

A Practical Method to Reduce Privacy Loss when Disclosing Statistics Based on Small Samples

Raj Chetty, Harvard University and NBER
John N. Friedman, Brown University and NBER

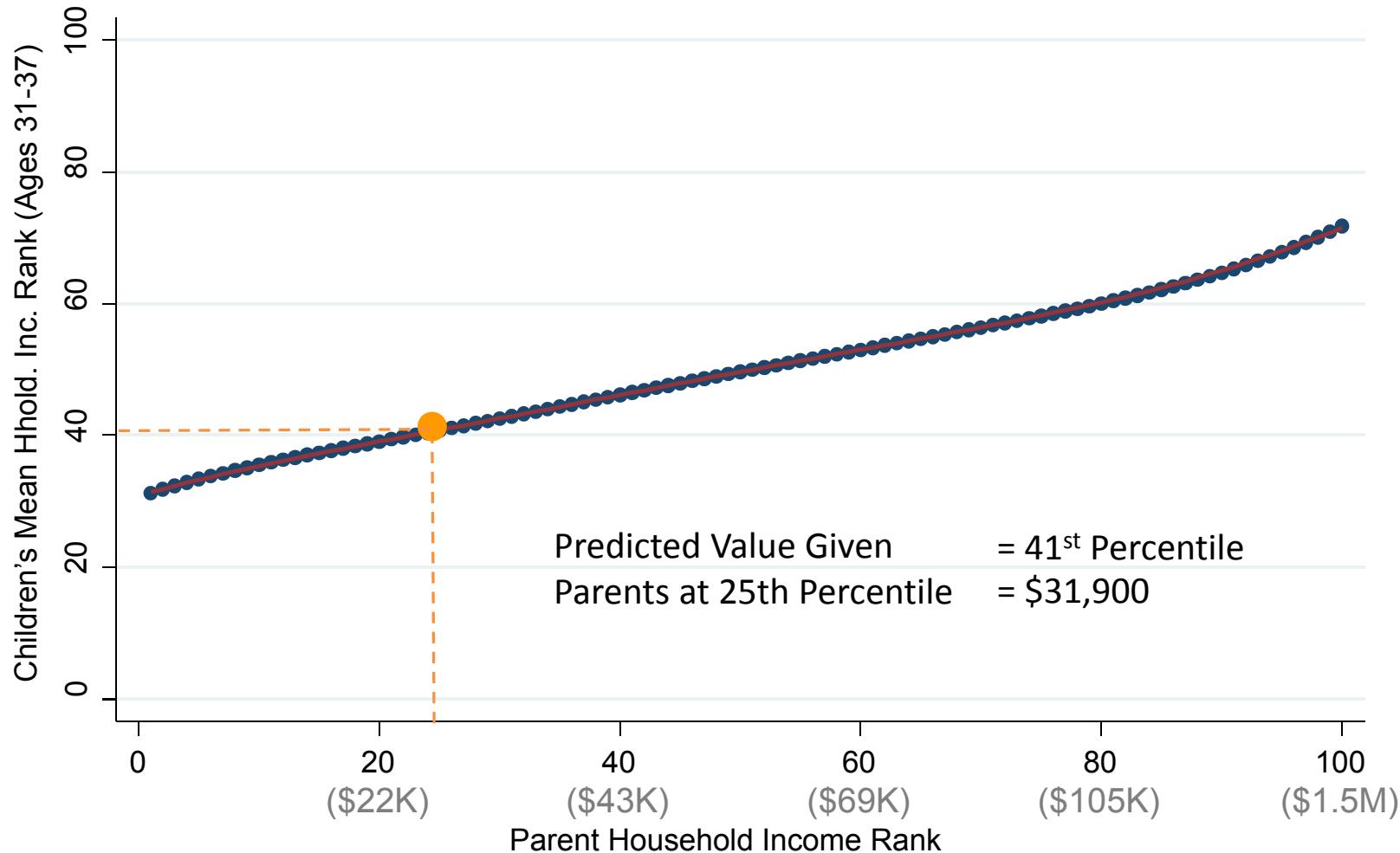
CNSTAT Workshop, June 2019

Publishing Statistics Based on Small Cells

- Social scientists increasingly use confidential data to publish statistics based on cells with a small number of observations
 - Causal effects of schools or hospitals [e.g., Angrist et al. 2013, Hull 2018]
 - Local area statistics on health outcomes or income mobility [e.g., Cooper et al. 2015, Chetty et al. 2018]

Intergenerational Mobility in the United States

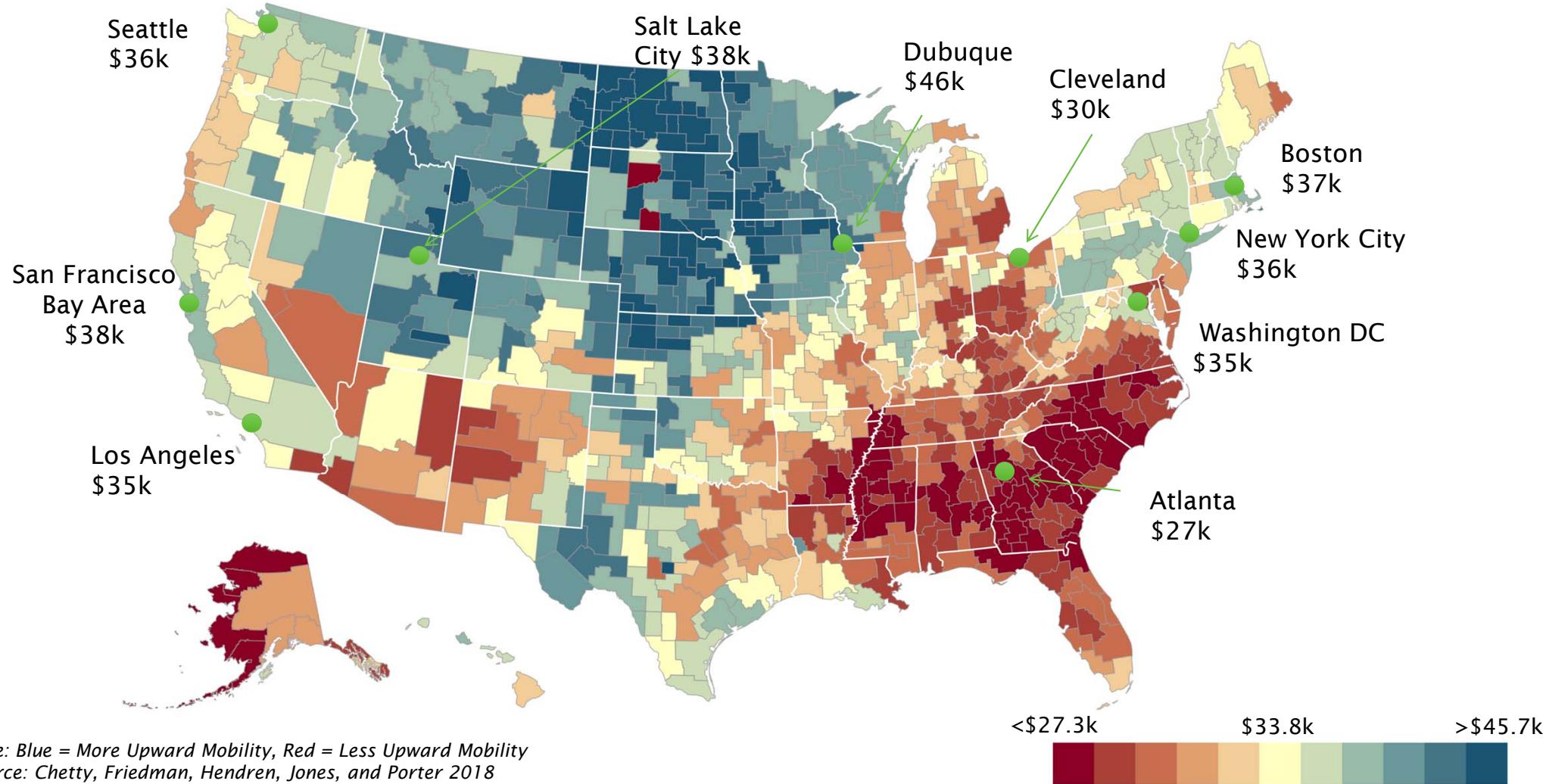
Mean Child Household Income Rank vs. Parent Household Income Rank



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

Geography of Upward Mobility in the United States

Average Income at Age 35 for Children whose Parents Earned \$25,000 (25th percentile)



