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For every 
output

OD2D1

Should not be able to distinguish whether O 
was generated by D1 or D2

Pr[A(D1) = O]   
Pr[A(D2) = O]                .

For every pair of 
Neighboring Tables

<  ε (ε>0)log

Adding or removing a 

row from the input table 

should not significantly 

impact the output of the 

algorithm.



Differential Privacy - Recap

6/6/2019 NAS CNSTAT Privacy Workshop 3

For every 
output

OD2D1

Should not be able to distinguish whether O 
was generated by D1 or D2

Pr[A(D1) = O]   
Pr[A(D2) = O]                .

For every pair of 
Neighboring Tables

<  ε (ε>0)log

• Neighboring tables differ in

one row.

• Consider all pairs of tables, 

and not just the actual 

input to the algorithm

• May depend on what must 

be kept secret

• Privacy of persons

• Privacy of households

• Privacy of businesses 
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D2D1

Should not be able to distinguish whether O 
was generated by D1 or D2

Pr[A(D1) = O]   
Pr[A(D2) = O]                .

For every pair of 
Neighboring Tables

<  ε (ε>0)log

• Privacy bound must hold for 

all possible outputs

• A worst case guarantee

• Outputs can be any type

• Statistics

• Contingency tables

• Microdata

• Regression parameters

• ML models 

For every 
output

O
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Should not be able to distinguish whether O 
was generated by D1 or D2

Pr[A(D1) = O]   
Pr[A(D2) = O]                .

<  ε (ε>0)log

• Plausible Deniability:

Attacker can’t tell whether 

input was D1 (with individual)

or D2 (without individual)

• Privacy Loss Parameter:

Larger epsilon is lesser privacy

• Privacy Loss Budget:

Releasing multiple outputs

results in additive increase in

privacy loss. 

For every 
output

OD2D1

For every pair of 
Neighboring Tables



Achieving differential privacy

• Techniques known for releasing outputs of several data analyses

• Statistics and tabular summaries

• Synthetic microdata

• Parameters of regression and statistical tests

• Machine learning models
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Releasing a count: Laplace Mechanism

Add noise to each count to 
hide the contributions of 
one individual
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ε = 0.1     

ε = 1        



From single counts to tabular summaries

Release several contingency tables …

• Total population

• … by Age

• … by Sex

• … by Age x Sex

• … by Race

• … by Age x Race

• …

at different levels of geography
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Key idea 1: Composition

• Sequential Composition: 
Privacy loss is additive across multiple releases …

• Parallel Composition:
… unless they are run on disjoint subsets of data (e.g. across states)

• Algorithm: Use Laplace mechanism with parameter ε:
– For each marginal (total, by age, by sex, …)

– And for each geography (national, state, county, …)

Total privacy loss: # tables * #geo levels * ε
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Challenge

• Algorithm: Use Laplace mechanism with parameter epsilon:
– For each marginal (total, by age, by sex, …)

– And for each geography (national, state, county, …)

• Problem: Consistency
– Released statistics do not add up

– E.g.: State counts do not add up to national counts
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Key idea 2: Postprocessing & Inference

• Postprocessing theorem: 
Postprocessing the output of a DP mechanism does not 
degrade privacy

• Idea: Inference
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ABSTRACT

We show that it is possible to significant ly improve the accu-
racy of a general class of histogram queries while sat isfying

di↵erent ial privacy. Our approach carefully chooses a set
of queries to evaluate, and then exploit s consistency con-
st raints that should hold over the noisy output . In a post -

processing phase, we compute the consistent input most
likely to have produced the noisy output . The final out -

put is di↵erent ially-private and consistent , but in addit ion,
it is often much more accurate. We show, both theoret i-

cally and experimentally, that these techniques can be used
for est imat ing the degree sequence of a graph very precisely,

and for comput ing a histogram that can support arbit rary
range queries accurately.

1. INTRODUCTION
Recent work in di↵erent ial privacy [8] has shown that it is

possible to analyze sensit ive data while ensuring st rong pri-
vacy guarantees. Di↵erent ial privacy is typically achieved

through random perturbat ion: the analyst issues a query
and receives a noisy answer. To ensure privacy, the noise

is carefully calibrated to the sensitivi ty of the query. Infor-
mally, query sensit ivity measures how much a small change

to the database—such as adding or removing a person’s pri-
vate record—can a↵ect the query answer. Such query mech-

anisms are simple, efficient , and often quite accurate. In
fact , one mechanism has recent ly been shown to be opt imal
for a single count ing query [9]—i.e., there is no bet ter noisy

answer to return under the desired privacy object ive.
However, analysts typically need to compute mult iple sta-

t ist ics on a database. Di↵erent ially private algorithms ex-
tend nicely to a set of queries, but there can be difficult

t rade-o↵s among alternat ive st rategies for answering a work-
load of queries. Consider the analyst of a private student

database who requires answers to the following queries: the
total number of students, x t , the number of students xA ,

xB , xC , xD , xF receiving grades A, B, C, D, and F respec-
t ively, and the number of passing students, xp (grade D or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on serversor to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conferenceon Very LargeDataBases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.
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Proving results from [1] and applying to degree sequence.

Lemma 1. Let A be an algori thm that on input x outputs A (x) = f (x) +
S(x )

α
Z . For any inputs x, y, we

have:

Pr [A (x) ∈ S] = Pr [Z ∈ Z x (S)]

where zx (s) =
s− f (x )

S(x ) / α
and Z x (S) = { zx (s) | s ∈ S} . And

Pr [A (y) ∈ S] = Pr [Z ∈ Z y (S)]

where zy (s) =
S(x )

S(y )
zx (s) +

f (x )− f (y )

S(x ) / α
=

s− f (y )

S(y ) / α
and Z y (S) = { zy (s) | s ∈ S} . In shorthand, Z x and Z y are

related as:

Z y (S) = σ(Z x (S) + ∆ )

where σ =
S(x )

S(y )
and ∆ =

f (x )− f (y)

S(x ) / α
.

