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Data Privacy: The Problem

Given a dataset with sensitive personal information, 
how can one compute and release functions of the dataset 

while protecting individual privacy?



Attacks on SDL Techniques
• Re-identification [Sweeney ’00, …]

– GIC data, health data, clinical trial data, DNA, Pharmacy data, text data, registry 
information, …

• Blatant non-privacy [Dinur, Nissim ‘03], …
• Auditors [Kenthapadi, Mishra, Nissim ’05]
• AOL Debacle ‘06
• Genome-Wide association studies (GWAS) [Homer et al. ’08]
• Netflix award [Narayanan, Shmatikov ‘09]
• Social networks [Backstrom, Dwork, Kleinberg ‘11]
• Genetic research studies [Gymrek, McGuire, Golan, Halperin, Erlich ‘11]
• Microtargeted advertising [Korolova 11]
• Recommendation Systems [Calandrino, Kiltzer, Naryanan, Felten, Shmatikov 11]
• Israeli CBS [Mukatren, Nissim, Salman, Tromer ’14]
• Attack on  statistical aggregates [Homer et al.’08] [Dwork, Smith, Steinke, Vadhan ‘15]
• Reconstruction attack on 2010 Census data
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Takeaways from Privacy Failures

Lack of rigor leads to 
unanticipated privacy failures.

In setting 
clear 

meaningful 
privacy goals

In scrutiny of 
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technology

In accounting 
for privacy 
loss across 
multiple 
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In taking 
auxiliary 
knowledge 
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In analyzing 
resilience to 
future attacks 

In 
understanding 
how normative 
and technical 
conceptions of 
privacy interact
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Mathematical
facts, not 
matters of 
policy

Takeaways from Privacy Failures
• Specific findings:

– Redaction of identifiers is insufficient for protecting privacy.

– Similarly: aggregation, noise addition*, …

– Auxiliary information needs to be taken into account.

– Regulation and technology only considered a limited scope of 
privacy failures.

• New failure modes: whether an individual participated in study, inferences

– Any useful analysis of personal data must leak some
information about individuals.

– Leakages accumulate with multiple analyses/releases.
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A New Line of Work

Emerging from theoretical computer science (~2003).

Yields new concept: Differential privacy (2006):
– Rich theory and new privacy concepts.
– Mathematically provable privacy guarantees.
– In first stages of implementation and real-world use

• US Census, Google, Apple, Uber, …



Yeah, Yeah …





Differential Privacy is …

… not a specific technique or algorithm!



Any information-related risk to a person should not change 
significantly as a result of that person’s information being 

included, or not, in the analysis.

It expresses a specific desiderata of an analysis:

… a definition (i.e., a standard) of privacy*

Differential Privacy is …

*More precisely, a family of related mathematical definitions: pure DP, approximate DP, concentrated DP, ...
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Understanding Differential Privacy

• “Automatic” opt-out: I am protected (almost) as if my info 
was not used at all.

• I incur limited risk: Contributing my real info can increase 
the probability I will be denied insurance by at most 1%.

– When compared with not participating, or contributing fake info.

• These privacy guarantees are provided independent of the 
methods used by a potential attacker and in presence of 
arbitrary auxiliary information.

• Future proof: Avoids the “penetrate and patch” cycle.



A Privacy “Budget”

DP provides provable privacy guarantees with respect to the cumulative 
risk from successive data releases.

– Combination of -differentially private computations results in 
differential privacy (with larger ).

– Can manage accumulated privacy loss.

• Whereas other known definitions of privacy do not measure the cumulative 
risk from multiple analyses/releases.

• This is an important feature, not a bug!
– Consider how ignoring the fuel gauge would not 

make your car run indefinitely without refueling.



Transparency

DP has the benefit of transparency.

– It is not necessary to maintain secrecy around a differentially 
private computation or its parameters.

• Whereas some traditional techniques relied on secret algorithms or 
parameters.

– Benefits of transparency include: 
• Knowledge accumulation.

• Scrutiny by the scientific community.

• Possibility of accounting for DP in statistical inference.

*



Application for Public Access to Data

DP can be used to provide broad, public access to data or data 
summaries in a privacy-preserving way.

– Can consider data publications that were otherwise impossible.

• Whereas traditional techniques would require (more often) to apply 
controls in addition to de-identification. 
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Differential Privacy and Concepts from Privacy 
Law and Policy

• PII: Differential privacy can be interpreted as ensuring that using 
an individual’s data will (essentially) not reveal any personally 
identifiable information that is specific to her.

– Here, specific refers to information that cannot be inferred 
unless the individual’s information is used in the analysis.

*



Differential Privacy and Concepts from Privacy 
Law and Policy

✓ PII

• Singling out: 

– This can be formalized mathematically.

• DP protects against a specific notion of singling out 
(“predicate singling out”).

• Note: rigorous argument also wrt FERPA’s concept of de-
identification.

*AW3



Slide 24

AW3 Singling out text
Alexandra Wood, 5/15/2018



Differential Privacy and Concepts from Privacy 
Law and Policy

✓ PII
✓ Singling out

• Linkage: Microdata or contingency tables that allow the 
identification of population uniques cannot be created using 
statistics produced by a differentially private tool.

– This can be formalized and proved mathematically.
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Differential Privacy and Concepts from Privacy 
Law and Policy

✓ PII
✓ Singling out
✓ Linkage

• Inference: Differential privacy masks the contribution of any single 
individual, (essentially) making it impossible to infer any 
information specific to an individual, including whether an 
individual’s information was used at all.

– But DP does not protect against all inferences.