Controlling Privacy Loss

- Problem with releasing such estimates at smaller geographies (e.g., Census tract): risk of disclosing an individual's data
- Literature on differential privacy has developed practical methods to protect privacy for simple statistics such as means and counts [Dwork 2006, Dwork et al. 2006]
- But methods for disclosing more complex estimates, e.g. regression or quasi-experimental estimates, are not feasible for many social science applications [Dwork and Lei 2009, Smith 2011, Kifer et al. 2012]

This Paper: A Practical Method to Reduce Privacy Loss

- We develop and implement a simple method of controlling privacy loss when disclosing arbitrarily complex statistics in small samples
 - The “Maximum Observed Sensitivity” (MOS) algorithm
- Method outperforms widely used methods such as cell suppression both in terms of privacy loss and statistical accuracy
 - Does not offer a formal guarantee of privacy, but potential risks occur only at more aggregated levels (e.g., the state level)

1

Method: Maximum Observed Sensitivity

2

Application: Opportunity Atlas

3

Comparison with Traditional Methods

1

Method: Maximum Observed Sensitivity

2

Application: Opportunity Atlas

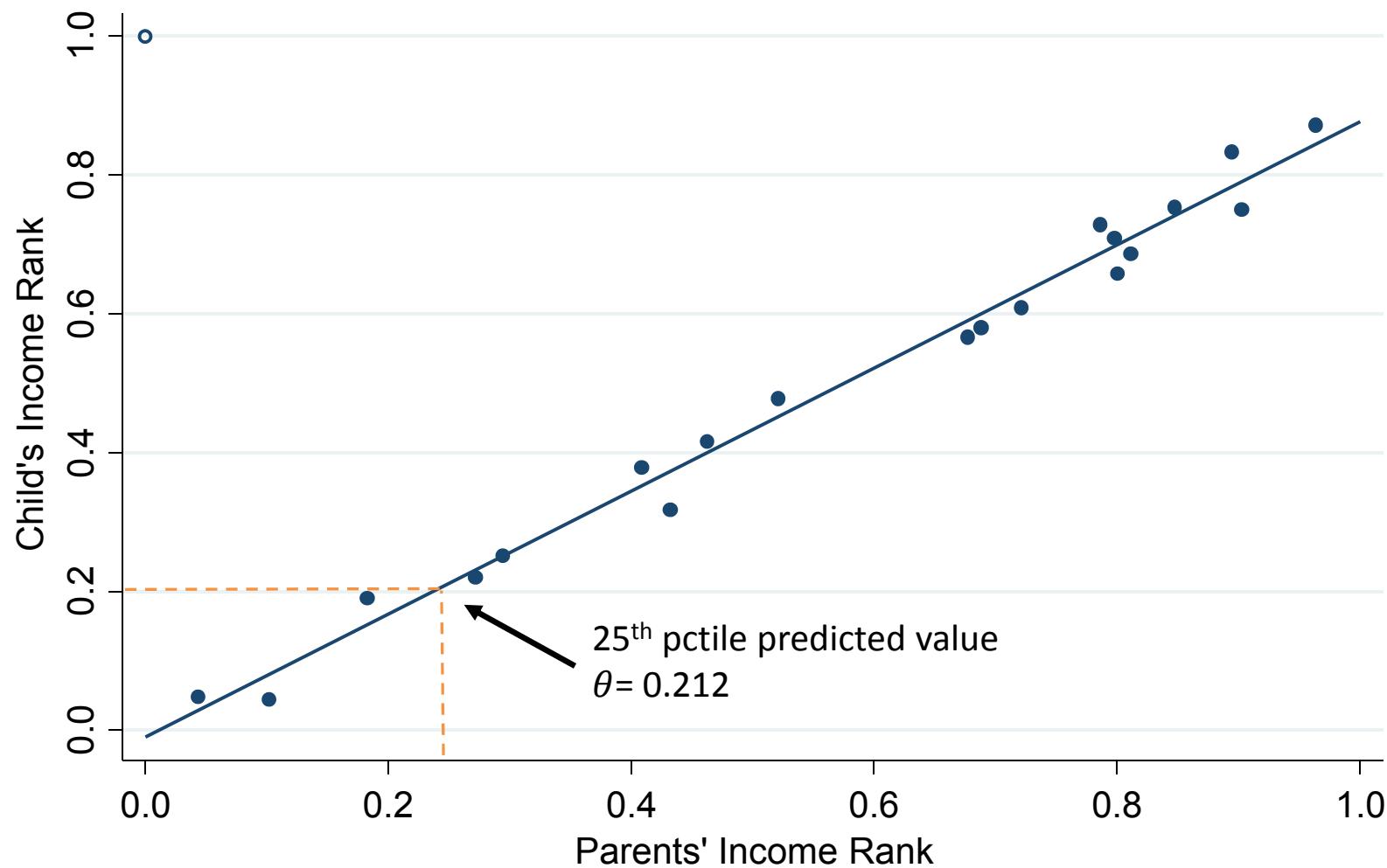
3

Comparison with Traditional Methods

Privacy Protection via Noise Infusion

- Goal: release predicted values from univariate regressions (θ) in small cells

Example Regression from One Small Cell



Source: Authors' simulations.

Privacy Protection via Noise Infusion

- Goal: release predicted values from univariate regressions (θ) in small cells
- Follow LaPlace mechanism: add i.i.d. random noise ω to these statistics:

$$\tilde{\theta} = \theta + \omega$$

- When $\omega \sim L\left(0, \frac{\Delta\theta}{\varepsilon}\right)$, can bound the privacy loss (measured as the log-likelihood ratio):

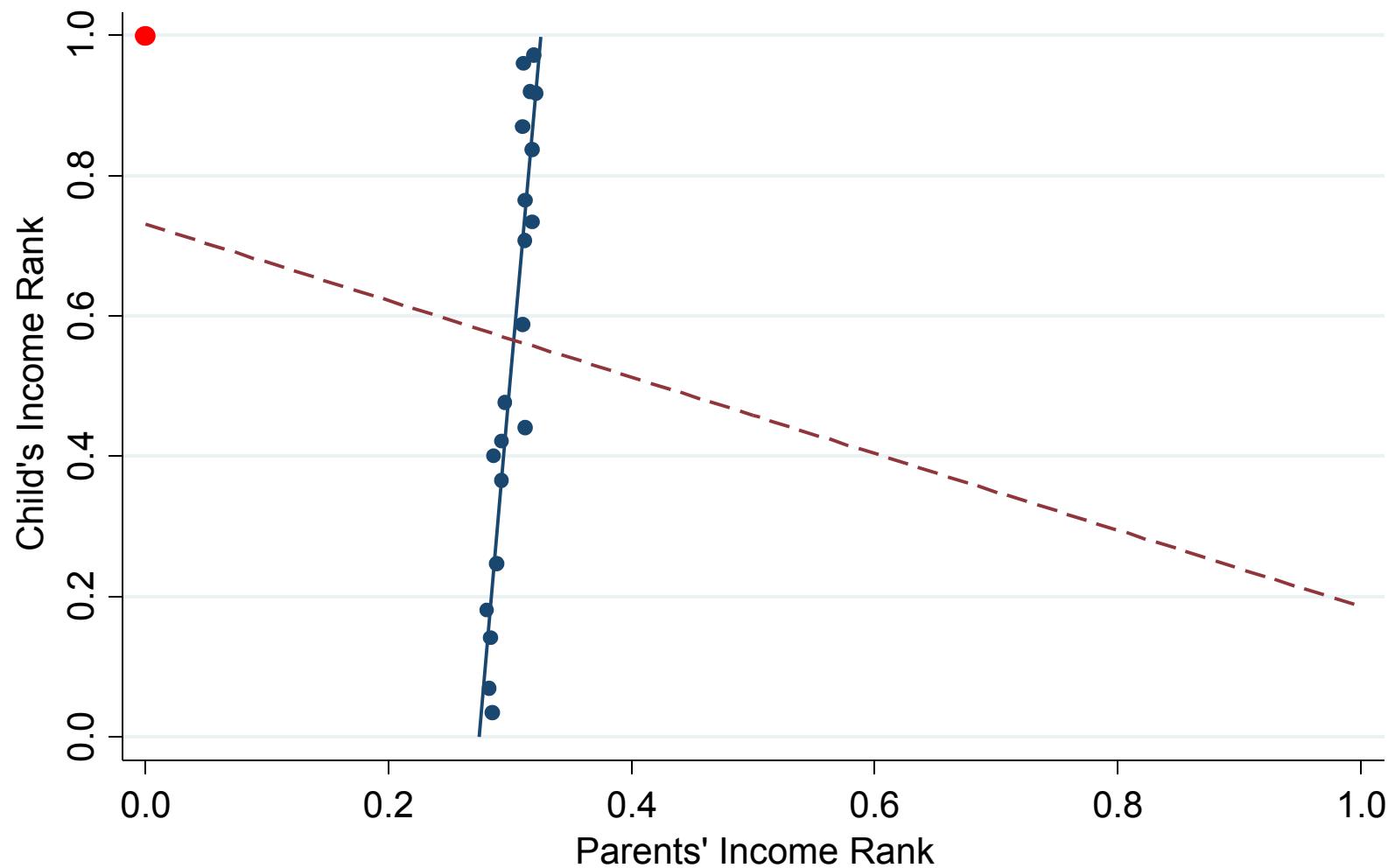
$$\log \frac{f(\tilde{\theta} - \theta(D_1))}{f(\tilde{\theta} - \theta(D_2))} \leq \varepsilon$$

