

Heterogeneity in capture-recapture

James Johndrow

Stanford University

NASEM workshop on human trafficking prevalence estimation
April 8, 2019

Outline

- Review: how capture-recapture estimates are made from multiple incomplete lists of victims
- Heterogeneity: when the probability of capture varies on an individual level
- Problem: poor performance of capture-recapture estimates even when the total population size is identifiable
- Cause: high risk/variance
- Proposed solution: estimation of the “observable” population size
- Some conclusions

Capture-recapture follows record linkage

List 1

ID	Name	Loc	Date	EntID
1	John Smith	A	11/25	1
2	Jane Wang	B	12/15	2
3	Anna Lopez	A	11/12	3
4	John Smith	A	11/25	4
5	Alex Brown	B	12/1	5

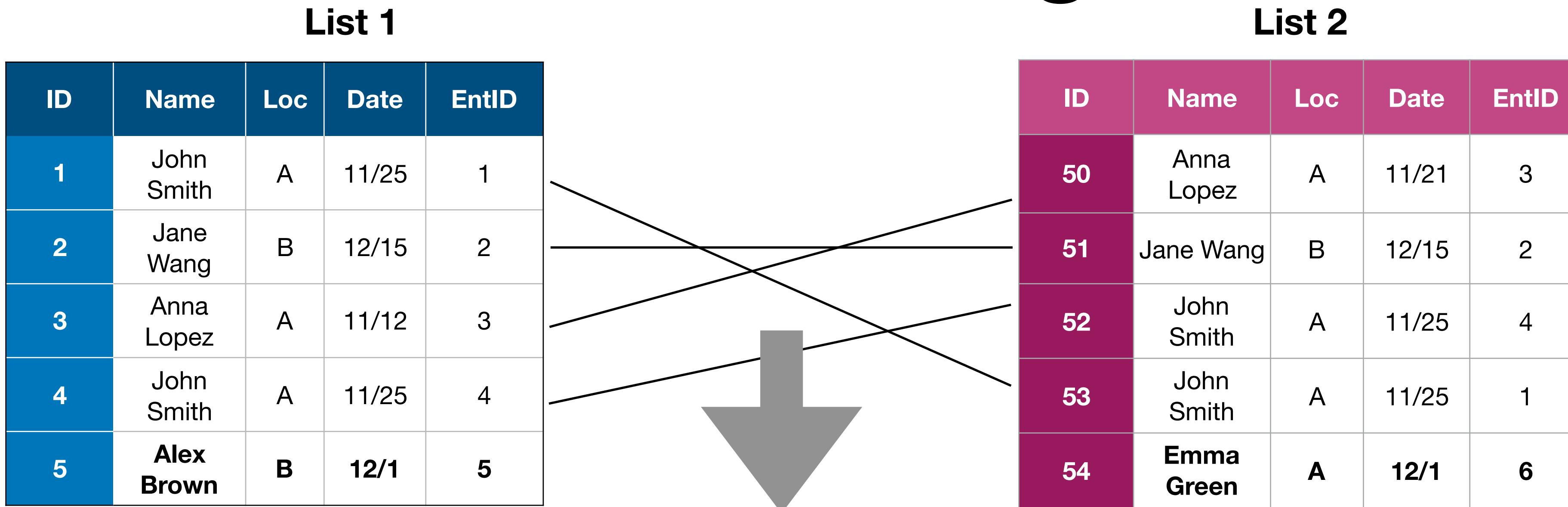
List 2

ID	Name	Loc	Date	EntID
50	Anna Lopez	A	11/21	3
51	Jane Wang	B	12/15	2
52	John Smith	A	11/25	4
53	John Smith	A	11/25	1
54	Emma Green	A	12/1	6

Output of Record-Linkage

EntID	List1	List 2	...
1	1	1	...
2	1	1	
3	1	1	
4	1	1	
5	1	0	
6	0	1	

Capture-recapture follows record linkage



Output of Record-Linkage

EntID	List1	List 2	...
1	1	1	...
2	1	1	
3	1	1	
4	1	1	
5	1	0	
6	0	1	

“capture histories”

$$x_i \in \{0,1\}^T$$

$$x_{it} = \begin{cases} 1 & \text{entity } i \text{ appears on list } t \\ 0 & \text{else} \end{cases}$$

