

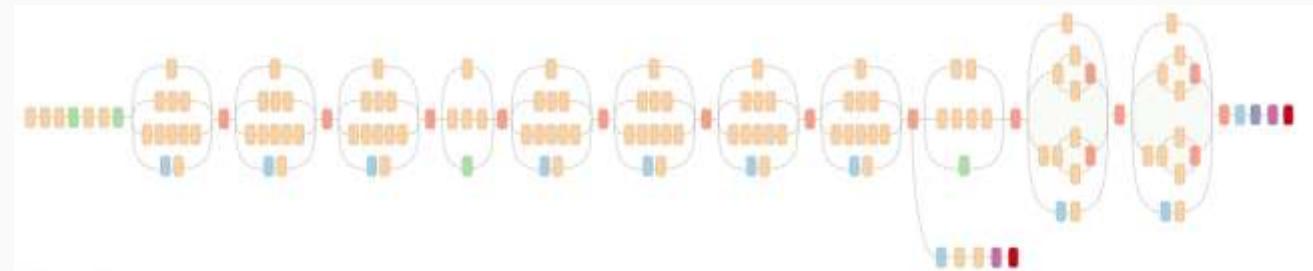
Deep Learning with Differential Privacy: Two Approaches

Ilya Mironov
Google Research

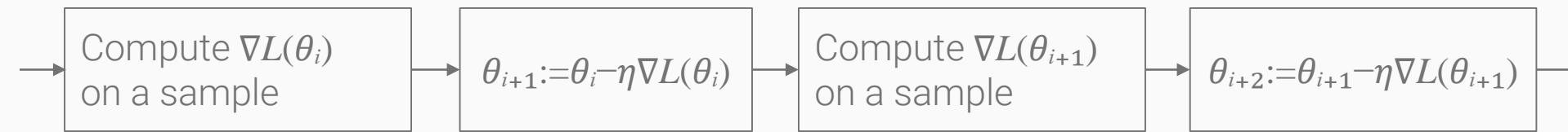
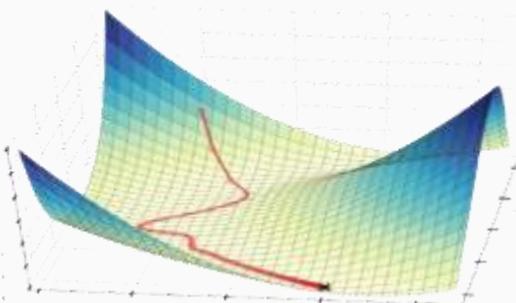
CNSTAT Privacy Workshop
June 6, 2019

Deep Learning

- Non-convex optimization
- Large, deep models
- Diversity of input data
- Diversity of tasks and learning modalities



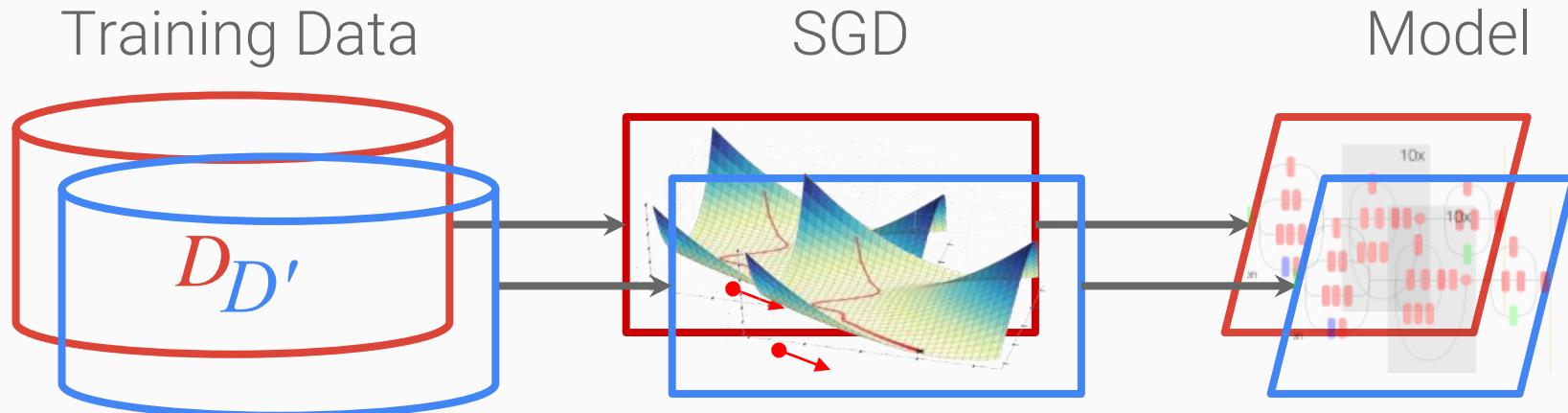
Stochastic Gradient Descent (SGD)