- Intuitively, this ratio measures whether a published statistic is more likely given dataset D_1 vs D_2 , for two adjacent datasets (i.e., that differ by just one element)
 - The more noise that is added, the closer to 0 this log-likelihood ratio becomes, decreasing the ability to distinguish between the underlying datasets from the statistic that is released

Calculating Sensitivity

- Key remaining question: how do we compute sensitivity $\Delta\theta$?
- Standard approaches in differential privacy literature do not function well in practice in our setting:
 - Measure global (or smooth) sensitivity: Typically infinite in a regression setting

Global Sensitivity: How Much Can A Single Observation Change the Estimate in **Any** Dataset?



Source: Authors' simulations.

Calculating Sensitivity

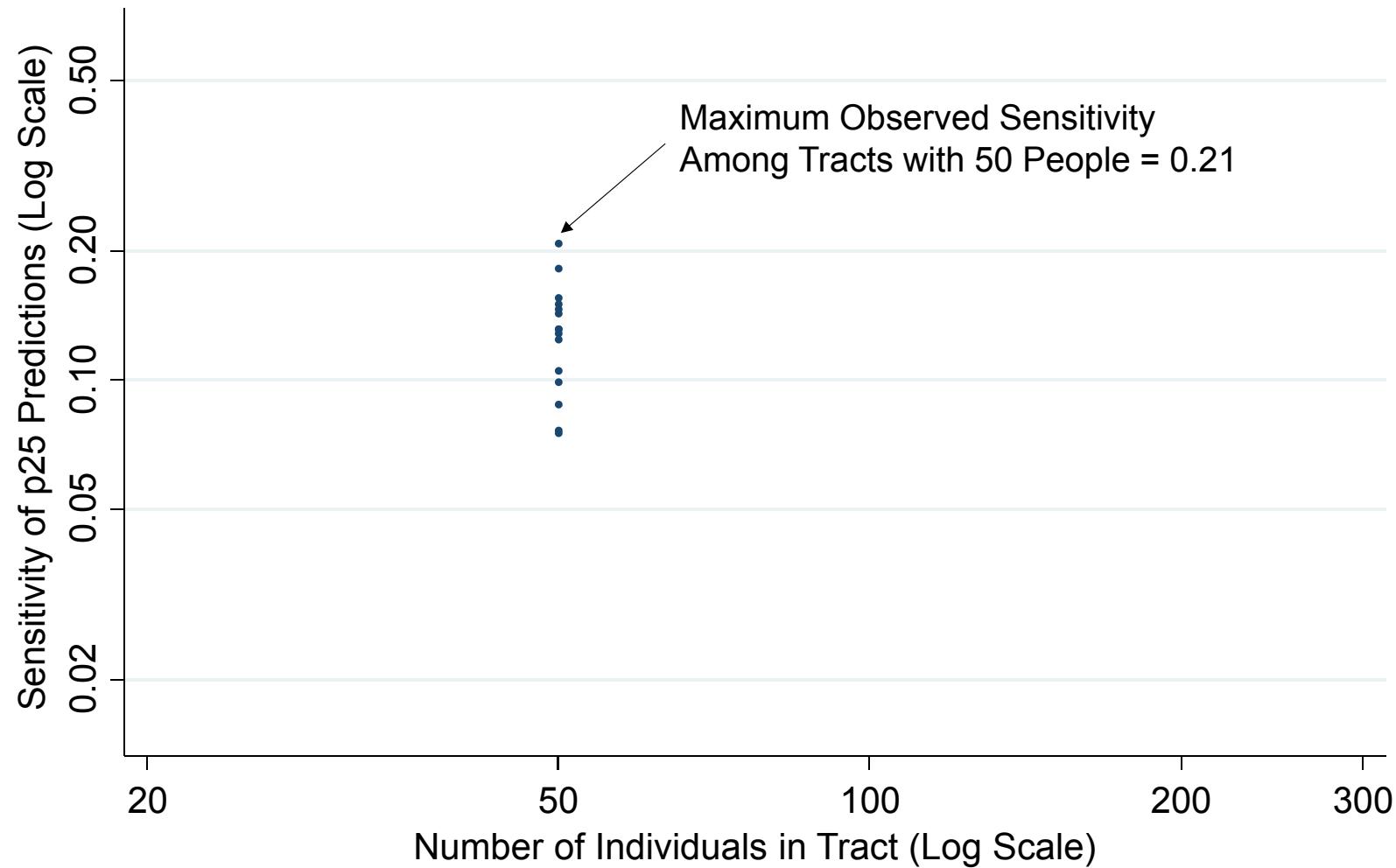
- Key remaining question: how do we compute sensitivity $\Delta\theta$?
- Standard approaches in differential privacy literature do not function well in practice in our setting:
 - Measure global (or smooth) sensitivity: Typically infinite in a regression setting
 - Robust regression techniques: Poor downstream properties (e.g., no iterated expectations with medians, cannot re-aggregate the data)
 - Compose regression estimates from noise-infused variance and covariance: Generates bias, unstable estimates due to noise in the denominator

→ How can we proceed?

Maximum Observed Sensitivity

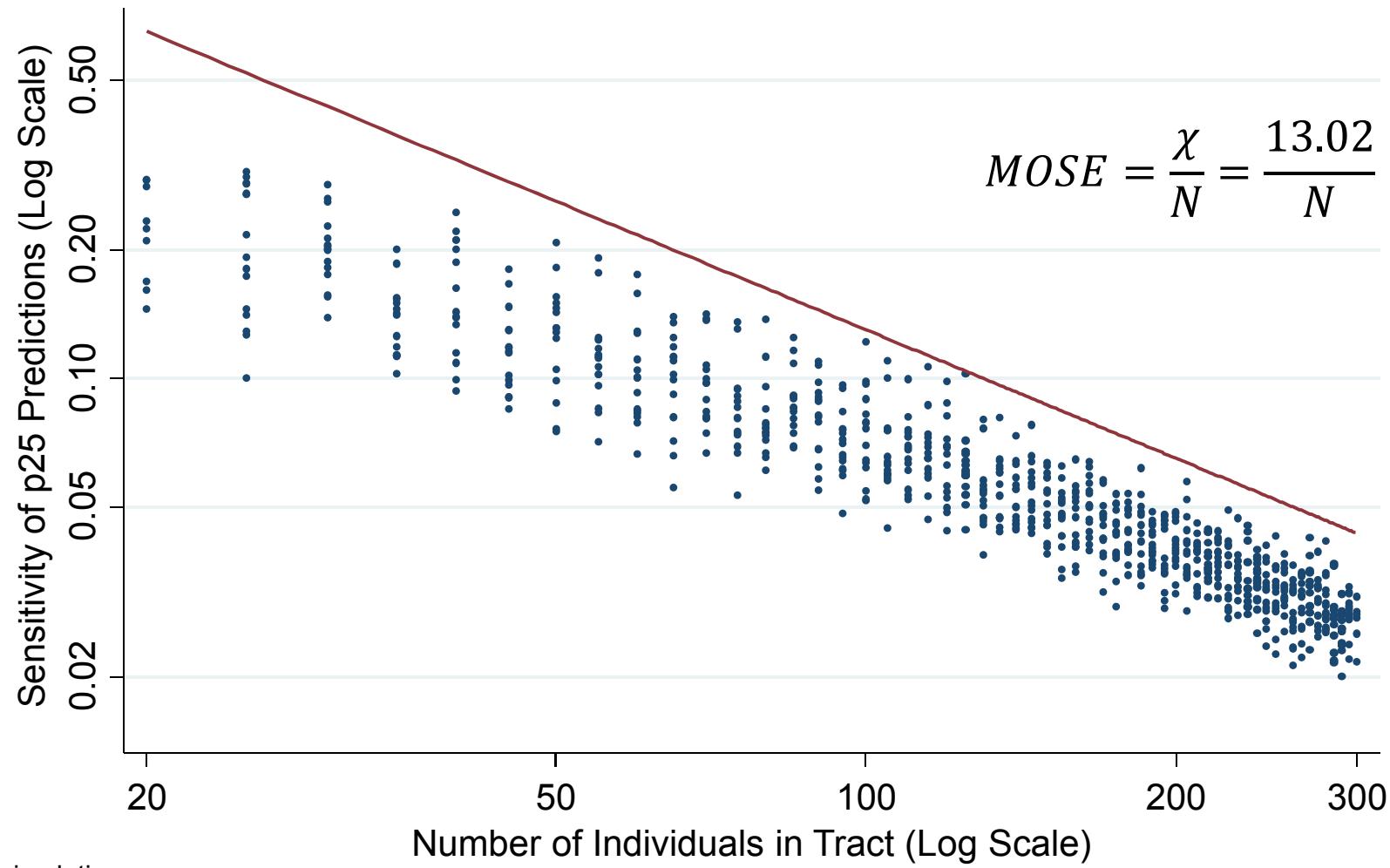
- Our method: use the maximum observed local sensitivity across all cells in the data
 - In geography of opportunity application, calculate local sensitivity in every tract
 - Then use the maximum observed sensitivity (MOS) across all tracts within a given state as the sensitivity parameter for every tract in that state
- Analogous to Empirical Bayes approach of using actual data to construct prior on possible realizations rather than considering all possible priors

