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Data Privacy: The Problem
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Given a dataset with sensitive personal information,
how can one compute and release functions of the dataset
while protecting individual privacy?
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Takeaways from Privacy Failures
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Takeaways from Privacy Failures

o Specific findings:

Redaction of identifiers is insufficient for protecting privacy.
Similarly: aggregation, noise addition®, ...
Auxiliary information needs to be taken into account.

Regulation and technology only considered a limited scope of
privacy failures.

* New failure modes: whether an individual participated in study, inferences

—

Any useful analysis of personal data must leak some Mathematical
information about individuals. _ facts, not

. . matters of
Leakages accumulate with multiple analyses/releases. policy




A New Line of Work

Emerging from theoretical computer science (~2003).

Yields new concept: Differential privacy (2006):
— Rich theory and new privacy concepts.
— Mathematically provable privacy guarantees.
— In first stages of implementation and real-world use
e US Census, Google, Apple, Uber, ...



Yeah, Yeah ...




What is Differential
Privacy?



Differential Privacy is ...

... hot a specific technique or algorithm!



Differential Privacy is ...

... a definition (i.e., a standard) of privacy*

It expresses a specific desiderata of an analysis:

Any information-related risk to a person should not change
significantly as a result of that person’s information being
included, or not, in the analysis.

*More precisely, a family of related mathematical definitions: pure DP, approximate DP, concentrated DP, ...



A Privacy Desiderata
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Real world:
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Real world:

Alex’s ideal world:
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Real world:
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Oops!

That did not go so well ...



A More Realistic Privacy Desiderata
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Differential Privacy [Dwork McSherry Nissim Smith ‘06]
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Understanding Differential Privacy

“Automatic” opt-out: | am protected (almost) as if my info
was not used at all.

| incur limited risk: Contributing my real info can increase
the probability | will be denied insurance by at most 1%.

— When compared with not participating, or contributing fake info.

These privacy guarantees are provided independent of the
methods used by a potential attacker and in presence of
arbitrary auxiliary information.

Future proof: Avoids the “penetrate and patch” cycle.



A Privacy “‘Budget”

DP provides provable privacy guarantees with respect to the cumulative
risk from successive data releases.

— Combination of e-differentially private computations results in
differential privacy (with larger €).

— Can manage accumulated privacy loss.

* Whereas other known definitions of privacy do not measure the cumulative
risk from multiple analyses/releases.

\ §/
« This is an important feature, not a bug! \\\ I l//

— Consider how ignoring the fuel gauge would not \\ v //
E F

make your car run indefinitely without refueling.



Transparency

DP has the benefit of transparency.

— It is not necessary to maintain secrecy around a differentially
private computation or its parameters.

* Whereas some traditional techniques relied on secret algorithms or
parameters.

— Benefits of transparency include:
* Knowledge accumulation.
» Scrutiny by the scientific community.

» Possibility of accounting for DP in statistical inference.



Application for Public Access to Data

DP can be used to provide broad, public access to data or data
summaries in a privacy-preserving way.

—  Can consider data publications that were otherwise impossible.

. Whereas traditional techniques would require (more often) to apply
controls in addition to de-identification.



Differential Privacy and Concepts from Privacy
Law and Policy

« Pll: Differential privacy can be interpreted as ensuring that using
an individual’s data will (essentially) not reveal any personally
identifiable information that is specific to her.

— Here, specific refers to information that cannot be inferred
unless the individual’s information is used in the analysis.



AW3

Differential Privacy and Concepts from Privacy

Law and Policy

v PII

Singling out:
— This can be formalized mathematically.

* DP protects against a specific notion of singling out
(“predicate singling out”).

* Note: rigorous argument also wrt FERPA’s concept of de-
identification.

%
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Differential Privacy and Concepts from Privacy
Law and Policy

v Pl

v Singling out

e Linkage: Microdata or contingency tables that allow the
identification of population uniques cannot be created using
statistics produced by a differentially private tool.

— This can be formalized and proved mathematically.



Differential Privacy and Concepts from Privacy*
Law and Policy

v Pl

v Singling out

v Linkage

» Inference: Differential privacy masks the contribution of any single
individual, (essentially) making it impossible to infer any
iInformation specific to an individual, including whether an
individual’s information was used at all.

— But DP does not protect against all inferences.