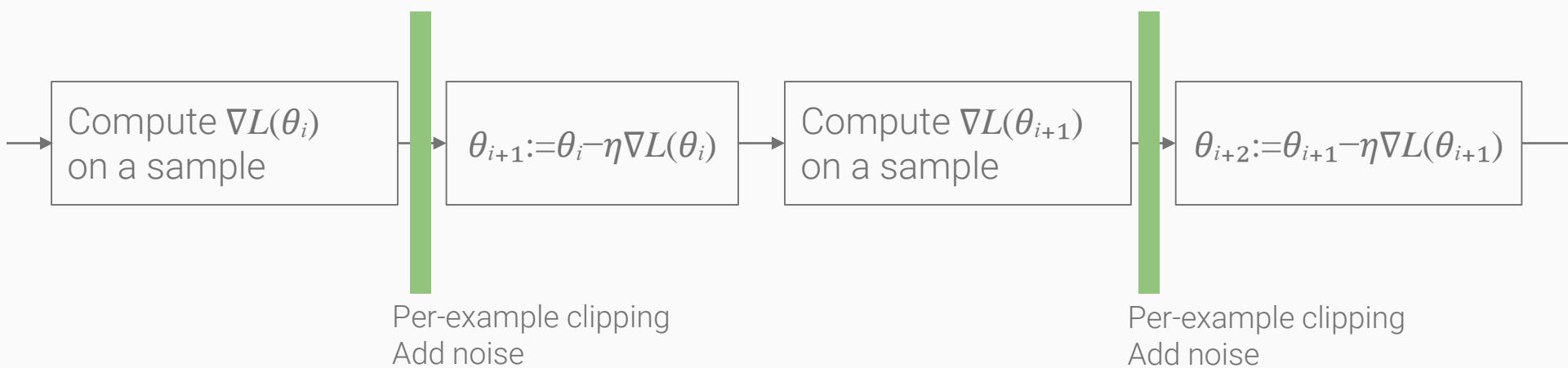
Differentially Private SGD

Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, Zhang,
“Deep Learning with Differential Privacy”, ACM CCS 2016

Differentially Private SGD



SGD with Differential Privacy



Naïve Privacy Analysis

1. Choose $\sigma = \frac{\sqrt{2 \log 1/\delta}}{\varepsilon} = 4$
2. Each step is (ε, δ) -DP $(1.2, 10^{-5})$ -DP
3. Number of steps T 10,000
4. Composition: $(T\varepsilon, T\delta)$ -DP $(12,000, .1)$ -DP

Strong Composition Theorem

1. Choose $\sigma = \frac{\sqrt{2 \log 1/\delta}}{\varepsilon} = 4$
2. Each step is (ε, δ) -DP $(1.2, 10^{-5})$ -DP
3. Number of steps $T = 10,000$
4. Strong comp: $(\varepsilon \sqrt{T \log 1/\delta}, T\delta)$ -DP $(360, .1)$ -DP

Dwork, Rothblum, Vadhan, "Boosting and Differential Privacy", FOCS 2010

Dwork, Rothblum, "Concentrated Differential Privacy", <https://arxiv.org/abs/1603.0188>

Amplification by Sampling

1. Choose $\sigma = \frac{\sqrt{2 \log 1/\delta}}{\varepsilon} = 4$
2. Each batch is q fraction of data 1%
3. Each step is $(2q\varepsilon, q\delta)$ -DP $(.024, 10^{-7})$ -DP
4. Number of steps T $10,000$
5. Strong comp: $(2q\varepsilon\sqrt{T \log 1/\delta}, qT\delta)$ -DP $(10, .001)$ -DP

Moments Accountant (Rényi Differential Privacy)

1. Choose $\sigma = \frac{\sqrt{2 \log 1/\delta}}{\varepsilon} = 4$
2. Each batch is q fraction of data 1%
3. Keeping track of privacy loss's **moments**
4. Number of steps $T = 10,000$
5. Moments: $(2q\varepsilon\sqrt{T}, \delta)$ -DP (1.25, 10^{-5})-DP

Differential Privacy in TensorFlow

[tensorflow / privacy](#)

Code Issues 9 Pull requests 0 Insights Settings

Unwatch 41 Unstar 692 Fork 88

Library for training machine learning models with privacy for training data [Edit](#)

machine-learning privacy Manage topics

110 commits 1 branch 0 releases 14 contributors Apache-2.0

Branch: master ▾ New pull request Create new file Upload files Find File Clone or download ▾