Capture-recapture follows record linkage

List 1

ID	Name	Loc	Date	EntID
1	John Smith	A	11/25	1
2	Jane Wang	B	12/15	2
3	Anna Lopez	A	11/12	3
4	John Smith	A	11/25	4
5	Alex Brown	B	12/1	5

List 2

ID	Name	Loc	Date	EntID
50	Anna Lopez	A	11/21	3
51	Jane Wang	B	12/15	2
52	John Smith	A	11/25	4
53	John Smith	A	11/25	1
54	Emma Green	A	12/1	6

“capture histories”

$$x_i \in \{0,1\}^T$$

$$x_{it} = \begin{cases} 1 & \text{entity } i \text{ appears on list } t \\ 0 & \text{else} \end{cases}$$

Capture-Recapture

Goal

Estimate the number of individuals with capture history

$$x_i = (0,0,0,\dots,0)$$

i.e. the number not observed (or “captured”) on any list, or equivalently, the total population size

$$K$$

Sufficient statistics

In general we will have **sufficient statistics**

In the cases I consider here, they are

$$n_s, \quad s = 1, \dots, T$$

$$n_s \equiv \sum_{i=1}^n \mathbf{1}\{i \text{ appears on } s \text{ lists}\}$$

Simple Estimator

Simplest case: suppose that

$$X_{is} \perp\!\!\!\perp X_{it}, \quad s \neq t,$$

$$\mathbb{P}[X_{it} = 1] = q \quad \forall i, t$$

Simple Estimator

Simplest case: suppose that

$$X_{is} \perp\!\!\!\perp X_{it}, \quad s \neq t,$$

$$\mathbb{P}[X_{it} = 1] = q \quad \forall i, t$$

Then the **conditional likelihood** of the observed data is

$$L(n_1, \dots, n_T \mid n, p) = \frac{n!}{\prod_s n_s!} \prod_{s=1}^T \frac{\nu_s}{1 - \nu_0}$$

$$\nu_s = \binom{T}{s} q^s (1 - q)^{T-s}$$

Simple Estimator

Procedure for estimating K:

1. Estimate \hat{q} by maximum likelihood on the observed data
2. Make the **Horvitz-Thompson** estimate of K

$$\hat{K} = \frac{n}{1 - (1 - \hat{q})^T} = \frac{n}{\hat{p}}$$

Estimated probability
of appearing on at
least one list

Most capture-recapture estimators are closely related to this procedure (e.g. log-linear modeling)

Assumptions

This relies on three basic assumptions:

1. No net in/out migration (**closed population**)
2. No individual-level variability in the probability of being captured (**homogeneous capturability**)
3. All lists have the same probability of capture

Assumptions

This relies on three basic assumptions:

1. No net in/out migration (**closed population**)
2. No individual-level variability in the probability of being captured (**homogeneous capturability**)
3. All lists have the same probability of capture

Assumptions

This relies on three basic assumptions:

1. No net in/out migration (**closed population**)
2. No individual-level variability in the probability of being captured (**homogeneous capturability**)
3. All lists have the same probability of capture

Strategies to address violations of this assumption

- Typically dealt with by **stratification** over time and space
- This can result in strata with few observations, requires subject area expertise or statistical testing to define strata
- Alternative: **model** the heterogeneity

Aside: ongoing project on selective inference adaptive stratification using tests of heterogeneity. Ask me if interested!

Capture Heterogeneity

Capture heterogeneity is often studied in the context of a simple model called M_h

$$\text{pr}[X_{it} = 1] = q_i, \quad q_i \sim H$$

Capture Heterogeneity

Capture heterogeneity is often studied in the context of a simple model called M_h

