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Outline

* Review: how capture-recapture estimates are made from multiple incomplete
ists of victims
» Heterogeneity: when the probability of capture varies on an individual level

* Problem: poor performance of capture-recapture estimates even when the
total population size is idenifiable

 Cause: high risk/variance

* Proposed solution: estimation of the “observable” population size
» SOome conclusions
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Capture-Recapture

Goal

Estimate the number of individuals with capture history
x; = (0,0,0....,0)

l.e. the number not observed (or “captured”) on any list, or
equivalently, the total population size

K



Sufficient statistics

In general we will have sufficient statistics

In the cases | consider here, they are

n, = 2 1{i appears on s lists}
i=1



Simple Estimator

Simplest case: suppose that
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Simple Estimator

Simplest case: suppose that

X A X, s#Ft,
PIX.=1]=¢qg V i,t

Then the conditional likelihood of the observed data is
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Simple Estimator

Procedure for estimating K:

1. Estimate Q’ by maximum likelihood on the observed data

2. Make the Horvitz-Thompson estimate of K Estimated probability

of appearing on at
least one list

N n n
K:—AZT
1-0-9" p

Most capture-recapture estimators are closely related to this
procedure (e.g. log-linear modeling)



Assumptions

This relies on three basic assumptions:

1. No net in/out migration (closed population)

2. No individual-level variability in the probability of being captured (homogeneous
capturability)

3. All lists have the same probability of capture



Assumptions

This relies on three basic assumptions:
1. No net in/out migration (closed population
2. No individual-level variability in the probability of being captured (homogeneous

capturability)
3. All lists have the same probability of capture
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This relies on three basic assumptions:
1. No net in/out migration (closed population
2. No individual-level variability in the probability of being captured (homogeneous

capturability)
3. All lists have the same probability of capture

Strategies to address violations of this assumption

* Typically dealt with by stratification over time and space

» This can result in strata with few observations, requires subject area expertise or
statistical testing to define strata

* Alternative: model the heterogeneity




Capture Heterogeneity

Capture heterogeneity is often studied in the context of a simple
model called M,
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Capture Heterogeneity

Capture heterogeneity is often studied in the context of a simple
model called M,

priX;=11=g¢, ¢ ~H

The conditional likelihood is the same, except that now

1
= (' (1 — @) *H(dq)
Vs q q q

S/ Jo
and the corresponding estimate of the total population size is

n
_F(P)

K =

where p. ~ F Is the probability that unit / is observed
’ on at least one list




Capture Heterogeneity:
What We Know

Basic problem: in the presence of capture heterogeneity, K is not
identifiable without further restrictions”
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Bottom line: one typically needs to restrict H to be in some family of
distributions (cannot nonparametrically estimate H)*

*Two known identifiable families: the Beta family and discrete mixtures (with the “correct” number of
components)



Fitting a Simple Model

Trying to fit identifiable families to data, we realized that confidence/
credible intervals were still enormous even though K was fully identifiable

Model Mh-Beta fit to showshoe hare data

(n=77, T=6)
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Fitting a Simple Model

Trying to fit identifiable families to data, we realized that confidence/
credible intervals were still enormous even though K was fully identifiable

Model Mh-Beta fit to data simulated from Mh-Beta model
K=500, T=6
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A Simple Idea

Basic idea: huge variance is possibly caused by the fitted distribution placing mass
near zero

Intuition: when the population consists mostly of individuals who are nearly
invisible to the sampling design, our uncertainty about K explodes

Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes
A 4/

K = W where P.~ F is the probability that unit i is observed
— l
F

on at least one list
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K = W where P.~ F is the probability that unit i is observed
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on at least one list

Note: the results assume that we observe the capture probabillities;

therefore they are optimistic about how difficult the problem is



A Simple Idea

Basic idea: huge variance is possibly caused by the fitted distribution placing mass

near Zero

Intuition: when the population consists mostly of individuals who are nearly
invisible to the sampling design, our uncertainty about K explodes

Recall that in presence of heterogeneity, the Horvitz-Thompson estimator becomes

A "
K=—— \where p.~ F isthe probability that unit/is observed
= o(P) ’ on at least one list
n K (P
Even if we knew [F' =p(P) = (P)
n I —EA(P 1
var { } =K A x K .
= (P) = (P) = (P)




Possible Solution: Changing
the Inferential Objective

Possible solution: Estimate the population that is minimally visible to
our sampling mechanism

We call this N
K,= ) 1{P,> a}
i=1



Possible Solution: Changing
the Inferential Objective

Possible solution: Estimate the population that is minimally visible to
our sampling mechanism

We call this N
K,= ) 1{P,> a}
i=1

Why it might work:

N

. n, n,

K, = , where n, = E max X, 1{ P, > a}
[

© ExP|P>w B = (P) i=1

and [ (P so the variance cannot get too
Fa( )>a big (at least when F is known)




Empirically, It Works

Model Mh-Beta fit to data simulated from Mh-Beta model
K=500, T=6

Posterior samples of Ka
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Theoretical Risk Bounds

The same thing happens when we estimate F
For example, if F is a Beta(1,b) distribution and we estimate b by maximum
likelihood, the asymptotic risk goes to infinity at a linear rate in b:

L b*(1 + b)
Risk(K) = K+ Kb
b2+ (b + 1)2

x Kb




Theoretical Risk Bounds

The same thing happens when we estimate F
For example, if F is a Beta(1,b) distribution and we estimate b by maximum
likelihood, the asymptotic risk goes to infinity at a linear rate in b:

o, b*(1 + b)
Risk(K) = K+ Kb
b2+ (b + 1)2
x Kb
Beta(1,1) Beta(1,5) Beta(1,25) Beta(1,250)

@ - — o - o — \
© I I I I I I I I I I I I I I I I I I I I I I I I

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

P

P

P

P



Theoretical Risk Bounds

On the other hand, the risk for Ka remains bounded

If F is a Beta(1,b) distribution and we estimate b by maximum likelihood, the
asymptotic risk for Ka is bounded as a function of b

b*(1+b) K —a)**
b2+ b+ 1)? (1+ba)
K(1 - a) )
+7T:&5{b+1—a—ﬂowa+n}

x K(1 — a)’

Risk(K ) <



Back to the Hares

Beta mixing distribution
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Estimates of K , are much more plausible, even as estimates of K.



Takeaways

» caveat that estimates only pertained to people with non-zero probability of
capture replaced with minimal visibility

 Give estimates with practically useful intervals.

. K is also useful as a biased estimator of K.

» Two possible scenarios: (1) it’s not actually that biased or (2) a huge
proportion of the population is invisible to the sampling design and we
couldn’t have estimated them anyway.

* Practical: try many mixing distributions
* New/ongoing project: selective inference for adaptive stratification based on
tests for heterogeneity



Collaborators




Thanks!

Questions?

See:

Johndrow, J. E., K. Lum, and D. Manrique-Vallier. “Low risk population size estimates in the presence of capture
heterogeneity." Biometrika (forthcoming)