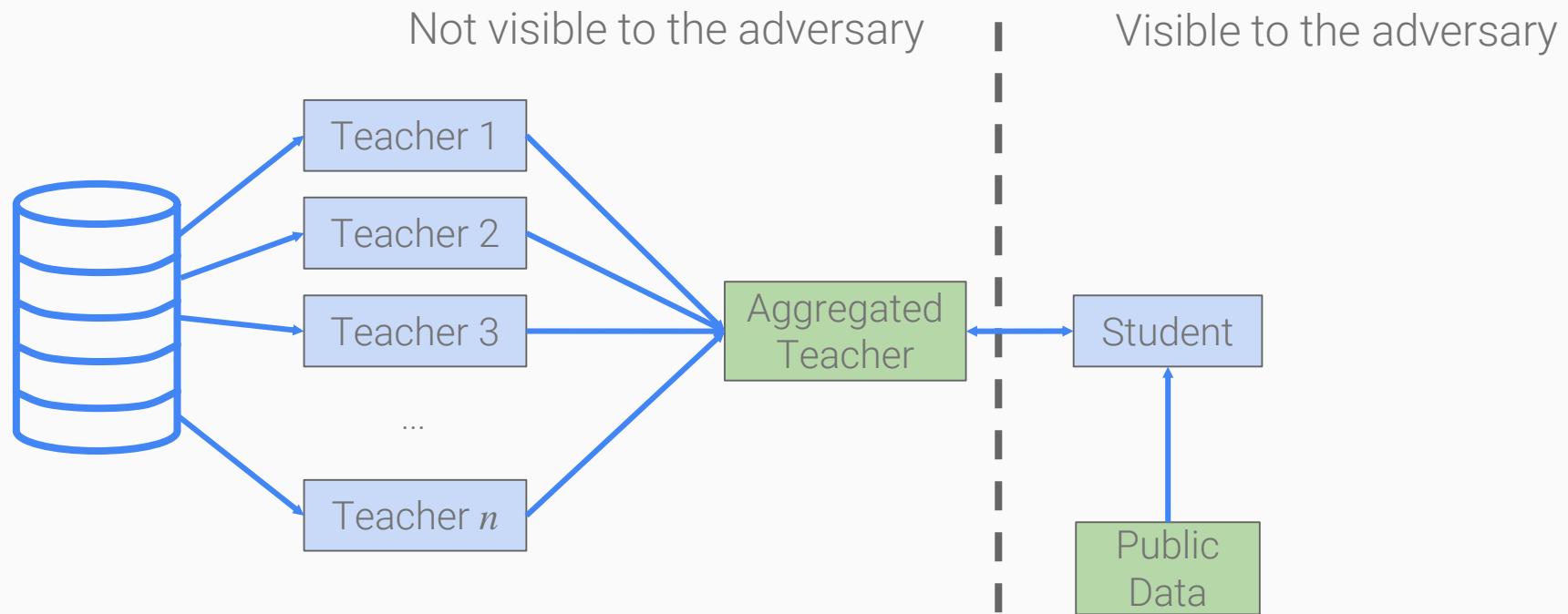
 tensorflower-gardener Check batch_size % microbatches = 0 and calculate privacy budget only... [...](#) Latest commit ab466b1 9 hours ago

Private Aggregation of Teacher Ensembles: PATE

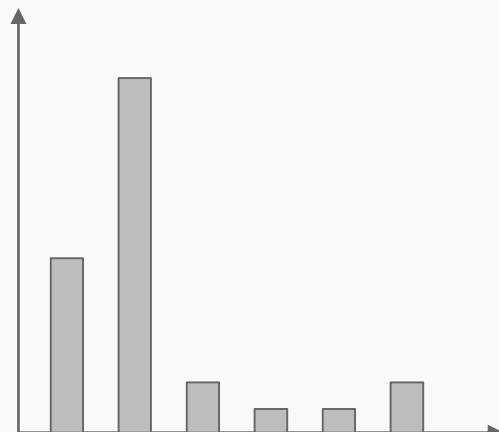
Papernot, Abadi, Goodfellow, Erlingsson, Talwar, “Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data”, ICLR 2017

Papernot, Song, Mironov, Raghunathan, Talwar, Erlingsson, “Scalable Private Learning with PATE”, ICLR 2018