$$\text{pr}[X_{it} = 1] = q_i, \quad q_i \sim H$$

The conditional likelihood is the same, except that now

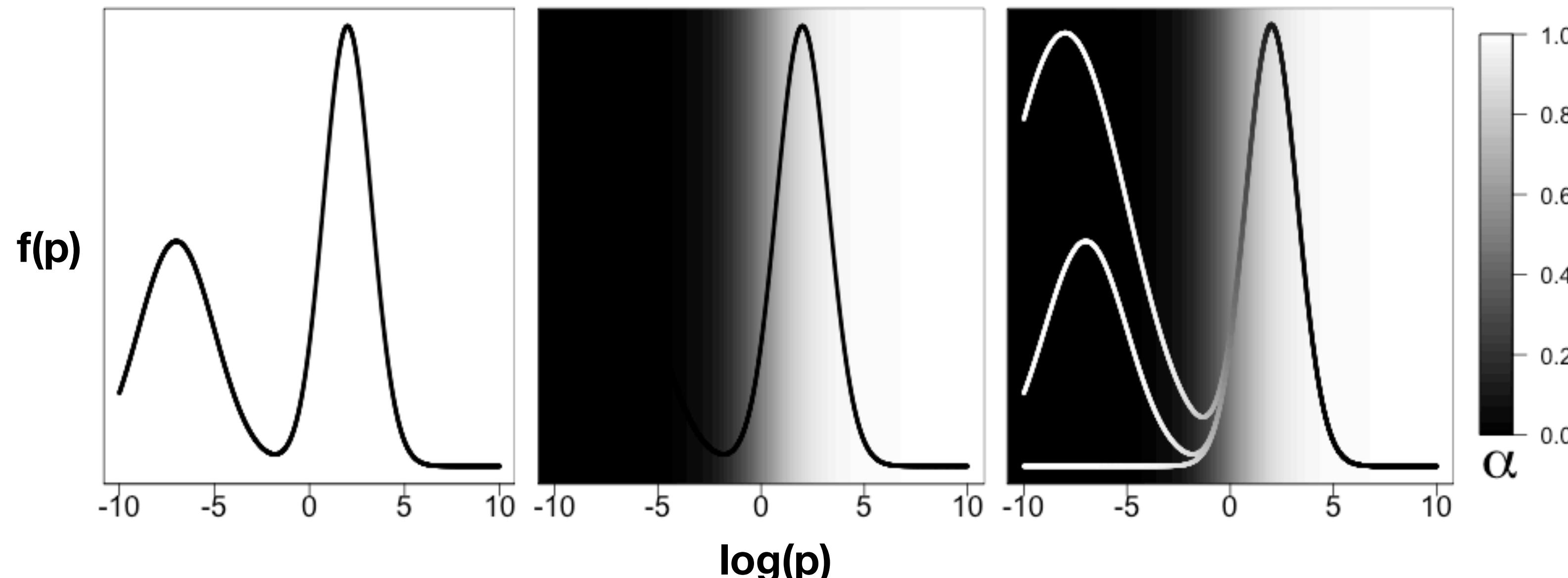
$$\nu_s = \binom{T}{s} \int_0^1 q^s (1 - q)^{T-s} H(dq)$$

and the corresponding estimate of the total population size is

$$\hat{K} = \frac{n}{\mathbb{E}_{\hat{F}}(P)} \text{ where } P_i \sim F \quad \text{is the probability that unit } i \text{ is observed on at least one list}$$

Capture Heterogeneity: What We Know

Basic problem: in the presence of capture heterogeneity, K is **not identifiable** without further restrictions*