Maximum Observed Sensitivity Envelope



Source: Authors' simulations.

Computing Maximum Observed Sensitivity



Source: Authors' simulations.

Producing Noise-Infused Estimates for Public Release

- Use max observed sensitivity χ , tract counts, and exogenously specified privacy parameter ε to add noise and construct public estimates:

$$\tilde{\theta}_g = \theta_g + L\left(0, \frac{\chi}{\varepsilon N_g}\right) \quad \tilde{N}_g = N_g + L\left(0, \frac{1}{\varepsilon}\right)$$

- This method not “provably private,” but it reduces privacy risk to release of the single max observed sensitivity parameter (χ)
 - Privacy loss from release of regression statistics themselves is controlled below risk tolerance threshold ε
- Critically, χ can be computed at a sufficiently aggregated level that disclosure risks are considered minimal ex-ante
 - Ex: Census Bureau currently does not consider most statistics released at state or higher level to pose a privacy risk

1

Method: Maximum Observed Sensitivity

2

Application: Opportunity Atlas

3

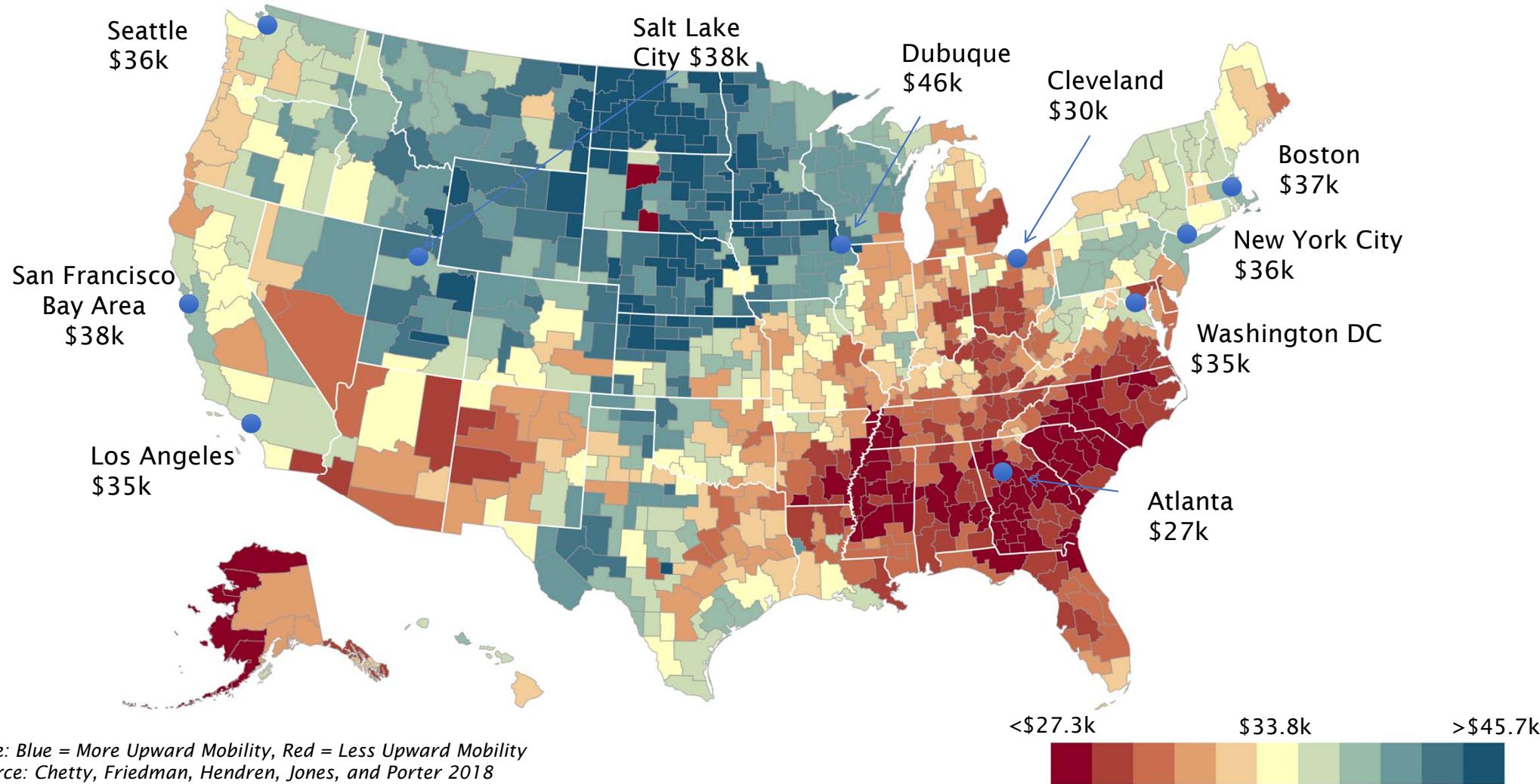
Comparison with Traditional Methods

Application: Opportunity Atlas

- Set risk tolerance ε following Abowd and Schmutte (2019) approach of weighing privacy losses against social benefits
- Two definitions of social benefit:
 1. Mean-squared error loss when predicting tract-level outcomes
 2. Accuracy of information when predicting the best and worst tracts
 - E.g., consider a family seeking to move to a neighborhood with high upward mobility
 - Operationalize e.g. as $f(\text{Actual Quantile} \mid \text{Public Quantile} > 0.95)$