Differential Privacy and Concepts from Privacy*
Law and Policy

v PII

v/ Singling out
V' Linkage

v Inference

Differential privacy provides protection
(far) beyond “identifiability.”



Example: Reasoning About Risk
Gertrude’s Life Insurance

o Gertrude:
— Age: 65
— She has a $100,000 life insurance policy.

— She is considering participating in a medical study but is
concerned it may affect her insurance premium.



Example: Reasoning About Risk
Gertrude’s Life Insurance

Based on her age and sex, she has a 1% chance of dying next year. Her life
insurance premium is set at 0.01 x $100,000 = $1,000.

Gertrude is a coffee drinker. If the medical study finds that 65-year-old female
coffee drinkers have a 2% chance of dying next year, her premium would be set
at $2,000.

— This would be her baseline risk: Her premium would be set at $2,000 even if
she were not to participate in the study.

Can Gertrude’s premium increase beyond her baseline risk?

— She is worried that the study may reveal more about her, such as that she
specifically has a 50% chance of dying next year. This can increase her
premium from $2,000 to $50,000!



Example: Reasoning About Risk
Gertrude’s Life Insurance

e Reasoning about Gertrude’s risk

— Imagine instead the study is performed using differential
privacy with € = 0.01.

— The insurance company’s estimate of Gertrude’s risk of dying in
the next year can increase to at most

(1+ €)- 2% = 2.02%.

— Her premium would increase to at most $2,020. Therefore,
Gertrude’s risk would be < $2020 - $2000 = $20.



Example: Reasoning About Risk
Gertrude’s Life Insurance

— In particular, in our example the 2% baseline depends on the
potential outcome of the study.

— The baseline may also depend on many other factors Gertrude does
not know.

However, differential privacy provides simultaneous guarantees for
every possible baseline value.

— The guarantee covers not only changes in Gertrude’s life insurance
premiums, but also her health insurance and more.



How is differential
privacy achieved?
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Cumulative Probability

Differentially Private Computations

Algorithms maintain differential privacy via the introduction
of carefully crafted random noise into the computation.
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Cumulative Probability

Differentially Private Computations

Algorithms maintain differential privacy via the introduction
of carefully crafted random noise into the computation.
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Cumulative Probability

Differentially Private Computations

Algorithms maintain differential privacy via the introduction
of carefully crafted random noise into the computation.
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What can be Computed with Differential
Privacy?

« Descriptive statistics: counts, mean, median, histograms,
boxplots, etc.

e Supervised and unsupervised ML tasks: classification,
regression, clustering, distribution learning, etc.

* Generation of synthetic data

Because of noise addition, differentially private algorithms
work best when the number of data records is large.



Applications
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RAPPOR: Randomized Aggregatable Privacy-Preserving
Ordinal Response

Ulfar Erlingsson

ulfar@google.com

ABSTRACT

Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse, or RAPPOR, is a technology for crowdsourcing statis-
tics from end-user client software, anonymously, with strong
privacy guarantees. In short, RAPPORs allow the forest of
client data to be studied, without permitting the possibil-
ity of looking at individual trees. By applying randomized
response in a novel manner, RAPPOR provides the mecha-
nisms for such collection as well as for efficient, high-utility
analysis of the collected data. In particular, RAPPOR per-
mits statistics to be collected on the population of client-side
strings with strong privacy guarantees for each client, and
without linkability of their reports.

This paper describes and motivates RAPPOR, details its
differential-privacy and utility guarantees, discusses its prac-
tical deployment and properties in the face of different attack
maodels, and, finally, gives results of its application to both
synthetic and real-world data.

1 Introduction

Crowdsourcing data to make better, more informed deci-
sions is becoming increasingly commonplace. For any such