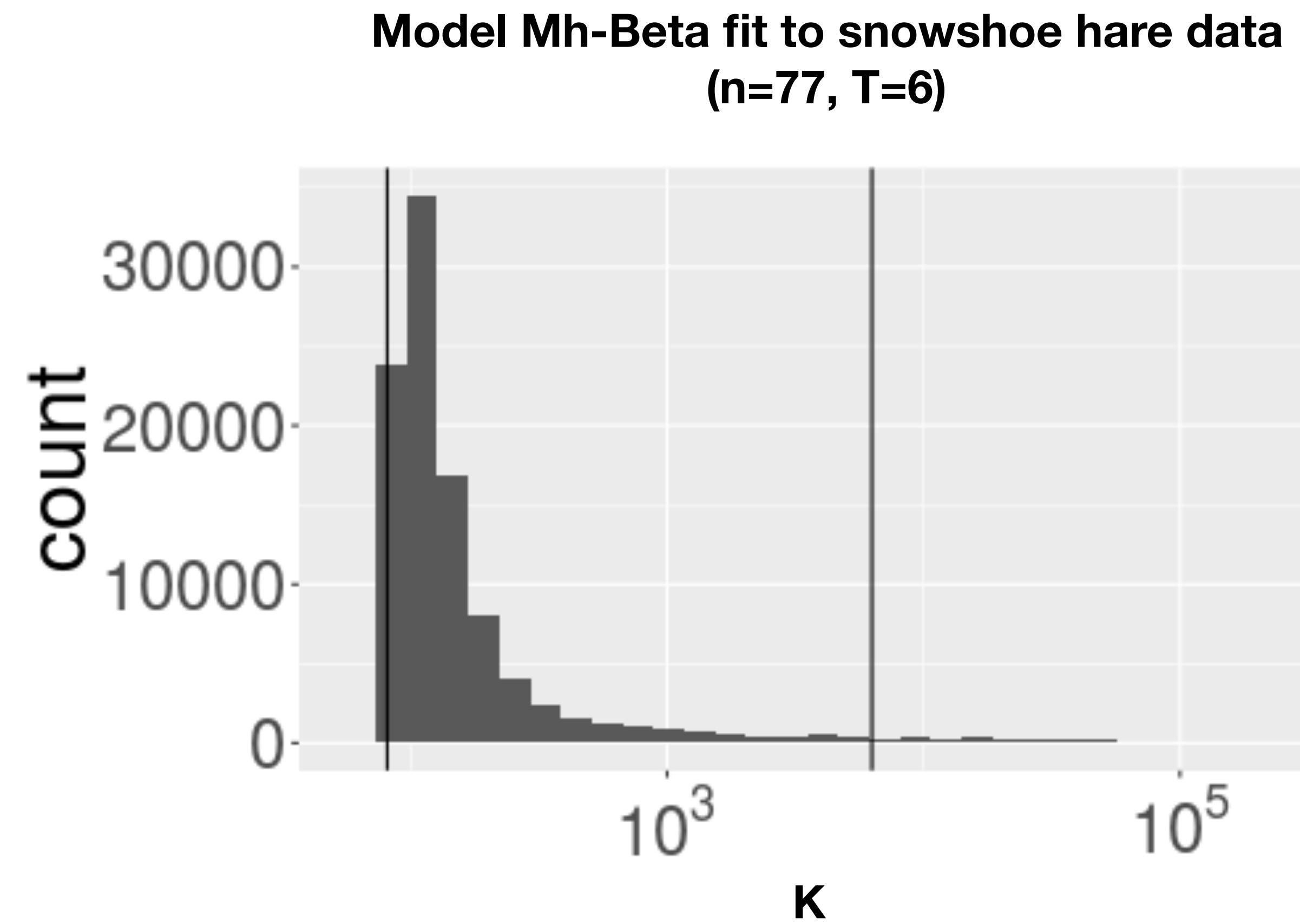


Bottom line: one typically needs to restrict H to be in some family of distributions (cannot nonparametrically estimate H)*

*Two known identifiable families: the Beta family and discrete mixtures (with the “correct” number of components)

