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 Social scientists increasingly use confidential data to publish statistics based on cells 
with a small number of observations 

 Causal effects of schools or hospitals [e.g., Angrist et al. 2013, Hull 2018]

 Local area statistics on health outcomes or income mobility [e.g., Cooper et al. 2015, Chetty et al. 2018]

Publishing Statistics Based on Small Cells
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Parents at 25th Percentile

= 41st Percentile
= $31,900



Note: Blue = More Upward Mobility, Red = Less Upward Mobility
Source: Chetty, Friedman, Hendren, Jones, and Porter 2018
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 Problem with releasing such estimates at smaller geographies (e.g., Census tract): 
risk of disclosing an individual’s data

 Literature on differential privacy has developed practical methods to protect privacy 
for simple statistics such as means and counts [Dwork 2006, Dwork et al. 2006]

 But methods for disclosing more complex estimates, e.g. regression or quasi-
experimental estimates, are not feasible for many social science applications 
[Dwork and Lei 2009, Smith 2011, Kifer et al. 2012]

Controlling Privacy Loss



 We develop and implement a simple method of controlling privacy loss when 
disclosing arbitrarily complex statistics in small samples

– The “Maximum Observed Sensitivity” (MOS) algorithm

 Method outperforms widely used methods such as cell suppression both in terms of 
privacy loss and statistical accuracy

– Does not offer a formal guarantee of privacy, but potential risks occur only at more 
aggregated levels (e.g., the state level)

This Paper: A Practical Method to Reduce Privacy Loss
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 Goal: release predicted values from univariate regressions (ߠ) in small cells

Privacy Protection via Noise Infusion
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 Goal: release predicted values from univariate regressions (ߠ) in small cells

 Follow LaPlace mechanism: add i.i.d. random noise ߱ to these statistics:

෨ߠ ൌ ߠ ൅ ߱

 When ߱	~	ܮ	 0, ∆ఏ
ఌ

, can bound the privacy loss (measured as the log-likelihood ratio):

log
݂ ෨ߠ െ ଵሻܦሺߠ
݂ ෨ߠ െ ଶሻܦሺߠ

൑ ߝ

 Intuitively, this ratio measures whether a published statistic is more likely given dataset 
D1 vs D2, for two adjacent datasets (i.e., that differ by just one element)

– The more noise that is added, the closer to 0 this log-likelihood ratio becomes, decreasing 
the ability to distinguish between the underlying datasets from the statistic that is released

Privacy Protection via Noise Infusion



 Key remaining question: how do we compute sensitivity ∆ߠ?

 Standard approaches in differential privacy literature do not function well in 
practice in our setting: 

 Measure global (or smooth) sensitivity: Typically infinite in a regression setting

Calculating Sensitivity
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 Key remaining question: how do we compute sensitivity ∆ߠ?

 Standard approaches in differential privacy literature do not function well in 
practice in our setting: 

 Measure global (or smooth) sensitivity: Typically infinite in a regression setting

 Robust regression techniques: Poor downstream properties (e.g., no iterated expectations 
with medians, cannot re-aggregate the data)

 Compose regression estimates from noise-infused variance and covariance: Generates bias, 
unstable estimates due to noise in the denominator

 How can we proceed?

Calculating Sensitivity



 Our method: use the maximum observed local sensitivity across all cells in 
the data

– In geography of opportunity application, calculate local sensitivity in every tract

– Then use the maximum observed sensitivity (MOS) across all tracts within a given 
state as the sensitivity parameter for every tract in that state

 Analogous to Empirical Bayes approach of using actual data to construct 
prior on possible realizations rather than considering all possible priors

Maximum Observed Sensitivity
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 Use max observed sensitivity ߯,	tract counts, and exogenously specified 
privacy parameter ߝ	to add noise and construct public estimates:

෨௚ߠ ൌ ௚ߠ ൅ܮ 0,
߯

ߝ ௚ܰ
																						 ෩ܰ௚ ൌ ௚ܰ ൅ܮ 0,

1
ߝ

 This method not “provably private,” but it reduces privacy risk to release of the 
single max observed sensitivity parameter (߯)

– Privacy loss from release of regression statistics themselves is controlled below risk 
tolerance threshold ߝ

 Critically, ߯ can be computed at a sufficiently aggregated level that disclosure 
risks are considered minimal ex-ante

– Ex: Census Bureau currently does not consider most statistics released at state or 
higher level to pose a privacy risk

Producing Noise-Infused Estimates for Public Release
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Application: Opportunity Atlas