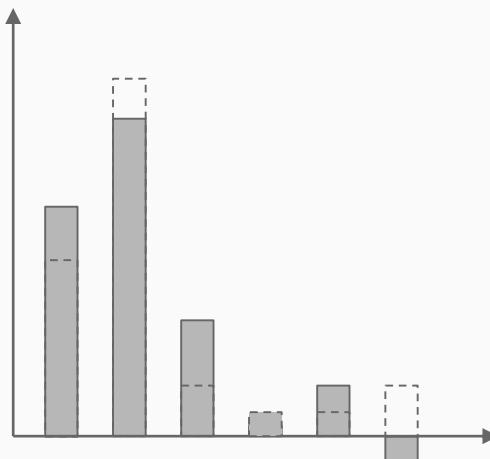
PATE at a Glance: Sample-and-Aggregate



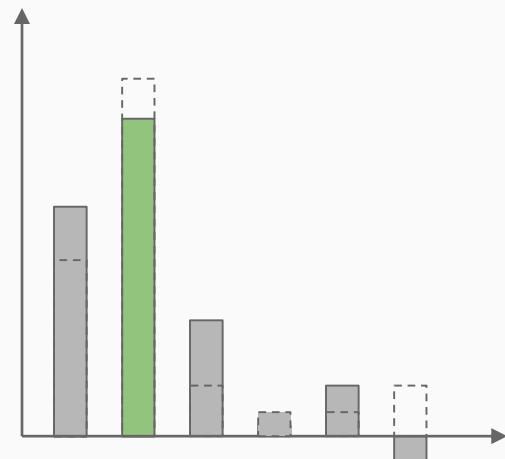
Differentially Private Aggregation



Count votes

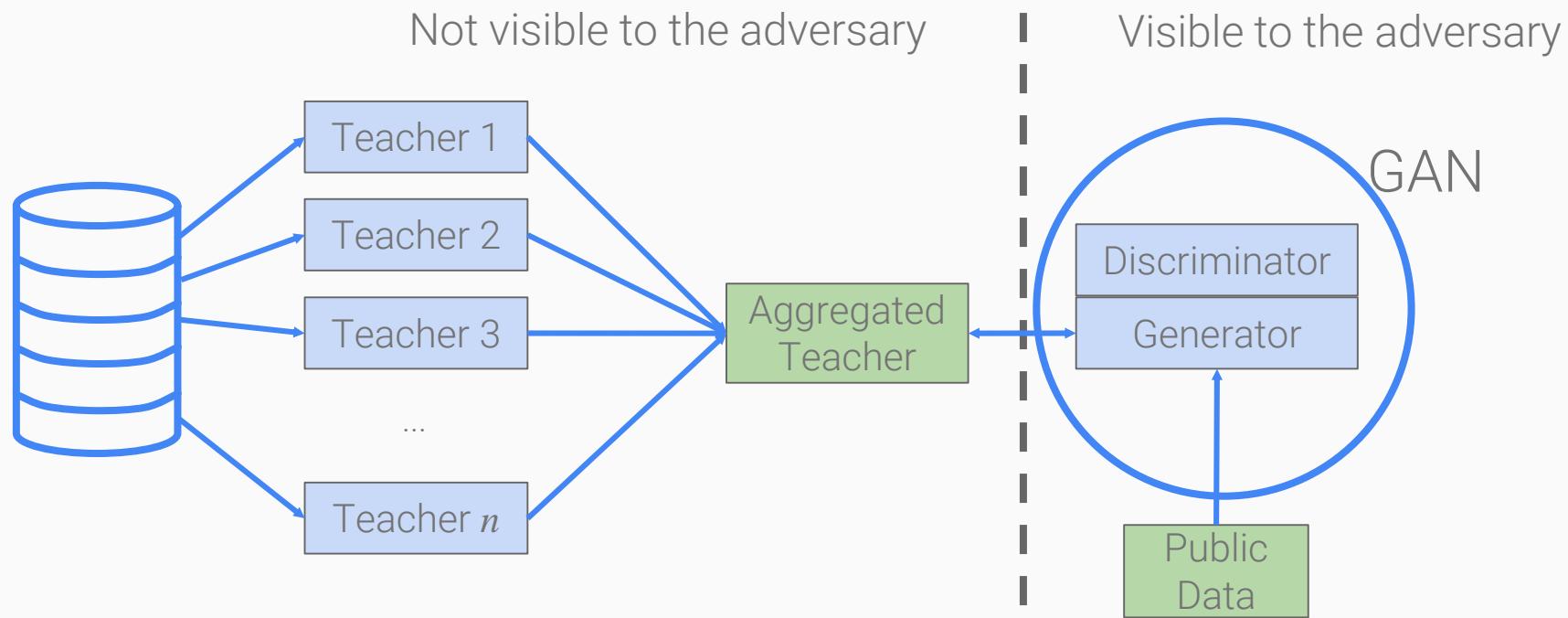


Add noise



Take maximum

Semi-Supervised Setting: PATE-G



References

DP-SGD

- Abadi et al., “Deep Learning with Differential Privacy”, ACM CCS 2016
- <https://github.com/tensorflow/privacy>
- Blog [post](#): Radebaugh and Erlingsson, “Introducing TensorFlow Privacy: Learning with Differential Privacy for Training Data”, 2019

PATE:

- Papernot et al., “Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data”, ICLR 2017
- Papernot et al., “Scalable Private Learning with PATE”, ICLR 2018