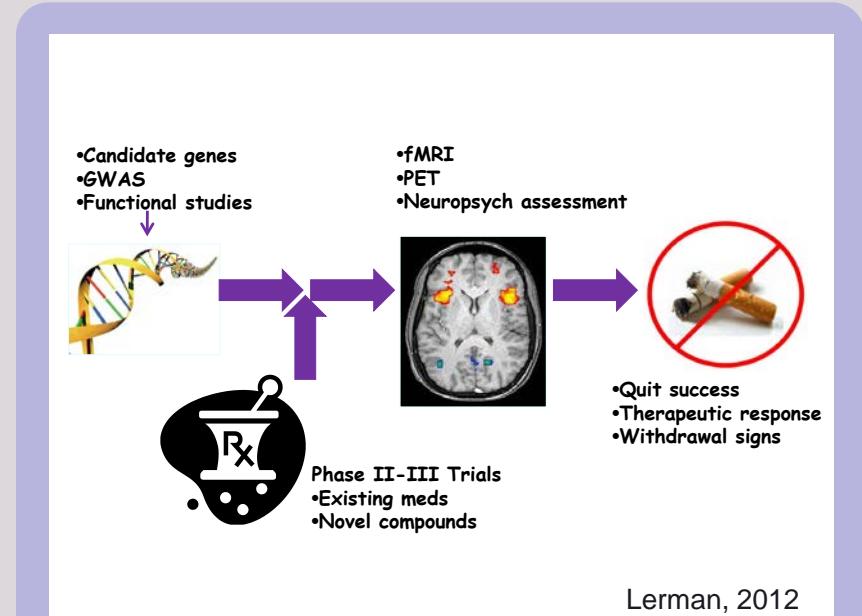
Team Type:

- Network, working group, advisory group, emerging team

Engage in a group process to define a TD problem space by collaboratively generating a cognitive artifact that helps to articulate the complexities of the problem space & the wide variety of relevant disciplines & fields

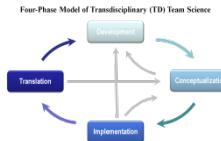
Conceptualization Phase:

Goals & Key Processes


Goal: Develop novel research questions, hypotheses, & a conceptual framework & research design that integrate collaborators' disciplinary perspectives & knowledge domains to address the target problem in innovative ways.

Key Processes: Facilitate integrative knowledge creation among team members & development of a research plan

- Create shared mental models
- Generate shared language
- Develop compilational transactive memory
- Develop team TD ethic


Team Type:

- Emerging team, evolving team

Lerman, 2012

Use public seminars among collaborators to help develop compilational transactive memory, shared language for a TD research collaboration, team TD ethic, & shared mental model of research collaboration

Implementation Phase:

Goals & Key Processes

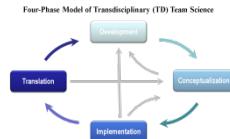
Goal: Launch, conduct, & refine the planned TD research

Key Processes:

Developing a shared understanding (transactive memory)

- **who knows what** (compilational)
- **who does what** (compositional)
- **how things get done** (taskwork)
- **how interactions occur** among the team (teamwork)
- Conflict Management
- Team Learning (e.g., reflection, action, feedback, discussion)

Team Type:


