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Differential Privacy - Recap

For every pair of For every
Neighboring Tables output
D, D, O

Should not be able to distinguish whether O
was generated by D, or D,
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Adding or removing a
row from the input table
should not significantly

impact the output of the
algorithm.



Differential Privacy - Recap

For every pair of

Neighboring Tables * Neighboring tables differ in
one row.
. * Consider all pairs of tables,
and not just the actual

D D input to the algorithm
1 2

* May depend on what must
be kept secret
* Privacy of persons
* Privacy of households
* Privacy of businesses
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Differential Privacy - Recap

For every

output * Privacy bound must hold for
all possible outputs
* A worst case guarantee

* Outputs can be any type
 Statistics

Contingency tables

Microdata

Regression parameters
ML models
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Differential Privacy - Recap

Should not be able to distinguish whether O

was generated by D, or D,

\og{

Pr[A(D!) = 0]

Pr[A(D,) = O]

J < € (E>O)

* Plausible Deniability:

Attacker can't tell whether
input was D1 (with individual)
or D2 (without individual)

* Privacy Loss Parameter:

Larger epsilon is lesser privacy

* Privacy Loss Budget:

Releasing multiple outputs
results in additive increase in
privacy loss.



Achieving differential privacy
* Techniques known for releasing outputs of several data analyses

« Statistics and tabular summaries

« Synthetic microdata

« Parameters of regression and statistical tests
* Machine learning models

6/6/2019 NAS CNSTAT Privacy Workshop 6



Releasing a count: Laplace Mechanism
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From single counts to tabular summaries

Release several contingency tables ... at different levels of geography
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Key idea 1: Composition

« Sequential Composition:
Privacy loss is additive across multiple releases ...

* Parallel Composition:
... unless they are run on disjoint subsets of data (e.g. across states)

* Algorithm: Use Laplace mechanism with parameter «:
— For each marginal (total, by age, by sex, ...)
— And for each geography (national, state, county, ...)

Total privacy loss: # tables * #geo levels * €
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Challenge

* Algorithm: Use Laplace mechanism with parameter epsilon:
— For each marginal (total, by age, by sex, ...)
— And for each geography (national, state, county, ...)

* Problem: Consistency

— Released statistics do not add up
— E.g.: State counts do not add up to national counts
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Key idea 2: Postprocessing & Inference

 Postprocessing theorem:
Postprocessing the output of a DP mechanism does not

degrade privacy

e |dea: Inference
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Challenge

* Algorithm: Use Laplace mechanism with parameter epsilon:
— For each marginal (total, by age, by sex, ...)
— And for each geography (national, state, county, ...)

Total privacy loss: # tables * #geo levels * ¢

* Problem: Privacy loss adds up
— Either get all the results accurately but with poor overall privacy loss
— Or get a bounded privacy loss, but all the statistics have high error
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Key idea 3:

Carefully select what to add noise to.

S server
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Key idea 3:

Carefully select what to add noise to.

 Total population
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.. by Age

.. by Sex

.. by Age x Sex
.. by Race

.. by Age x Race

Select and Measure these tables

Reconstruct these tables using
inference
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Select-Measure-Reconstruct

» We know tight lower bounds on the error of a set of linear

Hardt-Talwar 2010 . .
Rardt-Talwar | queries under a fixed budget

« We know efficient methods to automatically choose the right

strategy
[Hardt-Talwar 2010] — K-norm Mechanism
[Li et al 2010] — Matrix Mechanism
[McKenna et al 2018] — HDMM: High Dimensional Matrix Mechanism

In ongoing experiments with US Census Bureau
products (2020 Decennial, Business Dynamics

Statistics), HDMM reduced error by factors of 3x — 48x
compared to baseline algorithms.
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More DP algorithm design ideas

[Hardt et al 2012] Iterativel¥ construct a “synthetic database” by measuring the
query with most error

[Mironov 2017]  * Clever proof techniques to lower privacy loss
[zhang et al 2014] « Reduce the dimensionality of the data or statistics released
[Li et al 2014] » Data dependent noise addition

[Kotsoginannis  Truncating the data (Lipshitz extensions) for queries with
et al 2019] higher sensitivity (e.g., queries with joins, counts)
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Counts
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Sophisticated algorithms lower error at
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Open source DP tools for practitioners

b4 _J@@'BE

DPComp Problem Statement Privacy-Accuracy Frontier Empirical Findings ~ Background ~ About E kt e I o

& https://www.dpcomp.org//

Ektelo is a novel programming

V\/elcome to DPCom p framework and system for implementing

Version 0.1
DPComp is a web-hased tool designed to help bath practitioners and researchers assess the accuracy of state- bOth EXiSti ng d nd new p riva Cy
of-the-art differentially private algorithms. .

algorithms.

A collaborative research project of Colgate University, Duke University, Vlew the Project on GltHUb
and the University of Massachusetts, Amherst. .
https://github.com/ektelo/ektelo

UMASS

COlgg\;\tl\eHbl hy D\l;lé]-\(e

AMHERST

/. _ S

https://ektelo.github.io/

® https://www.dpcomp.org//
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