

English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives

Sponsor: National Science Foundation
#ELSTEM

Scope

- ELs pre-K-12th grades
 - Promising approaches to support ELs in learning STEM
 - Role of families & communities
 - Teachers preparation & development
 - Assessments in STEM
 - Policies and practices for capacity building
- Recommendations & gaps in current research base

Definition and Distribution of ELs

(Data from Fall 2015)

Percentage of public school students who were ELs by state
9.4% of student population is ELs (4.6 million students)

- 3-21 years old enrolled in elementary/secondary school
- Native language not English
- Proficiency may limit or deny ability to achieve in English-only classrooms

SOURCE: U.S. Department of Education, National Center for Education Statistics, Common Core of Data (CCD) See *Digest of Education Statistics 2017*, [table 204.20](#).

Issues of Access

ELs lack access to STEM learning opportunities

- Limited opportunity to engage with challenging, grade-appropriate science & mathematics content & disciplinary practices.
- Exclusion from rigorous science or mathematics courses, placement in remedial courses, & poor advising regarding course selection.
- Little info about ELs in technology & engineering-based instruction.

High School Course Completion: Mathematics and Science

Highest Mathematics Course Completion

	Bilingual EL Student (N=550)	Bilingual Not in ESL (N=3000)	Native English Speaker (N=16,900)
No Math	4.8%	2.8%	2.4%
Basic Math	1.1%	0.5%	0.5%
Pre-Algebra	1.1%	0.3%	0.3%
Algebra	9.7%	5.2%	4.7%
Geometry	14.5%	9.5%	8.3%
Algebra II	23.6%	17.6%	20.8%
Trigonometry	16.3%	21.6%	24.7%
Beyond Trigonometry	21.2%	19.9%	22.6%
Calculus	2.8%	4.6%	5.6%
Advanced Calculus	4.9%	18.0%	10.1%

- ≈5% ELs have no math compared to 2.4% of native speaking peers
- ≈5% enrolled in advanced courses
→ less than half of other peers

Science Course Completion

	Bilingual EL Student (N=550)	Bilingual Not in ESL (N=3000)	Native English Speaker (N=16,900)
No Science	0.2%	0.0%	0.0%
Integrated Sciences	32.7%	26.6%	23.7%
Earth Science	63.2%	57.0%	63.8%
Biology	89.6%	93.3%	93.9%
Chemistry	52.0%	72.4%	70.4%
Physics	26.8%	44.5%	36.5%
Any AP, IB, or Honors	11.8%	29.3%	20.1%

- Science does not have same linear progression as mathematics
- ELs less likely to take science courses overall

Data from HSLS:2009 High School Transcript Study

Classification and Reclassification

- Classification & reclassification of ELs complex
 - Varies across states & even across districts within states
 - No common definition of ELs & agreement on proficiency standards
 - Proficiency in content achievement as criterion for language proficiency is problematic
- Reclassification challenging
 - Too-early: continued support for success needed & w/out may see attrition in long run
 - Too-late: limited access to STEM learning
 - Common practice: exclude recently designated English-proficient ELs from EL accountability group

EL Designation is Important

- Clear & consistent designations are needed
 - Reduce misperceptions of ELs' proficiency in STEM academic achievement
 - Enable deeper understanding of
 - academic achievement
 - what program models & instructional strategies work best
 - specific approaches work best for EL subgroups under specific conditions

Impact of Educational Policies

- Policies at *ALL* levels facilitate or constrain STEM teaching/learning opportunities
 - Funding
 - Accountability
 - Assessment
 - District organization
 - Program models
 - Curriculum
 - Staffing

Who's responsible for ensuring access and equity for ELs in STEM?

Recommendation 1: Evaluate current policies, approaches, and resources

Federal Agencies

- Evaluate research & development funding allocation
- Enhance efforts that foster pipeline & training programs to increase # of qualified teachers

States / Districts

- Evaluate EL definition
- Include proper specification of entrance/exit procedures
- Examine policies & procedures for implementing state criteria

States

- Evaluate policies associated with:
 - Timing of large-scale state assessments & waivers
 - Frameworks for teacher certification
 - Distribution of financial & human resources

District Leaders & School Personnel

- Examine program models & EL placement in STEM courses
- Preparation of teachers
- Opportunities for teacher collaboration & professional development
- Distribution of financial & human resources

Schools

- Evaluate ELs' success in STEM classes
- Quality of STEM classroom instruction
- Qualifications of teachers hired
- Professional development opportunities
- Resources allocated to STEM learning

Recommendation 1: Federal Agencies

- Evaluate research & development funding allocation
- Enhance efforts that foster pipeline & training programs to increase # of qualified teachers