Real team

“Real” vs “Pseudo” team

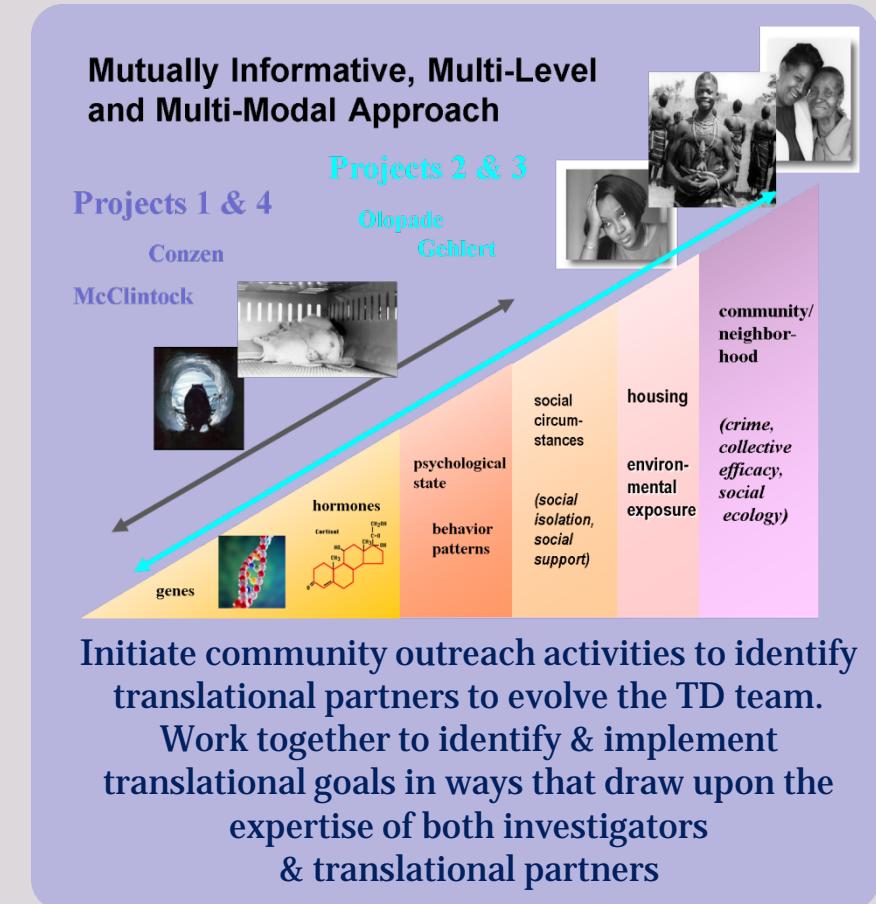
Characteristics that lead to increased performance & innovation:

- **Interdependence**
- **Iterative reflection** (systematic consideration of team performance & participation in related adaptation to team goals & processes)
- Demonstrated clear **understanding of team membership**

Source: West et al, 2011; West & Lyaubikova, 2012

Translation Phase:

Goals & Key Processes

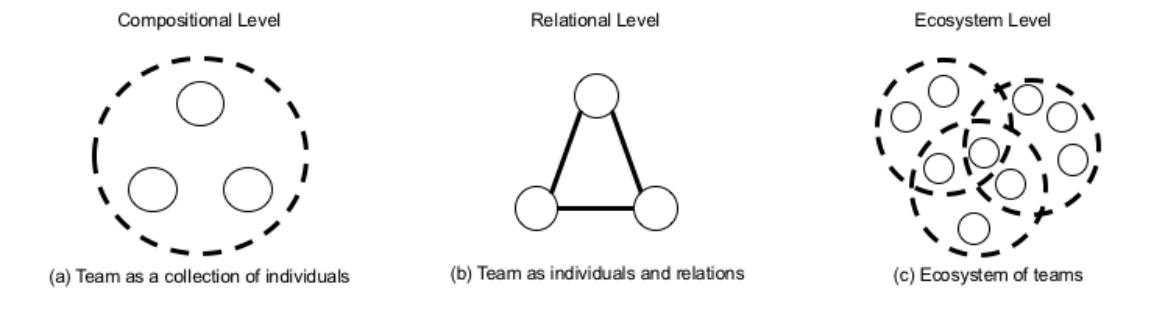

Goal: Apply research findings to **advance progress along the discovery–development–delivery pathway** to ultimately provide innovative solutions to real-world problems

Key Processes:

- The evolution of the team, as needed, to identify & pursue translational goals
- Development of shared goals for the translational endeavor
- Development of shared understandings of how these goals will be pursued

Team Type:

Adapted team, new team


Contextual Considerations for IA: Ted's Case Example: Developing an IC Publication

- What types of “teams” are involved in what part of the process?
- What are the typical sets of actions required to complete IA work?
- What are the patterns of engagement required to develop the key products?
- What key processes are critical to the various types of collaboration?

The President's Daily Brief

Building teams and Fostering Collaboration

- Selection vs acquisition of skills – what is needed when?
- Training vs guidance - upfront and on-going
- Supervisory vs technological augmented
- Individual review vs panel/committee
- Culture of collaboration
- Knowledge hierarchies
- Leadership - all analysts are leaders and need leadership skills (within hierarchical or heterarchical)

Enhancing contextualized understanding

- Robust research on teams over the 50+ years:
 - In the “lab” vs in “the wild”
 - Parsimony vs complexity
 - Production/Action vs Intellectual work

Meta-analysis of team training:

- 1660 student teams
- 762 military teams
- <10 each from medical, aviation, business settings.