Fitting a Simple Model

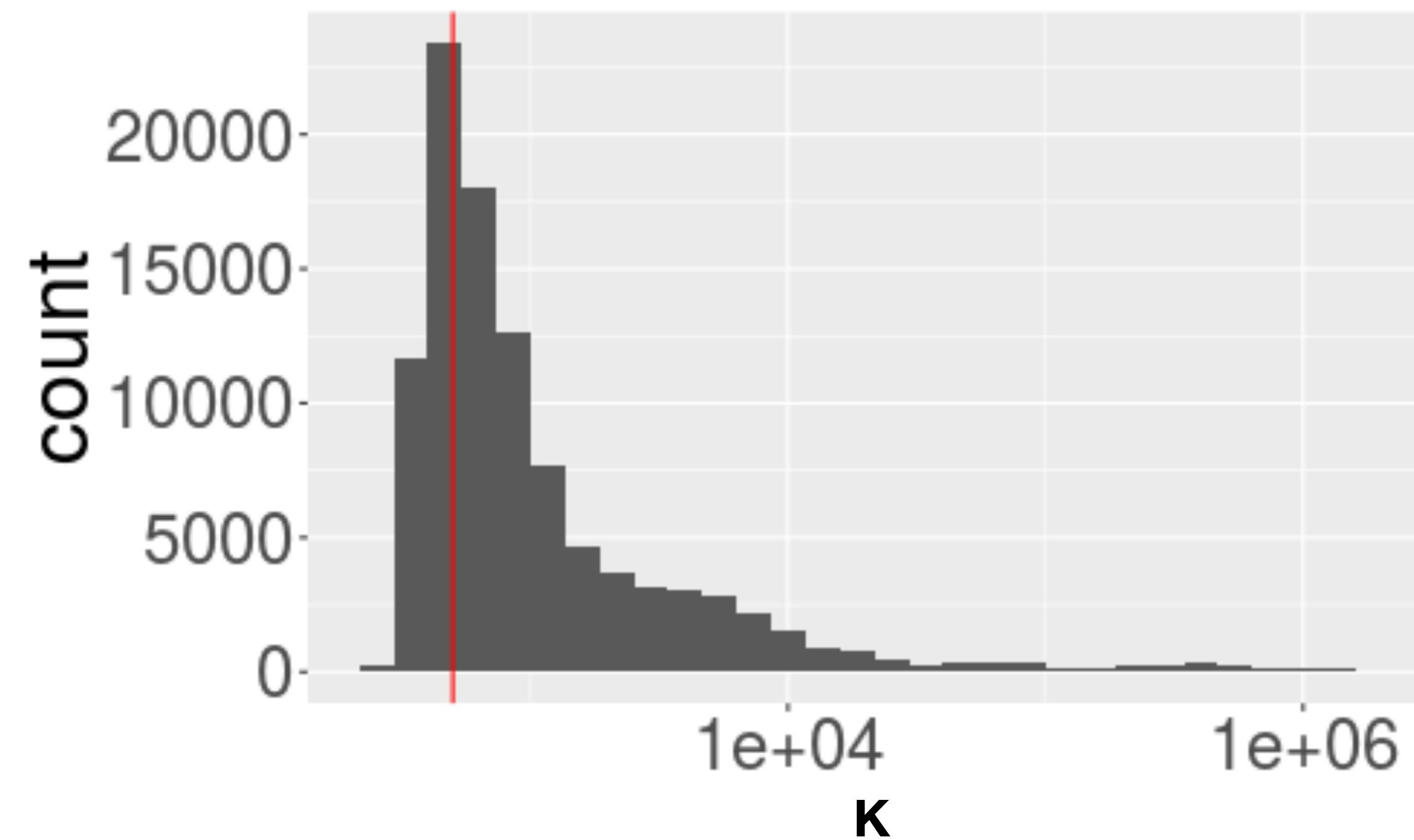
Trying to fit identifiable families to data, we realized that confidence/credible intervals were still enormous even though K was fully identifiable



Fitting a Simple Model

Trying to fit identifiable families to data, we realized that confidence/credible intervals were still enormous even though K was fully identifiable

Model Mh-Beta fit to data simulated from Mh-Beta model
 $K=500, T=6$



A Simple Idea

Basic idea: huge variance is possibly caused by the fitted distribution placing mass near zero

Intuition: when the population consists mostly of individuals who are **nearly invisible** to the sampling design, our uncertainty about K explodes

Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes

$$\hat{K} = \frac{n}{\mathbb{E}_{\hat{F}}(P)} \quad \text{where} \quad P_i \sim F \quad \text{is the probability that unit } i \text{ is observed on at least one list}$$

A Simple Idea

Basic idea: huge variance is possibly caused by the fitted distribution placing mass near zero

Intuition: when the population consists mostly of individuals who are **nearly invisible** to the sampling design, our uncertainty about K explodes

Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes

$$\hat{K} = \frac{n}{\mathbb{E}_{\hat{F}}(P)} \quad \text{where} \quad P_i \sim F \quad \text{is the probability that unit } i \text{ is observed on at least one list}$$

Note: the results assume that we **observe** the capture probabilities; therefore they are **optimistic** about how difficult the problem is

A Simple Idea

Basic idea: huge variance is possibly caused by the fitted distribution placing mass near zero

Intuition: when the population consists mostly of individuals who are **nearly invisible** to the sampling design, our uncertainty about K explodes

Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes

$$\hat{K} = \frac{n}{\mathbb{E}_{\hat{F}}(P)} \quad \text{where} \quad P_i \sim F \quad \text{is the probability that unit } i \text{ is observed on at least one list}$$

Even if we knew F

$$\mathbb{E} \left\{ \frac{n}{\mathbb{E}_F(P)} \right\} = \frac{K\mathbb{E}_F(P)}{\mathbb{E}_F(P)} = K$$
$$\text{var} \left\{ \frac{n}{\mathbb{E}_F(P)} \right\} = K \frac{1 - \mathbb{E}_F(P)}{\mathbb{E}_F(P)} \propto K \frac{1}{\mathbb{E}_F(P)}.$$

Possible Solution: Changing the Inferential Objective

Possible solution: Estimate the population that is **minimally visible** to our sampling mechanism