 Set risk tolerance  following Abowd and Schmutte (2019) approach of 
weighing privacy losses against social benefits

 Two definitions of social benefit:

1. Mean-squared error loss when predicting tract-level outcomes

2. Accuracy of information when predicting the best and worst tracts

 E.g., consider a family seeking to move to a neighborhood with high upward mobility

 Operationalize e.g. as ݂ ݈݁݅ݐ݊ܽݑܳ	݈ܾܿ݅ݑܲ	|	݈݁݅ݐ݊ܽݑܳ	݈ܽݑݐܿܣ ൐ 0.95	



Note: Blue = More Upward Mobility, Red = Less Upward Mobility
Source: Chetty, Friedman, Hendren, Jones, and Porter 2018
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Note: Blue = More Upward Mobility, Red = Less Upward Mobility
Source: Chetty, Friedman, Hendren, Jones, and Porter 2018

Geography of Upward Mobility for Black Children in Washington, D.C.
Average Income at Age 35 for Children whose Parents Earned $25,000 (25th percentile)

>$44k$24k<$12k



2 Method: Maximum Observed Sensitivity

1 Statement of the Problem

Comparison with Traditional Methods3



Comparison to Alternative Methods

 We now compare the properties of our noise-infusion approach to existing 
methods (such as count-based cell suppression).

 Evaluate three key metrics: 

1. Privacy loss

2. Statistical bias

3. Statistical precision
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Slope = 0.028

(0.017)
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 Main lesson: tools from differential privacy literature can be adapted to control privacy 
loss while improving statistical inference 

 Opportunity Atlas has been used by half a million people, by housing authorities to 
help families move to better neighborhoods, and in downstream research 
[Creating Moves to Opportunity Project; Morris et al. 2018]

 The MOS algorithm can be practically applied to any empirical estimate

 Example: difference-in-differences or regression discontinuity

 Even when there is only one quasi-experiment, pretend that a similar change 
occurred in other cells of the data and compute MOS across all cells

Conclusion



 Two areas for further work that could increase use of differential privacy methods in social 
science:

1. Developing formal metrics for risk of privacy loss for algorithms in which a single 
statistic (e.g., sensitivity) is released at a broader level of aggregation

2. Developing techniques that can be applied to many estimators without requiring 
users to develop new algorithms for each application

Future Work
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 More formally, consider two datasets ܦଵ and ܦଶ that differ by just one 
element, and an algorithm ࣛ ܦ that produces a statistic ߠ. 

– Let ܺ be the dataset that produced ߠ.

 The algorithm is “ߝ	-differentially private” if:

Pr ܺ ൌ ଵܦ ൑ ݁ఌ ൈ Pr ܺ ൌ ଶܦ

 Intuitively, it is not much more likely that the true underlying dataset is  ܦଵ or 
 ଶ, where the probability is calculated over the randomness from theܦ
algorithm.

Formal Definition of Differential Privacy



1. Calculate the local sensitivity ܵܮఏ,௚ for the statistic in each cell ݃ of your data

2. Compute the maximum observed sensitivity envelope scaling parameter χ	:

χ ൌ max
௚ ௚ܰ ൈ ఏ,௚ܵܮ

3. Determine the privacy parameter ߝ	.
4. Add random noise proportional to and pre-specified privacy parameter to each statistic:

෨௚ߠ ൌ ௚ߠ ൅ܮ 0, χ
ఌே೒

෩ܰ௚ ൌ ௚ܰ ൅ ܮ 0, ଵ
ఌ

5.   Release the noise-infused statistics ߠ෨௚ , ෩ܰ௚ ߝ , and χ publicly.

– Can release standard errors through similar procedure.

Summary: Maximum Observed Sensitivity Disclosure Algorithm



 Measuring Incomes: 
– Parents’ pre-tax household incomes: mean Adjusted Gross Income from 1994-

2000, assigning non-filers zeros.  
– Children’s pre-tax incomes measured in 2014-15 (ages 31-37)

 To mitigate lifecycle bias, focus on percentile ranks in national distribution:
– Rank children relative to their birth cohort and parents relative to other parents  
– Address non-linearities in a linear regression framework:

௜௖ݕ ൌ ௖ߙ	 ൅ ௖ߚ ൈ ݂ ௜௖݌ ൅ ௜௖ߝ

Specification Details
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 Data sources: Census data (2000, 2010, ACS) covering U.S. population 
linked to federal income tax returns from 1989-2015

 Link children to parents based on dependent claiming on tax returns

 Target sample: Children in 1978-83 birth cohorts who were born in the U.S. 
or are authorized immigrants who came to the U.S. in childhood

