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Outline

•Review: how capture-recapture estimates are made from multiple incomplete 
lists of victims

•Heterogeneity: when the probability of capture varies on an individual level

•Problem: poor performance of capture-recapture estimates even when the 
total population size is idenifiable

•Cause: high risk/variance

•Proposed solution: estimation of the “observable” population size

•Some conclusions



Capture-recapture follows 
record linkage

List 1

ID Name Loc Date EntID

50 Anna 
Lopez A 11/21 3

51 Jane Wang B 12/15 2

52 John 
Smith A 11/25 4

53 John 
Smith A 11/25 1

54 Emma 
Green A 12/1 6

List 2

ID Name Loc Date EntID

1 John 
Smith A 11/25 1

2 Jane 
Wang B 12/15 2

3 Anna 
Lopez A 11/12 3

4 John 
Smith A 11/25 4

5 Alex 
Brown B 12/1 5

EntID List1 List 2 …

1 1 1 …

2 1 1

3 1 1

4 1 1

5 1 0

6 0 1

Output of Record-Linkage
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Capture-Recapture
Goal

Estimate the number of individuals with capture history 

xi = (0,0,0,…,0)

i.e. the number not observed (or “captured”) on any list, or 
equivalently, the total population size

K



Sufficient statistics
In general we will have sufficient statistics 

In the cases I consider here, they are

ns, s = 1,…, T

ns ≡
n

∑
i=1

1{i appears on s lists}



Simple Estimator
Simplest case: suppose that 

Xis ⊥⊥ Xit, s ≠ t,
ℙ[Xit = 1] = q ∀ i, t



Simple Estimator
Simplest case: suppose that 

Then the conditional likelihood of the observed data is

L(n1, …, nT ∣ n, p) =
n!

∏s ns!

T

∏
s=1

νs

1 − ν0

νs = (T
s )qs(1 − q)T−s

Xis ⊥⊥ Xit, s ≠ t,
ℙ[Xit = 1] = q ∀ i, t



Simple Estimator
Procedure for estimating K:

1. Estimate ̂q by maximum likelihood on the observed data
2. Make the Horvitz-Thompson estimate of K 

K̂ =
n

1 − (1 − ̂q)T
=

n
̂p

Most capture-recapture estimators are closely related to this 
procedure (e.g. log-linear modeling)

Estimated probability 
of appearing on at 

least one list



Assumptions
This relies on three basic assumptions:

1. No net in/out migration (closed population)

2. No individual-level variability in the probability of being captured (homogeneous 

capturability) 
3. All lists have the same probability of capture



Assumptions
This relies on three basic assumptions:

1. No net in/out migration (closed population)

2. No individual-level variability in the probability of being captured (homogeneous 

capturability) 
3. All lists have the same probability of capture



Assumptions
This relies on three basic assumptions:

1. No net in/out migration (closed population)

2. No individual-level variability in the probability of being captured (homogeneous 

capturability) 
3. All lists have the same probability of capture

• Typically dealt with by stratification over time and space

• This can result in strata with few observations, requires subject area expertise or 

statistical testing to define strata

• Alternative: model the heterogeneity

Strategies to address violations of this assumption

Aside: ongoing project on selective inference adaptive 
stratification using tests of heterogeneity. Ask me if interested!



Capture Heterogeneity
Capture heterogeneity is often studied in the context of a simple 
model called       Mh

pr[Xit = 1] = qi, qi ∼ H



Capture Heterogeneity
Capture heterogeneity is often studied in the context of a simple 
model called       Mh

pr[Xit = 1] = qi, qi ∼ H

The conditional likelihood is the same, except that now

νs = (T
s )∫

1

0
qs(1 − q)T−sH(dq)

and the corresponding estimate of the total population size is

K̂ =
n

𝔼 ̂F(P)
where Pi ∼ F is the probability that unit i is observed 

on at least one list



Capture Heterogeneity: 
What We Know

Bottom line: one typically needs to restrict H to be in some family of 
distributions (cannot nonparametrically estimate H)*
*Two known identifiable families: the Beta family and discrete mixtures (with the “correct” number of 
components)

f(p)

log(p)