We call this

$$K_\alpha = \sum_{i=1}^N \mathbf{1}\{P_i > \alpha\}$$

Possible Solution: Changing the Inferential Objective

Possible solution: Estimate the population that is **minimally visible** to our sampling mechanism

We call this

$$K_\alpha = \sum_{i=1}^N \mathbf{1}\{P_i > \alpha\}$$

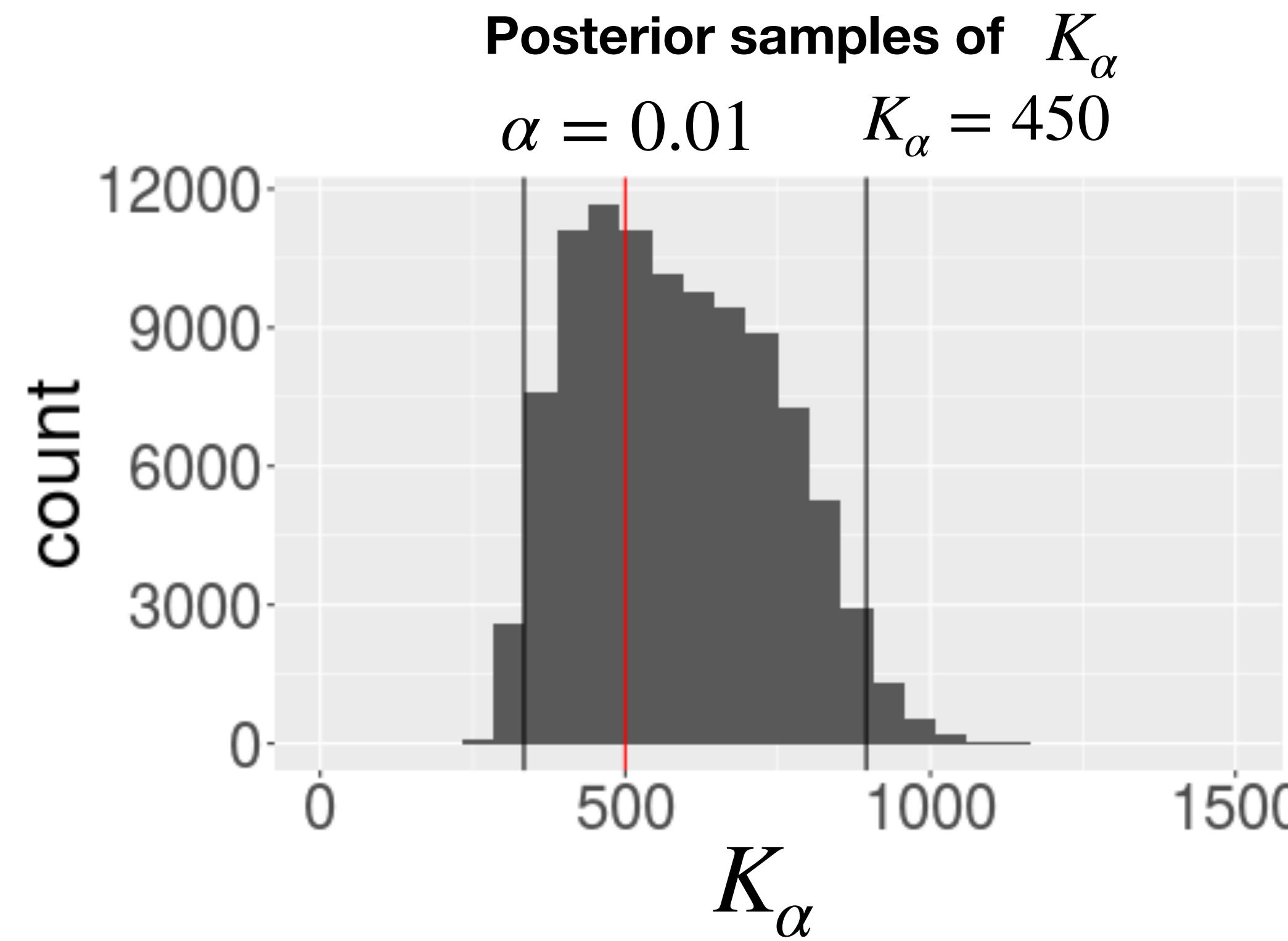
Why it might work:

$$\hat{K}_\alpha = \frac{n_\alpha}{\mathbb{E}_{\hat{F}}(P \mid P > \alpha)} = \frac{n_\alpha}{\mathbb{E}_{\hat{F}_\alpha}(P)}, \text{ where } n_\alpha = \sum_{i=1}^N \max_t X_{it} \mathbf{1}\{P_i > \alpha\}$$

and $\mathbb{E}_{\hat{F}_\alpha}(P) > \alpha$ so the variance cannot get too big (at least when F is known)