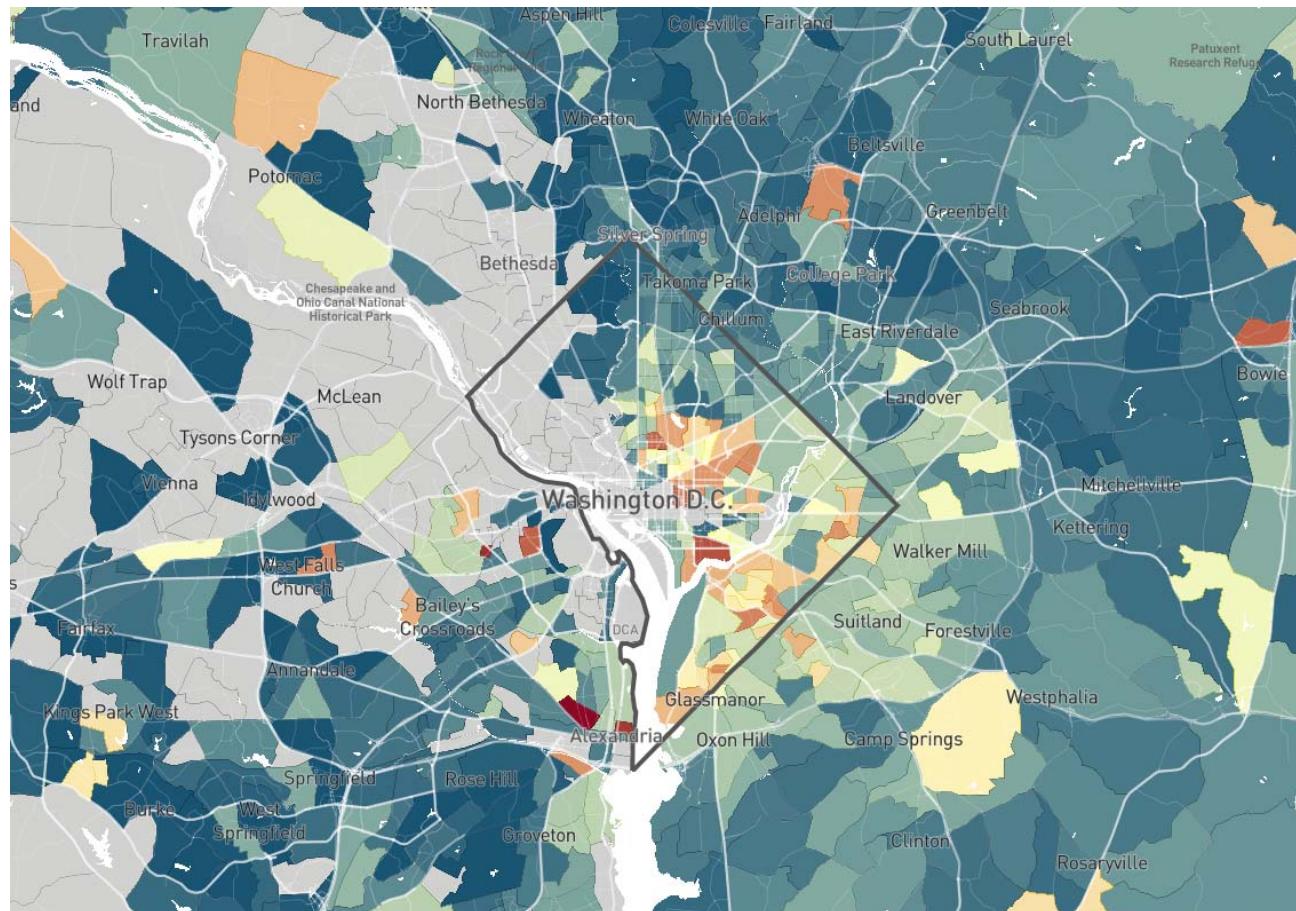
Geography of Upward Mobility in the United States

Average Income at Age 35 for Children whose Parents Earned \$25,000 (25th percentile)



Geography of Upward Mobility for Black Children in Washington, D.C.

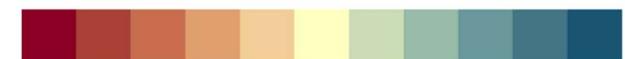
Average Income at Age 35 for Children whose Parents Earned \$25,000 (25th percentile)