 Analysis sample: 20.5 million children, 96% coverage rate of target sample

Data Sources and Sample Definitions



 Measuring Incomes: 
– Parents’ pre-tax household incomes: mean Adjusted Gross Income from 1994-

2000, assigning non-filers zeros.  
– Children’s pre-tax incomes measured in 2014-15 (ages 31-37)

 To mitigate lifecycle bias, focus on percentile ranks in national distribution:
– Rank children relative to their birth cohort and parents relative to other parents  
– Address non-linearities in a linear regression framework:

௜௖ݕ ൌ ௖ߙ	 ൅ ௖ߚ ൈ ݂ ௜௖݌ ൅ ௜௖ߝ

 Define cells for the MOS parameter at the race-by-state-by-gender level; 
e.g., white women in Utah.

Specification Details



 Predicted Values at the 25th and 75th percentiles

 Winsorize

 Exclude Small Cells

 Gaussian Noise

 Weighted Average over Time Spent in Each Neighborhood

Other Practicalities for Privacy Method Implementation



 Predicted Values We produce predicted values at the 25th and 75th percentiles 
of parent income, so that we can estimate the full line

– Instead predict the 50th and 1st (100th) for tracts with less than 10% of obs above 
(below) median parent income

Other Practicalities for Privacy Method Implementation



 Predicted Values

 Winsorize the Data to reduce the influence of outliers, sensitivity

– Must calculate sensitivity, MOS on the composed function including Winsorization

Other Practicalities for Privacy Method Implementation



 Predicted Values

 Winsorize

 Define Cells for the MOS scaling parameter at the state X race X gender level.  
E.g., white women in Utah.

Other Practicalities for Privacy Method Implementation



 Predicted Values

 Winsorize

 Define Cells 

 Exclude Small Cells to comply with current IRS regulations.

– Censor cells with fewer than 20 obs; better would be to censor on public counts to 
avoid further privacy “leaks”

Other Practicalities for Privacy Method Implementation



 Predicted Values

 Winsorize

 Define Cells

 Exclude Small Cells

 Gaussian Noise In practice, Normally distributed noise is more convenient for 
downstream statistical inference, e.g., the construction of confidence intervals 
or Bayesian shrinkage estimators.

– Instead add ܰ 0, 2 ఞ
ఌே೒

, though will not conform exactly to privacy loss bounds in the tails.

Other Practicalities for Privacy Method Implementation



Comparison to Alternative Methods: Privacy

 Our method is likely to reduce the risk of privacy loss substantially relative to 
count-based cell suppression (like most noise-infusion algorithms)

 Even if one suppresses cells with counts below some threshold, can recover 
information about a single individual from similar datasets.

 Hence, statistics released after cell suppression still effectively have infinite 
(uncontrolled) privacy risk. 

 In contrast, our maximum observed sensitivity approach reduces uncontrolled 
privacy risks to one number (߯)

 Can typically estimate in a sufficiently large sample that poses negligible privacy risk. 



Comparison to Alternative Methods: Statistical Bias

 Noise infusion via known parameters offers significant advantages in 
downstream statistical inference.

 Easy to extract unbiased estimates of any downstream parameter using standard 
measurement error correction techniques

 In contrast, count-based suppression can create bias in ways that cannot be easily 
identified or corrected ex-post.

 Illustrate by comparing how actual results reported in Chetty et al. (2018) would 
have changed had count-based suppression been used instead of noise infusion

 Are teenage birth rates higher for those who grow up in neighborhood with a higher 
share of single parents? 



Comparison to Alternative Methods: Statistical Bias

 In noise-infused data, regression provides an unbiased estimate of the (strong positive) 
relationship between teenage-birth rates for black women and single-parent share.

 More generally, can adjust for noise using the “signal correlation”

 In contrast, count-based suppression generates bias that eliminates the result, since 
induces correlated measurement error from two sources:

 Suppressing cells with few teenage births mechanically omits tracts with low teenage birth 
rates, which are concentrated in areas with few single parents.

 Areas with a smaller black population (i.e., less diversity) have fewer teenage births and fewer 
areas with few single parents

 Identifying and correcting for these biases would be very difficult if one only had access to 
the post-suppression data
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Comparison to Alternative Methods: Statistical Precision

 Primary concern of end users: will estimates be too noisy to be useful?

 In Atlas, noise added to protect privacy was similar to inherent noise due to 
sampling error  estimates remain highly accurate

 E.g., added privacy noise reduces reliability (i.e., fraction of total variance that is 
signal) only from 71.8% to 71.0%