Basic problem: in the presence of capture heterogeneity, K is not 
identifiable without further restrictions*



Fitting a Simple Model
Trying to fit identifiable families to data, we realized that confidence/
credible intervals were still enormous even though K was fully identifiable

Model Mh-Beta fit to snowshoe hare data 
(n=77, T=6)

K



Fitting a Simple Model

Model Mh-Beta fit to data simulated from Mh-Beta model 
K=500, T=6

K

Trying to fit identifiable families to data, we realized that confidence/
credible intervals were still enormous even though K was fully identifiable



A Simple Idea
Basic idea: huge variance is possibly caused by the fitted distribution placing mass 
near zero 

Intuition: when the population consists mostly of individuals who are nearly 
invisible to the sampling design, our uncertainty about K explodes

 
Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes

K̂ =
n

𝔼 ̂F(P) where Pi ∼ F is the probability that unit i is observed 
on at least one list
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Note: the results assume that we observe the capture probabilities; 
therefore they are optimistic about how difficult the problem is



A Simple Idea
Basic idea: huge variance is possibly caused by the fitted distribution placing mass 
near zero 

Intuition: when the population consists mostly of individuals who are nearly 
invisible to the sampling design, our uncertainty about K explodes

 
Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes

K̂ =
n

𝔼 ̂F(P) where Pi ∼ F is the probability that unit i is observed 
on at least one list

Even if we knew
𝔼 { n

𝔼F(P) } =
K𝔼F(P)
𝔼F(P)

= K

var { n
𝔼F(P) } = K

1 − 𝔼F(P)
𝔼F(P)

∝ K
1

𝔼F(P)
.

F



Possible Solution: Changing 
the Inferential Objective

Possible solution: Estimate the population that is minimally visible to 
our sampling mechanism

We call this

Kα =
N

∑
i=1

1{Pi > α}



Possible Solution: Changing 
the Inferential Objective

Possible solution: Estimate the population that is minimally visible to 
our sampling mechanism

We call this

Kα =
N

∑
i=1

1{Pi > α}

Why it might work:

K̂α =
nα

𝔼 ̂F(P ∣ P > α)
=

nα

𝔼 ̂Fα
(P)

, where nα =
N

∑
i=1

max
t

Xit1{Pi > α}

and 𝔼 ̂Fα
(P) > α so the variance cannot get too 

big (at least when F is known)



Empirically, It Works
Model Mh-Beta fit to data simulated from Mh-Beta model 

K=500, T=6

Kα

Posterior samples of      Kα
α = 0.01 Kα = 450



Theoretical Risk Bounds
The same thing happens when we estimate F 
For example, if F is a Beta(1,b) distribution and we estimate b by maximum 
likelihood, the asymptotic risk goes to infinity at a linear rate in b: 

Risk(K̂) =
b2(1 + b)

b2 + (b + 1)2
K + Kb

∝ Kb
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Theoretical Risk Bounds
On the other hand, the risk for        remains bounded

If F is a Beta(1,b) distribution and we estimate b by maximum likelihood, the 
asymptotic risk for       is bounded as a function of b

Risk(K̂α) ≤
b2(1 + b)

b2 + (b + 1)2

K(1 − α)b+2

(1 + bα)3

+
K(1 − α)b

(1 + αb) {b + 1 − (1 − α)b(bα + 1)}
∝ K(1 − α)b

Kα

Kα



Back to the Hares
Beta mixing distribution

K α

Estimates of      are much more plausible, even as estimates of K.Kα



Takeaways

•caveat that estimates only pertained to people with non-zero probability of 
capture replaced with minimal visibility

•Give estimates with practically useful intervals.

•        is also useful as a biased estimator of K.

•Two possible scenarios: (1) it’s not actually that biased or (2) a huge 
proportion of the population is invisible to the sampling design and we 
couldn’t have estimated them anyway. 


•Practical: try many mixing distributions

•New/ongoing project: selective inference for adaptive stratification based on 
tests for heterogeneity

K̂α



Collaborators



Thanks! 
Questions?

Johndrow, J. E., K. Lum, and D. Manrique-Vallier. “Low risk population size estimates in the presence of capture 
heterogeneity." Biometrika (forthcoming)

See: 