<\$12k

\$24k

>\$44k



Note: Blue = More Upward Mobility, Red = Less Upward Mobility

Source: Chetty, Friedman, Hendren, Jones, and Porter 2018

1

Statement of the Problem

2

Method: Maximum Observed Sensitivity

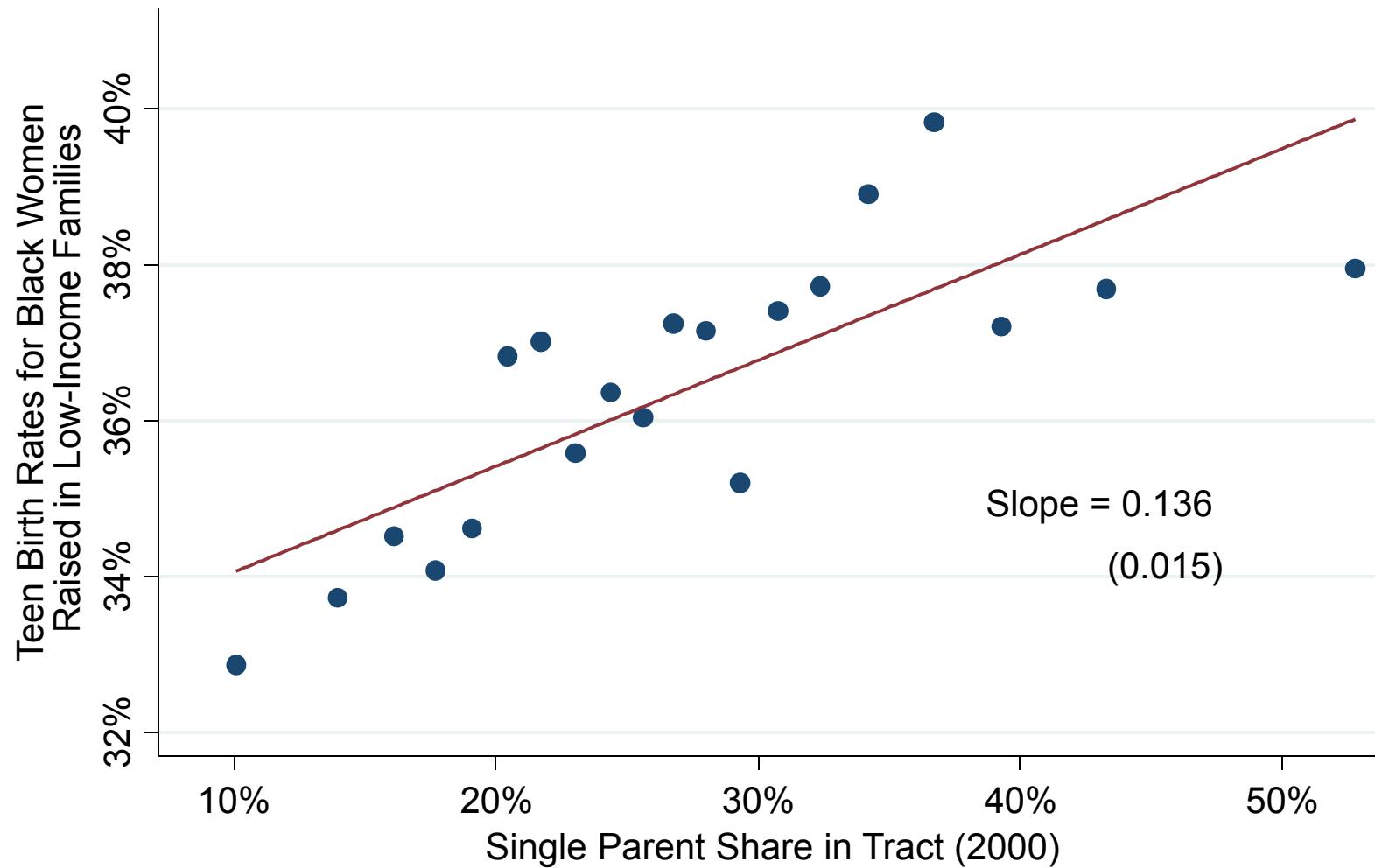
3

Comparison with Traditional Methods

Comparison to Alternative Methods

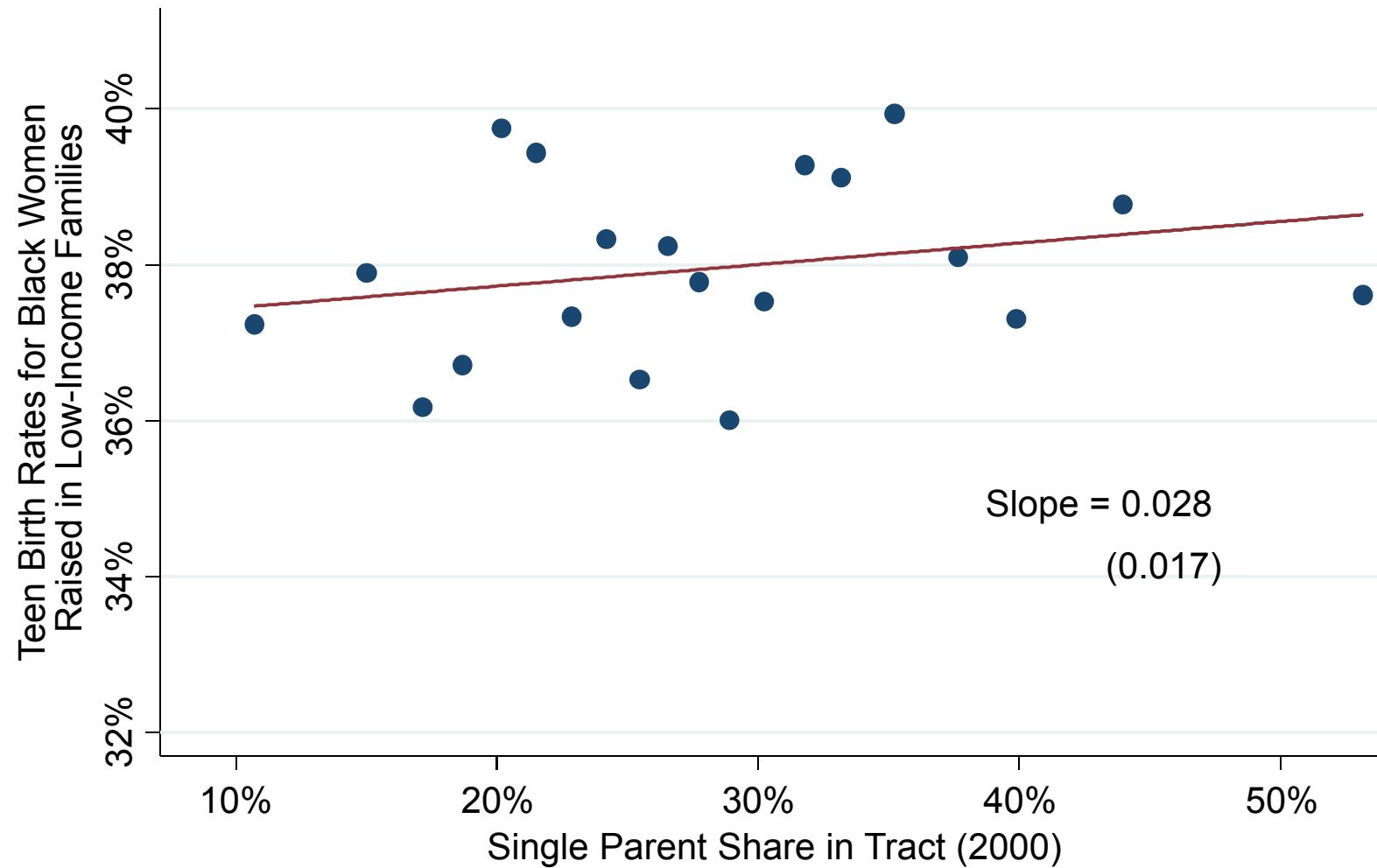
- We now compare the properties of our noise-infusion approach to existing methods (such as count-based cell suppression).
- Evaluate three key metrics:
 1. Privacy loss
 2. Statistical bias
 3. Statistical precision

Association between Teenage Birth and Two-Parent Share: Noise-Infused Data



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

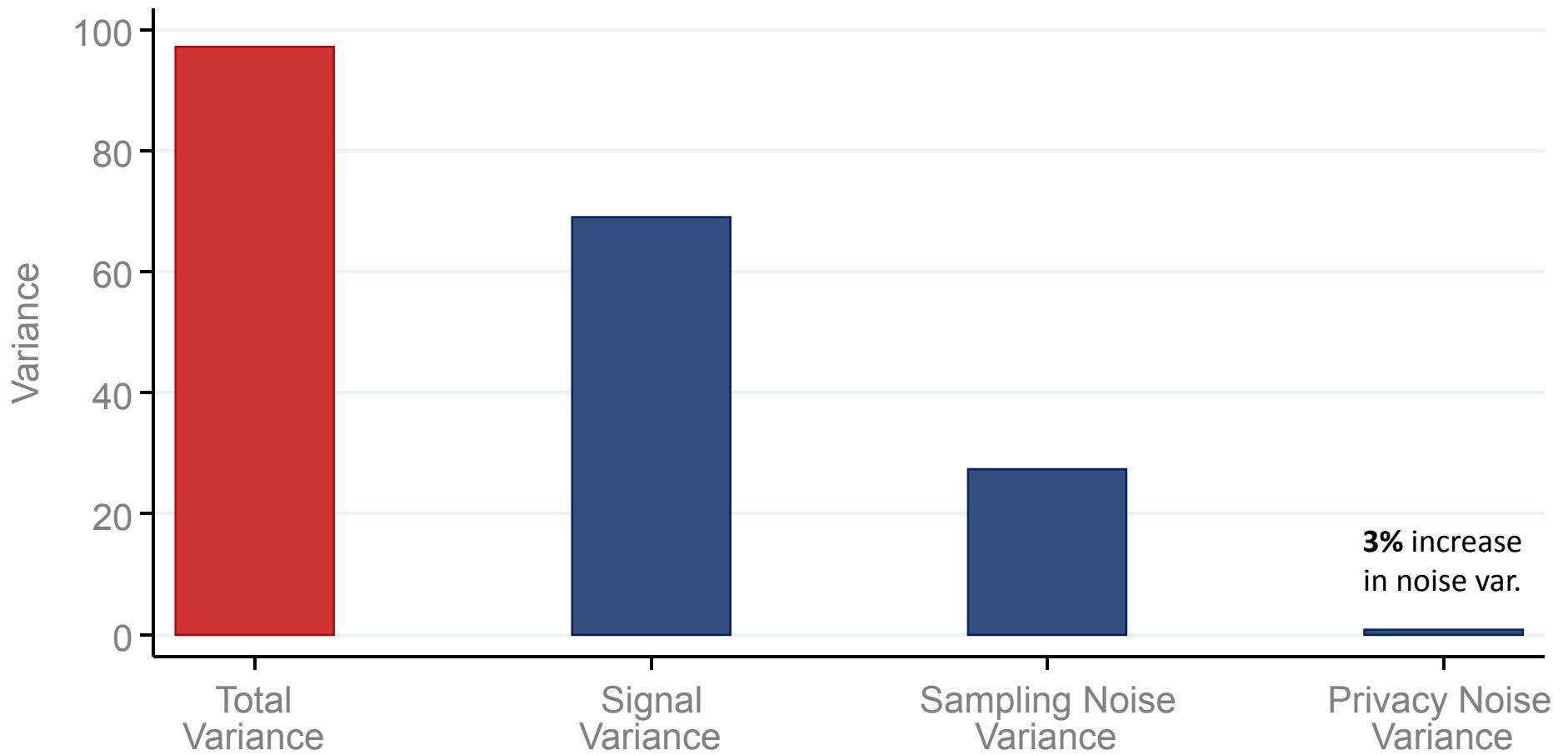
Association between Teenage Birth and Two-Parent Share: Count-Suppressed Data



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

Variance Decomposition for Tract-Level Estimates

Teenage Birth Rate For Black Women With Parents at 25th Percentile



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

Conclusion

- Main lesson: tools from differential privacy literature can be adapted to control privacy loss while improving statistical inference
- Opportunity Atlas has been used by half a million people, by housing authorities to help families move to better neighborhoods, and in downstream research [Creating Moves to Opportunity Project; Morris et al. 2018]
- The MOS algorithm can be practically applied to any empirical estimate
 - Example: difference-in-differences or regression discontinuity
 - Even when there is only one quasi-experiment, pretend that a similar change occurred in other cells of the data and compute MOS across all cells

Future Work

- Two areas for further work that could increase use of differential privacy methods in social science:
 1. Developing formal metrics for risk of privacy loss for algorithms in which a single statistic (e.g., sensitivity) is released at a broader level of aggregation
 2. Developing techniques that can be applied to many estimators without requiring users to develop new algorithms for each application

Appendix Slides

Formal Definition of Differential Privacy

- More formally, consider two datasets D_1 and D_2 that differ by just one element, and an algorithm $\mathcal{A}(D)$ that produces a statistic θ .

– Let X be the dataset that produced θ .

- The algorithm is “ ε -differentially private” if:

$$\Pr[X = D_1] \leq e^\varepsilon \times \Pr[X = D_2]$$

- Intuitively, it is not much more likely that the true underlying dataset is D_1 or D_2 , where the probability is calculated over the randomness from the algorithm.

Summary: Maximum Observed Sensitivity Disclosure Algorithm

1. Calculate the local sensitivity $LS_{\theta,g}$ for the statistic in each cell g of your data
2. Compute the maximum observed sensitivity envelope scaling parameter χ :

$$\chi = \max_g \{N_g \times LS_{\theta,g}\}$$

3. Determine the privacy parameter ε .
4. Add random noise proportional to and pre-specified privacy parameter to each statistic:

$$\tilde{\theta}_g = \theta_g + L\left(0, \frac{\chi}{\varepsilon N_g}\right) \quad \tilde{N}_g = N_g + L\left(0, \frac{1}{\varepsilon}\right)$$

5. Release the noise-infused statistics $\{\tilde{\theta}_g\}$, $\{\tilde{N}_g\}$, ε and χ publicly.
 - Can release standard errors through similar procedure.