rrawrdernreing nriramyonracorvatinm maochanicome chanld hes

Vasyl Pihur Aleksandra Korolova
Google, Inc. Google, Inc.
vpihur@google.com

University of Southern California
korolova@usc.edu

asked to flip a fair coin, in secret, and answer “Yes” if it
comes up heads, but tell the truth otherwise (if the coin
comes up tails). Using this procedure, each respondent re-
tains very strong deniability for any “Yes” answers, since
such answers are most likely attributable to the coin coming
up heads; as a refinement, respondents can also choose the
untruthful answer by flipping another coin in secret, and get
strong deniability for both “Yes” and “No” answers.
Surveys relying on randomized response enable easy com-
putations of accurate population statistics while preserving
the privacy of the individuals. Assuming absolute compli-
ance with the randomization protocol (an assumption that
may not hold for human subjects, and can even be non-
trivial for algorithmic implementations [23]), it is easy to
see that in a case where both “Yes” and “No” answers can
be denied (flipping two fair coins), the true number of “Yes”
answers can be accurately estimated by 2(Y — 0.25), where
Y is the proportion of “Yes” responses. In expectation, re-
spondents will provide the true answer 75% of the time, as
is easy to see by a case analysis of the two fair coin flips.
Importantly, for ene-time collection, the above random-
ized survey mechanism will protect the privacy of any spe-
cific respondent, irrespective of any attacker’s prior knowl-
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LATEST NEWS & BLOG POSTS

Graduate Student Michael Bar-Sinai Presented
at the 8th Annual ESPAnet Israel 2017

P1 Salil Vadhan, Pl Kobbi Nissim, and Senior
Researcher Marco Gaboardi Presented at the
Third Biennial Secure and Trustworthy
CyberSpace Principal Investigators' Meeting
(SaTC Pl Meeting "17)

Berkman Klein Center Seeks Applications for
2017 Summer Internship Program

Harvard Magazine Highlights Privacy Tools
Project in Article on Privacy and Security

George Kellaris Featured on CRCS Blog

Privacy Tools Project Featured in Harvard Law

The Privacy Tools Project is a broad effort to advance a multidisciplinary understanding of data privacy R&iiai

issues and build computational, statistical, legal, and policy tools to help address these issues in a variety
of contexts. It is a collaborative effort between Harvard's Center for Research on Computation and Berkman Klein Center Seeks Fellow for Privacy

2018 AD



DP In Practice:
Challenges



Transitioning to Practice

* Arelatively new concept:
— How to communicate its strengths and limitations?
— What are the “right” use cases for implementation at this
stage?
* Access to data:
— Via a mechanism; Noise added
— Limited by the ”privacy budget”
» Setting the budget is a policy question
e Matching guarantees with privacy law & regulation



Conclusion



Main Takeaways

* Accumulating failures: anonymization & traditional SDL
techniques

o Differential privacy:

— A standard providing a rigorous framework for developing
privacy technologies with provable quantifiable guarantees

— Rich theoretical work, now transitioning to practice
 First real-world applications and use

— Not a panacea; to be combined (wisely!) with other
technical and policy tools



Resources



Learning More About Differential Privacy

» [Page et al, 2018] Differential Privacy: An Introduction For Statistical
Agencies, UK ONS.

 [Wood et al, 2019] Differential Privacy: A Primer for a Non-technical
Audience, Vanderbilt JETLaw.

« [Nissim et al, 2018] Bridging the gap between computer science and legal
approaches to privacy, Harvard JOLT.

 [Dwork 2011] A Firm Foundation for Private Data Analysis, CACM January
2011.

 [Heffetz & Ligett, 2014] Privacy and Data-Based Research, Journal of
Economic Perspectives.

o [Dwork & Roth, 2014] The Algorithmic Foundations of Differential Privacy,
Now publishers.

+ [Vadhan, 2017] The Complexity of Differential Privacy

less
technical

technical



Projects, Software Tools [Partial List]

[Microsoft Research] PINQ

[UT Austin] Airavat: Security & Privacy for MapReduce

[UC Berkeley] GUPT

[CMU-Cornell-PennState] Integrating Statistical and Computational Approaches to Privacy
[US Census] OnTheMap

[Google] Rappor, TensorFlow Privacy

[UCSD] Integrating Data for Analysis, Anonymization, and Sharing (iDash)
[UPenn] Putting Differential Privacy to Work
[Stanford-Berkeley-Microsoft] Towards Practicing Privacy

[Duke-NISS] Triangle Census Research Network

[Harvard] Privacy Tools

[Georgetown-Harvard-BU] Formal Privacy Models and Title 13
[Harvard-Georgetown-Buffalo] Computing over Distributed Sensitive Data
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The Privacy Tools Project
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The Privacy Tools Project: Robot Lawyers
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The Privacy Tools
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The Privacy Tools Project: Bridging Defs
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