Empirically, It Works

Model Mh-Beta fit to data simulated from Mh-Beta model
 $K=500, T=6$



Theoretical Risk Bounds

The same thing happens when we estimate F

For example, if F is a Beta(1,b) distribution and we estimate b by maximum likelihood, the asymptotic risk goes to infinity at a linear rate in b :

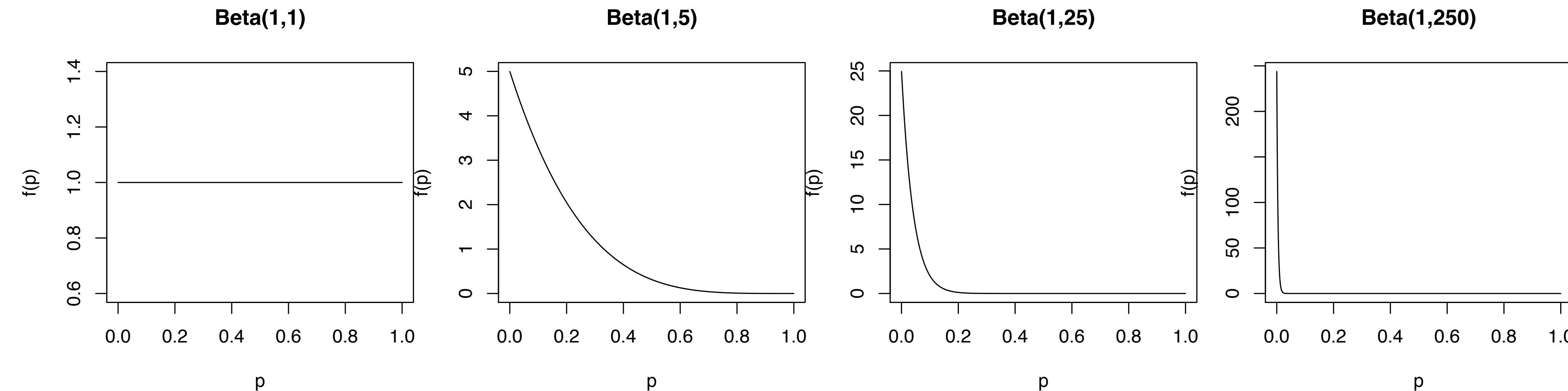
$$\begin{aligned}\text{Risk}(\hat{K}) &= \frac{b^2(1+b)}{b^2 + (b+1)^2} K + Kb \\ &\propto Kb\end{aligned}$$

Theoretical Risk Bounds

The same thing happens when we estimate F

For example, if F is a $\text{Beta}(1,b)$ distribution and we estimate b by maximum likelihood, the asymptotic risk goes to infinity at a linear rate in b :