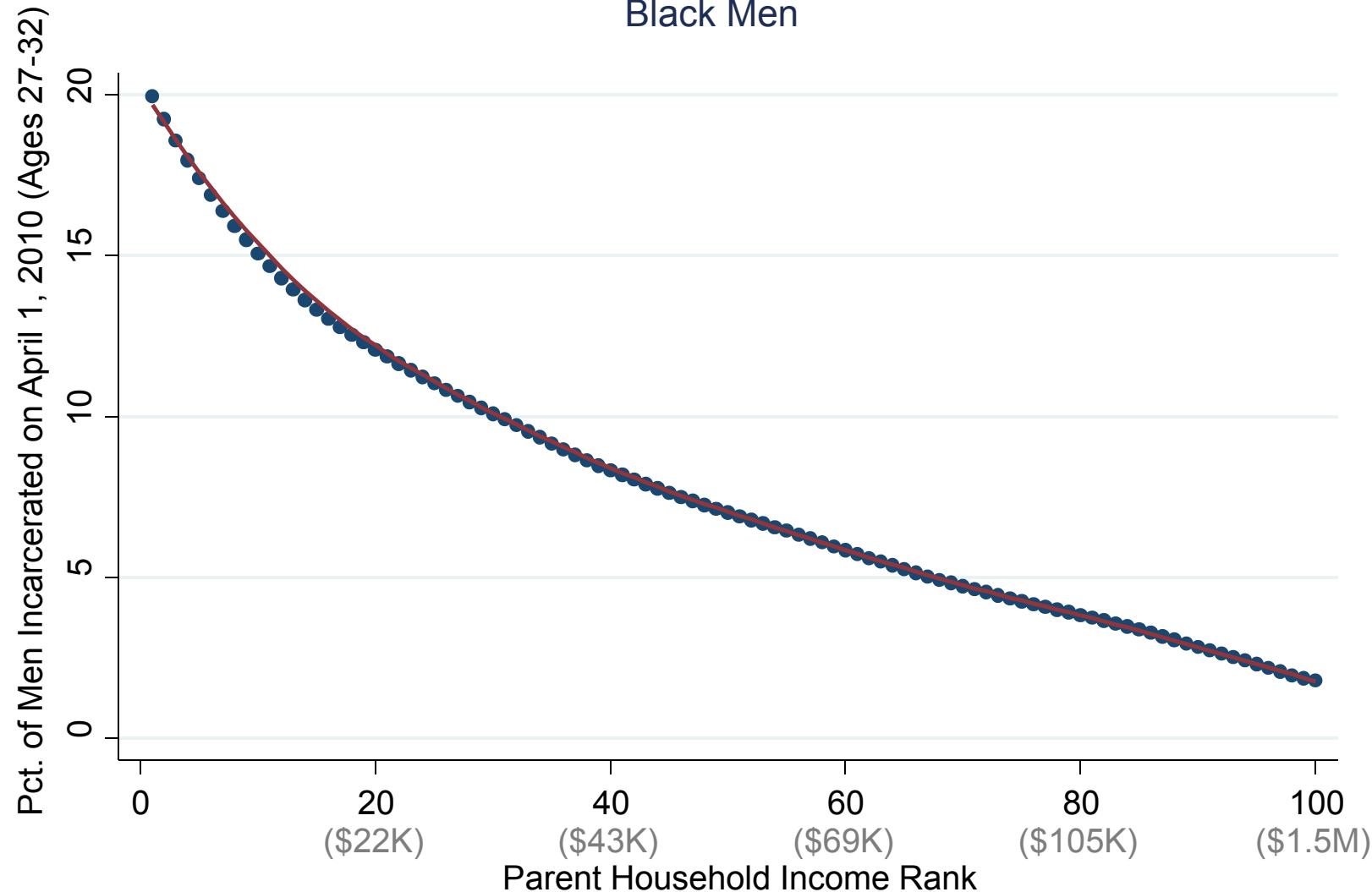
Specification Details

- Measuring Incomes:
 - Parents' pre-tax household incomes: mean Adjusted Gross Income from 1994-2000, assigning non-filers zeros.
 - Children's pre-tax incomes measured in 2014-15 (ages 31-37)
- To mitigate lifecycle bias, focus on percentile ranks in **national** distribution:
 - Rank children relative to their birth cohort and parents relative to other parents
 - Address non-linearities in a linear regression framework:

$$y_{ic} = \alpha_c + \beta_c \times f(p_{ic}) + \varepsilon_{ic}$$

Incarceration Rates vs. Parent Household Income Rank

Black Men



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

Data Sources and Sample Definitions

- Data sources: Census data (2000, 2010, ACS) covering U.S. population linked to federal income tax returns from 1989-2015
- Link children to parents based on dependent claiming on tax returns
- Target sample: Children in 1978-83 birth cohorts who were born in the U.S. or are authorized immigrants who came to the U.S. in childhood
- Analysis sample: 20.5 million children, 96% coverage rate of target sample

Specification Details

- Measuring Incomes:
 - Parents' pre-tax household incomes: mean Adjusted Gross Income from 1994-2000, assigning non-filers zeros.
 - Children's pre-tax incomes measured in 2014-15 (ages 31-37)
- To mitigate lifecycle bias, focus on percentile ranks in **national** distribution:
 - Rank children relative to their birth cohort and parents relative to other parents
 - Address non-linearities in a linear regression framework:
- Define cells for the MOS parameter at the race-by-state-by-gender level; e.g., white women in Utah.

$$y_{ic} = \alpha_c + \beta_c \times f(p_{ic}) + \varepsilon_{ic}$$

Other Practicalities for Privacy Method Implementation

- Predicted Values at the 25th and 75th percentiles
- Winsorize
- Exclude Small Cells
- Gaussian Noise
- Weighted Average over Time Spent in Each Neighborhood

Other Practicalities for Privacy Method Implementation

- **Predicted Values** We produce predicted values at the 25th and 75th percentiles of parent income, so that we can estimate the full line
 - Instead predict the 50th and 1st (100th) for tracts with less than 10% of obs above (below) median parent income

Other Practicalities for Privacy Method Implementation

- **Predicted Values**
- **Winsorize** the Data to reduce the influence of outliers, sensitivity
 - Must calculate sensitivity, MOS on the composed function including Winsorization

Other Practicalities for Privacy Method Implementation

- **Predicted Values**
- **Winsorize**
- **Define Cells** for the MOS scaling parameter at the state X race X gender level.
E.g., white women in Utah.

Other Practicalities for Privacy Method Implementation

- **Predicted Values**
- **Winsorize**
- **Define Cells**
- **Exclude Small Cells** to comply with current IRS regulations.
 - Censor cells with fewer than 20 obs; better would be to censor on public counts to avoid further privacy “leaks”

Other Practicalities for Privacy Method Implementation

- **Predicted Values**
- **Winsorize**
- **Define Cells**
- **Exclude Small Cells**
- **Gaussian Noise** In practice, Normally distributed noise is more convenient for downstream statistical inference, e.g., the construction of confidence intervals or Bayesian shrinkage estimators.
 - Instead add $N\left(0, \sqrt{2} \frac{\chi}{\varepsilon N_g}\right)$, though will not conform exactly to privacy loss bounds in the tails.

Comparison to Alternative Methods: Privacy

- Our method is likely to reduce the risk of privacy loss substantially relative to count-based cell suppression (like most noise-infusion algorithms)
 - Even if one suppresses cells with counts below some threshold, can recover information about a single individual from similar datasets.
 - Hence, statistics released after cell suppression still effectively have infinite (uncontrolled) privacy risk.
- In contrast, our maximum observed sensitivity approach reduces uncontrolled privacy risks to one number (χ)
 - Can typically estimate in a sufficiently large sample that poses negligible privacy risk.