Pr oposit ion 1. Let Z be a Laplace random variable. Let c, δ > 0 be fixed. For any ∆ such that |∆ | ≤ c,

the fol lowing sliding property holds:

Pr [Z ∈ Z ] ≤ ecPr [Z ∈ Z + ∆ ]

For any σ such that σ ≤ 1 + c/ ln 1
δ
, the fol lowing dilation property holds:

Pr [Z ∈ Z ] ≤ ecPr [Z ∈ σZ ] + δ

Further , they can combined:

Pr [Z ∈ Z ] ≤ e2cPr [Z ∈ σ(Z + ∆ )] + δ

Proof. For any c, we have:

Pr[Z ∈ Z ] =
z∈Z

1

2
e− |z|dz

≤
z∈Z

1

2

e|∆ |− |z+ ∆ |

e− |z|
e− |z|dz because |∆ | − | z + ∆ | + |z| ≥ 0, observe |∆ | + |z| ≥ |z + ∆ |

= e|∆ |

z∈Z

1

2
e− |z+ ∆ |dz

= e|∆ |Pr[Z ∈ Z + ∆ ] ≤ ecPr[Z ∈ Z + ∆ ]

XXXXX For dilat ion, need to prove it but I know that there is some set Z such that for the dilat ion property

to hold, it must be that σ ≤ 1+ c/ ln 1
δ
. But it may be the case that it is necessary for σ < 1+ c/ ln 1

δ
to be

t rue for all Z .

1

Step 1

Step 2
Step 3

F igur e 1: Our appr oach t o quer y ing pr ivat e dat a.

higher).

Using a di↵erent ially private interface, a first alternat ive
is to request noisy answers for just (xA , xB , xC , xD , xF ) and

use those answers to compute answers for x t and xp by sum-
mat ion. The sensit ivity of this set of queries is 1 because

adding or removing one tuple changes exact ly one of the five
outputs by a value of one. Therefore, the noise added to in-

dividual answers is low and the noisy answers are accurate
est imates of the t ruth. Unfortunately, the noise accumulates

under summat ion, so the est imates for x t and xp are worse.
A second alternat ive is to request noisy answers for all

queries (x t , xp , xA , xB , xC , xD , xF ). This query set has sen-
sit ivity 3 (one change could a↵ect three return values, each

by a value of one), and the privacy mechanism must add
more noise to each component . This means the est imates for

xA , xB , xC , xD , xF are worse than above, but the est imates
for x t and xp may be more accurate. There is another con-

cern, however: inconsistency. The noisy answers are likely to
violate the following const raints, which one would naturally

expect to hold: x t = xp + xF and xp = xA + xB + xC + xD .
This means the analyst must find a way to reconcile the fact
that there are two di↵erent est imates for the total number

of students and two di↵erent est imates for the number of
passing students. We propose a technique for resolving in-

consistency in a set of noisy answers, and show that doing
so can actually increase accuracy. As a result , we show that

st rategies inspired by the second alternat ive can be superior
in many cases.

Over v iew of A ppr oach . Our approach, shown pictorially

in Figure 1, involves three steps.
First , given a task—such as comput ing a histogram over

student grades—the analyst chooses a set of queries Q to
send to the data owner. The choice of queries will depend on

the part icular task, but in this work they are chosen so that
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Challenge

• Algorithm: Use Laplace mechanism with parameter epsilon:
– For each marginal (total, by age, by sex, …)

– And for each geography (national, state, county, …)

Total privacy loss: # tables * #geo levels * ε

• Problem: Privacy loss adds up
– Either get all the results accurately but with poor overall privacy loss

– Or get a bounded privacy loss, but all the statistics have high error
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Key idea 3: 
Carefully select what to add noise to. 
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Key idea 3: 
Carefully select what to add noise to. 
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• Total population

• … by Age

• … by Sex

• … by Age x Sex

• … by Race

• … by Age x Race

Select and Measure these tables

Reconstruct these tables using 

inference



Select-Measure-Reconstruct

• We know tight lower bounds on the error of a set of linear 
queries under a fixed budget

• We know efficient methods to automatically choose the right 
strategy

– K-norm Mechanism

– Matrix Mechanism 

– HDMM: High Dimensional Matrix Mechanism 
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[Hardt-Talwar 2010]

[Hardt-Talwar 2010]

[Li et al 2010]

[McKenna et al 2018]

In ongoing experiments with US Census Bureau 
products (2020 Decennial, Business Dynamics 

Statistics), HDMM reduced error by factors of 3x – 48x 
compared to baseline algorithms.



More DP algorithm design ideas

• Iteratively construct a “synthetic database” by measuring the 
query with most error

• Clever proof techniques to lower privacy loss

• Reduce the dimensionality of the data or statistics released

• Data dependent noise addition

• Truncating the data (Lipshitz extensions) for queries with 
higher sensitivity (e.g., queries with joins, counts)
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[Hardt et al 2012]

[Li et al 2014]

[Mironov 2017]

[Kotsoginannis

et al 2019]

[Zhang et al 2014]



Sophisticated algorithms lower error at 
same level of privacy

6/6/2019 NAS CNSTAT Privacy Workshop 17

Laplace Mechanism, ε = 0.1 DAWA, ε = 0.1



Open source DP tools for practitioners
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https://www.dpcomp.org// https://ektelo.github.io/

https://www.dpcomp.org/
https://ektelo.github.io/
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