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Deep Learning

Non-convex optimization

Large, deep models

Diversity of input data

Diversity of tasks and learning modalities



Stochastic Gradient Descent (SGD)
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Differentially Private SGD

Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang,
"Deep Learning with Differential Privacy’, ACM CCS 2016



Differentially Private SGD




SGD with Ditferential Privacy
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Naive Privacy Analysis
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Strong Composition Theorem
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Dwork, Rothblum, Vadhan, “Boosting and Differential Privacy”, FOCS 2010
Dwork, Rothblum, “Concentrated Differential Privacy”, https://arxiv.org/abs/1603.0188



https://arxiv.org/abs/1603.01887

Amplification by Sampling
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S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, A. Smith, “What Can We Learn Privately?”, SIAM J. Comp, 2011



Moments Accountant (Rényi Differential Privacy)
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Differential Privacy in TensorFlow

I tensorflow / privacy @unwatch> 41 Wunstar 692  YFork 88
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‘@ tensorflower-gardener Check batch_size % microbatches = 0 and calculate privacy budget only... « Latest commit ab466b1 9 hours ago



Private Aggregation of Teacher Ensembles: PATE

Papernot, Abadi, Goodfellow, Erlingsson, Talwar, “Semi-
supervised Knowledge Transter for Deep Learning from
Private Training Data’, ICLR 2017/

Papernot, Song, Mironov, Raghunathan, Talwar, Erlingsson,
"Scalable Private Learning with PATE", ICLR 2018



PATE at a Glance: Sample-and-Aggregate
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Differentially Private Aggregation

Count votes Add noise Take maximum



Semi-Supervised Setting: PATE-G
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