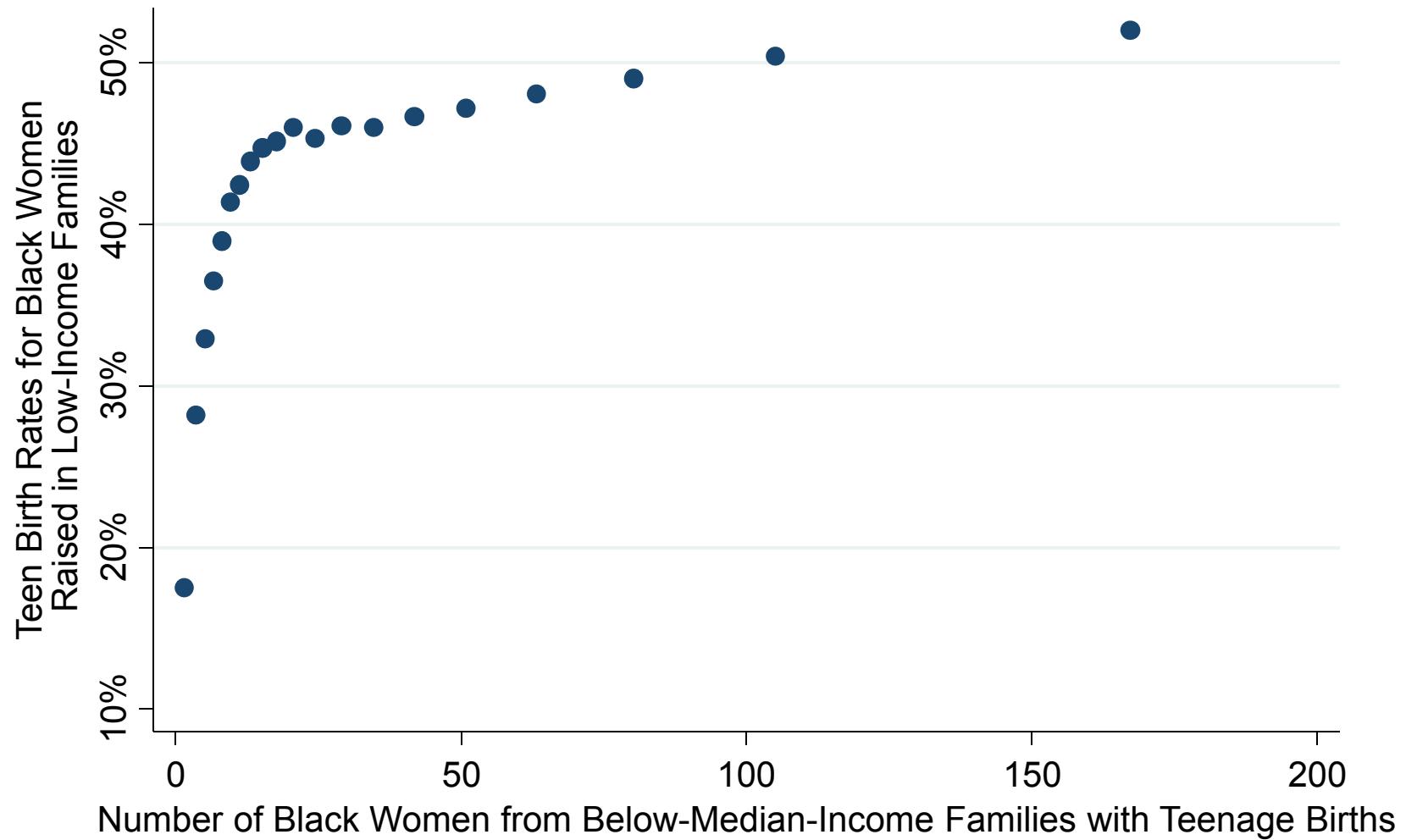
Comparison to Alternative Methods: Statistical Bias

- Noise infusion via known parameters offers significant advantages in downstream statistical inference.
 - Easy to extract unbiased estimates of any downstream parameter using standard measurement error correction techniques
 - In contrast, count-based suppression can create bias in ways that cannot be easily identified or corrected ex-post.
- Illustrate by comparing how actual results reported in Chetty et al. (2018) would have changed had count-based suppression been used instead of noise infusion
 - Are teenage birth rates higher for those who grow up in neighborhood with a higher share of single parents?

Comparison to Alternative Methods: Statistical Bias

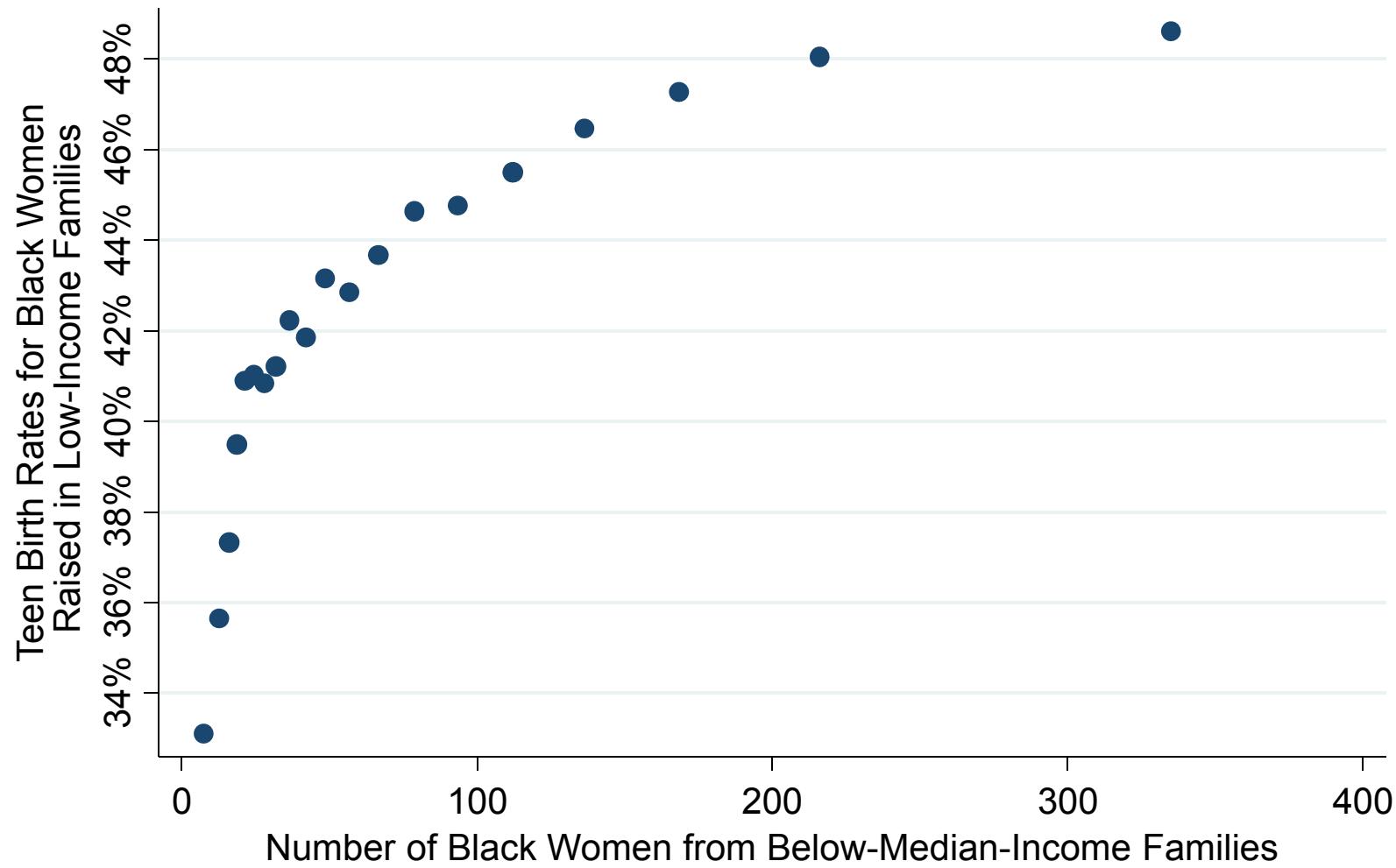
- In noise-infused data, regression provides an unbiased estimate of the (strong positive) relationship between teenage-birth rates for black women and single-parent share.
 - More generally, can adjust for noise using the “signal correlation”
- In contrast, count-based suppression generates bias that eliminates the result, since induces correlated measurement error from two sources:
 - Suppressing cells with few teenage births mechanically omits tracts with low teenage birth rates, which are concentrated in areas with few single parents.
 - Areas with a smaller black population (i.e., less diversity) have fewer teenage births and fewer areas with few single parents
- Identifying and correcting for these biases would be very difficult if one only had access to the post-suppression data

Teenage Birth Rates for Black Women vs. Number of Black Women with Teenage Births in Tract



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

Teenage Birth Rates for Black Women vs. Number of Black Women in Tract



Source: Chetty, Friedman, Hendren, Jones, Porter (2018)

Comparison to Alternative Methods: Statistical Precision

- Primary concern of end users: will estimates be too noisy to be useful?
 - In Atlas, noise added to protect privacy was similar to inherent noise due to sampling error → estimates remain highly accurate
 - E.g., added privacy noise reduces reliability (i.e., fraction of total variance that is signal) only from 71.8% to 71.0%