Methodological Opportunities

- Emphasis on content
- Natural experiments
- Quasi-experimental designs
- Computational modeling

Leveraging the system

- Adaptive, learning system – individual, team , organization
 - Technology and trace data (collaborative platforms, people analytics)
 - Systems that use technological inputs to give real-time feedback/guidance to individuals and teams
 - Systems that monitor patterns of engagement and collaboration to assess collaborative success
 - Online or accessible training opportunities that augments/supports autonomous learning
 - To help open the black box (leaders and analysts)

Examples Of Training For Competencies By Key Team Science Dimension

Dimension	Skills/Processes	Type of Training
Diversity	Communication and interpersonal interactions	ID educational seminars, interpersonal skills training
Integration	Coordination and communication, shared mental models	Cross-training, knowledge-sharing training, coordination training
Size	Compositional, Taskwork, and Teamwork Transactive Memory	Positional clarification, communication, coordination training
Proximity	Compilational, compositional transactive memory, team cohesion/self-efficacy	Team reflexivity training, positional clarification training
Goal alignment	Shared vision/goals, communication	Visioning/goal-setting exercises, Team reflexivity training, problem/team-based learning
Boundaries	Team-specific knowledge/goals	Cross-training, knowledge-development
Task interdependence	Taskwork transactive memory	Team reflexivity training

Knowledge pluralism and depth

27

- **Societal and global perspectives**
 - belief that complex problems should be approached from a broad, multi-level perspective
- **Understand others disciplines**
 - understand core theories, and methods from other disciplines
- **Methodology**
 - take a methodologically pluralistic approach
- **Disciplinary grounding**
 - cultivate deep knowledge within one or more disciplines

Intrapersonal Competencies

- Demonstrate **broad intellectual curiosity** to ask questions across disciplines
- Maintain an **open mind** in order to clearly hear perspectives of others during explorative interdisciplinary dialogues
- Recognize **personal strengths and weaknesses** as related to interdisciplinary research collaboration
- **Subject own disciplinary discovery to interpretation** and scrutiny by researchers from other disciplines
- Understand **how own expertise can contribute** to addressing a problem and how that differs from the contributions of others in interdisciplinary collaborations

Disciplinary Awareness and Exchange

- Demonstrate **critical awareness** of the underlying assumptions of own discipline, its scope and contribution and limitations in addressing a given research question
- **Evaluate the assumptions and limitations of all disciplines** in interdisciplinary collaborative initiatives
- **Engage colleagues** from other disciplines to gain their perspectives on research problems, themes or topics
- **Share research** from own area of expertise in **language meaningful** to an interdisciplinary team

Processes of Integration

- Collaborate with others to **integrate theories, methods and insights** of multiple disciplines **to improve understanding of problem** or issue
- Develop **interdisciplinary research framework(s)** in collaboration with scholars from other disciplines
- Develop a **shared interdisciplinary vision** with collaborators, communicate it effectively, and revisit it at regular intervals to determine if changes are required
- **Modify own work or research agenda** as a result of interactions with colleagues from fields other than own
- **Integrate concepts** and methods from multiple disciplines **in designing research protocols**

Teamwork, Management, Leadership

- Build **trust** among collaborators in an interdisciplinary team
- Understand strategies for interdisciplinary **teamwork and communication** including clarifying the meanings of key concepts and appreciating the perspectives of other disciplines
- Develop **team skills** in order to strengthen team structure and dynamics
- Build skills for **team facilitation and leadership**
- Understand and effectively **manage conflict, feedback and credit** relative to interdisciplinary team research
- Contribute to the creation of **collective interdisciplinary knowledge** that includes: thinking with team, adapting individual contributions, trusting value of other contributors, and negotiating differences

Competencies of Fruition

- **Contribute to a variety of educational initiatives** with scholars from other disciplines, e.g. seminars, conferences, scholarly presentations, and research symposia
- **Present interdisciplinary research** at venues representing more than one discipline
- **Disseminate interdisciplinary research results** to various audiences in multiple disciplines
- **Draft research proposals and author publications** in partnership with scholars from other disciplines

For More Information

- **Kara L. Hall, PhD**
 - hallka@mail.nih.gov
- **Team Science Toolkit**
 - www.teamsciencetoolkit.cancer.gov
- **SciTSlist listserv hosted by NIH. Subscribe in one click:**
 - www.teamsciencetoolkit.cancer.gov/Public/RegisterListserv.aspx