Recommendation 1: States/Districts

- Evaluate EL definition
- Include proper specification of entrance & exit procedures
- Examine policies & procedures for implementing state criteria

Recommendation 1: States

Evaluate policies associated with:

- Timing of large-scale state assessments & waivers
- Frameworks for teacher certification
- Distribution of financial & human resources

Recommendation 1: District Leaders & School Personnel

- Examine program models & EL placement in STEM courses
- Preparation of teachers
- Opportunities for teacher collaboration & professional development
- Distribution of financial & human resources

Recommendation 1: Schools

- Evaluate ELs' success in STEM classes
- Quality of STEM classroom instruction
- Qualifications of teachers hired
- Professional development opportunities
- Resources allocated to STEM learning

Recommendation 2: Develop high-quality framework to identify and remove barriers

State Capacity Example

Policy Strategies

Blueprint for English Language Learner Success

DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK
of Bilingual Education and World Languages

State Capacity: California

Actions Taken by Districts Transforming STEM Learning for ELs

- Examine ELs' access to and performance in STEM
- Frame efforts around an ambitious vision for ELs and guiding principles for quality instruction
- Share responsibility across their systems
- Design/implement structures that afford multiple and diverse opportunities to integrate language & content
- Consider appropriate PD for teachers
- Build partnerships
- Think flexibility about fiscal & human resources
- Communicate progress & results

Capacity Building: District/School Level

Organizational Culture

- Local norms, routines, & practices that shape district/school culture
- Expectations for educator professionalism, collaboration, & reflection
- Components
 - District and School Leadership
 - Data-informed Decision Making
 - Culture of Collaboration
 - Community and Family Engagement

Educator Capability

- Educators' beliefs & expertise influence ability to implement curriculum, strategies, & other practices
- Components
 - Instructional Vision
 - Instructional Frameworks
 - Programs and Staffing
 - Professional Learning

Policy & Management

- Appropriate funding, resources, scheduling, staffing, & allocation of responsibility
- Components
 - Fiscal Resources
 - Human Resources
 - Extended Supports
 - Monitoring and Guidance

District Systemic Improvement Plan Development Approach

District Systemic Improvement Plan

Development Approach

District Systemic Improvement Plan Development Approach

- Vision for EL Success in STEM
- Language Development Approach
- Instructional Program Models
- Core Educator Competencies
- Professional Learning Plan for All Educators

Drivers

Theory Of Action

- If...
- Then...

- Strategic Objectives
- High-Leverage Strategies

Implementation Plan

Milestones/Outcomes

- Implementation Targets
- Indicators

District Systemic Improvement Plan Development Process

Actions Taken by Districts Transforming STEM Learning for ELs

- Examine ELs' access to and performance in STEM
- Frame efforts around an ambitious vision for ELs and guiding principles for quality instruction
- Share responsibility across their systems
- Design/implement structures that afford multiple and diverse opportunities to integrate language & content
- Consider appropriate PD for teachers
- Build partnerships
- Think flexibility about fiscal & human resources
- Communicate progress & results

School Capacity Example: Manhattan Bridges

Seven Design Elements

School Capacity Example: Unified Language Development Approach

Policy:

- Integrate language development and STEM
- Spanish and English development throughout STEM curriculum

Practice:

- Regular collaboration between ESL and STEM teachers
- STEM is the driver with strong linguistic supports
- Language-rich environments throughout the school
- Students draw from assets in the two languages in making sense of what they are learning or to express their thoughts

School Capacity Example: Family & Community Partnerships

To offer students experiences aligned to their STEM focus, Manhattan Bridges works with partners to:

- Bolster the academic and extracurricular opportunities they offer to students
- Offer college-level courses, so that students often graduate with college credits
- Provide mentoring or internship opportunities (Cornell University's Hydroponics Program and Internships, paid internships for students)
- Provide intensive college counseling and guidance including college visits, application support, and mentorships

School Capacity Example: Mission-Driven Leadership

Leaders develop an infrastructure based on shared values:

- Ambitious vision and mission that guides ALL decisions
- Strong sense of pride in & respect towards ALL cultures & cultural ways of knowing in STEM
- School community:
 - Holds mindset of Continuous Improvement
 - Shares responsibility for students' success in STEM
 - Is highly attuned to students' needs & capacities in STEM

Recommendation 2: Develop high-quality framework to identify and remove barriers

Questions?

UPCOMING ACTIVITIES

- Webinar Series
 - Feb 22: Large-scale & Classroom Assessment
- Release Events
 - DC: February 12, 2019

FIND OUT MORE

www.nas.edu/ELinSTEM

#ELSTEM