$$\text{Risk}(\hat{K}) = \frac{b^2(1+b)}{b^2 + (b+1)^2} K + Kb$$
$$\propto Kb$$



Theoretical Risk Bounds

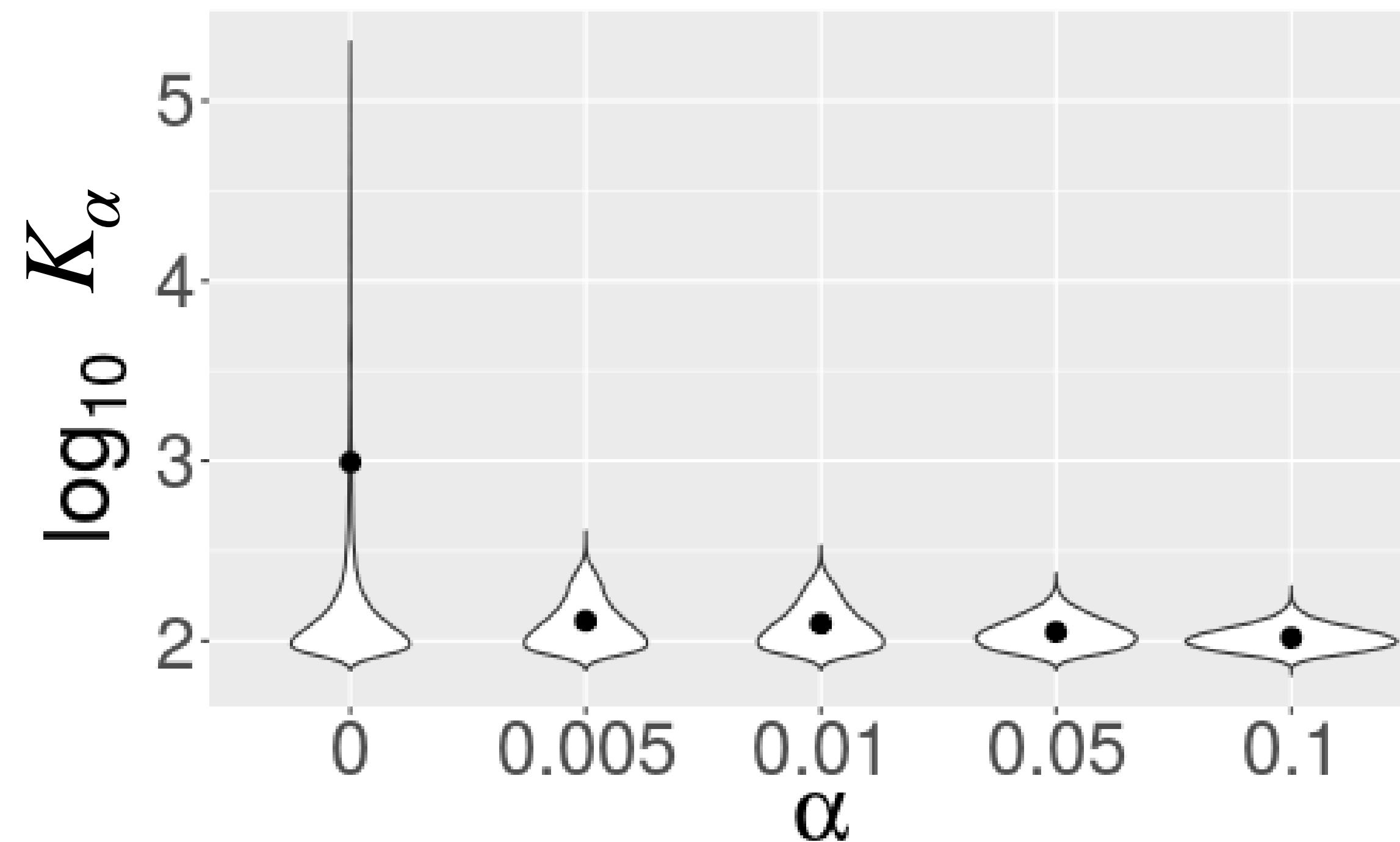
On the other hand, the risk for K_α remains bounded

If F is a Beta(1,b) distribution and we estimate b by maximum likelihood, the asymptotic risk for K_α is bounded as a function of b

$$\begin{aligned}\mathbf{Risk}(\hat{K}_\alpha) &\leq \frac{b^2(1+b)}{b^2 + (b+1)^2} \frac{K(1-\alpha)^{b+2}}{(1+b\alpha)^3} \\ &\quad + \frac{K(1-\alpha)^b}{(1+\alpha b)} \left\{ b+1 - (1-\alpha)^b(b\alpha+1) \right\} \\ &\propto K(1-\alpha)^b\end{aligned}$$

Back to the Hares

Beta mixing distribution



Estimates of K_α are much more plausible, **even as estimates of K .**

Takeaways

- caveat that estimates only pertained to people with non-zero probability of capture replaced with **minimal visibility**
- Give estimates with **practically useful** intervals.
- \hat{K}_α is also useful as a **biased estimator** of K .
- Two possible scenarios: (1) it's not actually that biased or (2) a huge proportion of the population is invisible to the sampling design and we couldn't have estimated them anyway.
- Practical: try many mixing distributions
- New/ongoing project: selective inference for adaptive stratification based on tests for heterogeneity

Collaborators

Thanks! Questions?

See:

Johndrow, J. E., K. Lum, and D. Manrique-Vallier. "Low risk population size estimates in the presence of capture heterogeneity." *Biometrika* (forthcoming)