*



Differential Privacy and Concepts from Privacy 
Law and Policy

✓ PII
✓ Singling out
✓ Linkage
✓ Inference

Differential privacy provides protection
(far) beyond “identifiability.”
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Example: Reasoning About Risk
Gertrude’s Life Insurance

• Gertrude:

– Age: 65

– She has a $100,000 life insurance policy.

– She is considering participating in a medical study but is 
concerned it may affect her insurance premium.



Example: Reasoning About Risk
Gertrude’s Life Insurance

• Based on her age and sex, she has a 1% chance of dying next year. Her life 
insurance premium is set at 0.01 x $100,000 = $1,000.

• Gertrude is a coffee drinker. If the medical study finds that 65-year-old female 
coffee drinkers have a 2% chance of dying next year, her premium would be set 
at $2,000.

– This would be her baseline risk: Her premium would be set at $2,000 even if 
she were not to participate in the study.

• Can Gertrude’s premium increase beyond her baseline risk?

– She is worried that the study may reveal more about her, such as that she 
specifically has a 50% chance of dying next year. This can increase her 
premium from $2,000 to $50,000!



Example: Reasoning About Risk
Gertrude’s Life Insurance

• Reasoning about Gertrude’s risk

– Imagine instead the study is performed using differential 
privacy with ε = 0.01.

– The insurance company’s estimate of Gertrude's risk of dying in 
the next year can increase to at most

(1+ ε) 2% = 2.02%.

– Her premium would increase to at most $2,020. Therefore, 
Gertrude’s risk would be ≤ $2020 - $2000 = $20.



Example: Reasoning About Risk
Gertrude’s Life Insurance

• Generally, calculating one’s baseline is very complex (if possible at all).

– In particular, in our example the 2% baseline depends on the 
potential outcome of the study.

– The baseline may also depend on many other factors Gertrude does 
not know.

• However, differential privacy provides simultaneous guarantees for 
every possible baseline value.

– The guarantee covers not only changes in Gertrude’s life insurance 
premiums, but also her health insurance and more.







Differentially Private Computations

carefully crafted random noise 

(These CDFs are stylized examples.)

ε = 0.005 



Differentially Private Computations

carefully crafted random noise 

ε = 0.01 

(These CDFs are stylized examples.)



Differentially Private Computations

carefully crafted random noise 

ε = 0.1 

(These CDFs are stylized examples.)



What can be Computed with Differential 
Privacy?

• Descriptive statistics: counts, mean, median, histograms, 
boxplots, etc.

• Supervised and unsupervised ML tasks: classification, 
regression, clustering, distribution learning, etc.

• Generation of synthetic data

Because of noise addition, differentially private algorithms 
work best when the number of data records is large.
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U.S. Census Bureau
http://onthemap.
ces.census.gov

2008 AD



GOOGLE

2014 AD



Apple

2016 AD



2018 AD





Transitioning to Practice
• A relatively new concept:

– How to communicate its strengths and limitations?
– What are the “right” use cases for implementation at this 

stage?
• Access to data:  

– Via a mechanism; Noise added
– Limited by the ”privacy budget”

• Setting the budget is a policy question

• Matching guarantees with privacy law & regulation
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Main Takeaways

• Accumulating failures: anonymization & traditional SDL 
techniques

• Differential privacy:
– A standard providing a rigorous framework for developing 

privacy technologies with provable quantifiable guarantees
– Rich theoretical work, now transitioning to practice

• First real-world applications and use
– Not a panacea; to be combined (wisely!) with other 

technical and policy tools

*
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Learning More About Differential Privacy
• [Page et al, 2018] Differential Privacy: An Introduction For Statistical 

Agencies, UK ONS.
• [Wood et al, 2019] Differential Privacy: A Primer for a Non-technical 

Audience, Vanderbilt JETLaw.
• [Nissim et al, 2018] Bridging the gap between computer science and legal 

approaches to privacy, Harvard JOLT.
• [Dwork 2011] A Firm Foundation for Private Data Analysis, CACM January 

2011.
• [Heffetz & Ligett, 2014] Privacy and Data-Based Research, Journal of 

Economic Perspectives.
• [Dwork & Roth, 2014] The Algorithmic Foundations of Differential Privacy, 

Now publishers.
+ [Vadhan, 2017] The Complexity of Differential Privacy

less
technical

technical
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Projects, Software Tools [Partial List]
[Microsoft Research] PINQ
[UT Austin] Airavat: Security & Privacy for MapReduce
[UC Berkeley] GUPT
[CMU-Cornell-PennState] Integrating Statistical and Computational Approaches to Privacy
[US Census] OnTheMap
[Google] Rappor, TensorFlow Privacy
[UCSD] Integrating Data for Analysis, Anonymization, and Sharing (iDash)
[UPenn] Putting Differential Privacy to Work
[Stanford-Berkeley-Microsoft] Towards Practicing Privacy
[Duke-NISS] Triangle Census Research Network
[Harvard] Privacy Tools
[Georgetown-Harvard-BU] Formal Privacy Models and Title 13
[Harvard-Georgetown-Buffalo] Computing over Distributed Sensitive Data

*





The Privacy Tools Project
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The Privacy Tools Project: Robot Lawyers
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Automatically generate custom 
licenses & data‐use agreements via 
logic programming
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The Privacy Tools Project: PSI

Robot
Lawyers

DataTags
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Sensitive
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Deposit in repository

Sensitive
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Restricted 
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Data Set 
w/DUA

PSI: 
Differential
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Statistical summaries and
exploratory data analysis with
strong privacy guarantees 
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The Privacy Tools Project: Bridging Defs
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Argue that differential
privacy satisfies
legal requirements
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