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Knexus Research
£US

Knexus Research is a small R&D company located
in the DC area at National Harbor, MD.

We have two active projects supporting Privacy-preserving Synthetic Data
Generation:

* For the US Census Bureau, the Knexus CenSyn team is providing
evaluation, research, engineering and production software development
support for Census privacy efforts.

« As technical lead for the NIST Differentially Private Synthetic Data
Challenge, Knexus provided technical guidance for the first national
challenge in Differential Privacy.

Over the past year, we’ve thought very carefully Synthetic Data
about what it means to make a good one of these. Generator

This talk will provide a quick orientation to synthetic data quality evaluation
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Evaluation Process
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Evaluation Process for Synthetic Data Generators

Tuning . Production
Can we make this better?

Final Version

Validation
Is it good enough?

Synthetic Synthetic
Data Gen. Data Gen.

Synthetic Data Generation is essentially a task of fitting a generative model to a data-set.
The basic evaluation process is familiar from data analytics.

However, these models output complex, high dimensional, potentially sparse data, which

will be used in turn to train models in downstream analytics, with accuracy degrading at
each step in the chain. Careful attention to evaluation is vital.
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Relative Metrics /US
Snapshot Metrics for Tuning:

* Synthesizer output quality depends on: Data Tuning |
Encoding/Pre-processing, Model Choice, Training Can we make this better?

Process, Post-processing... and parameter choices

for all of the above.
* To compare different options we need relative S

metrics--quick snapshots that allow us to study the
quality distributions of synthesizer output.
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Relative Metrics

Snapshot Metrics for Tuning:

To compare different options we
need relative metrics--quick
snapshots that allow us to study
the quality distributions of
synthesizer output.

Distance Based Metrics
These compute absolute
deviation under norms (L1, L2)

Three Marginal Approach

Parameters and
Configuration
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Propensity Based Metrics

These rely on classifiers
distinguishing the real and
synthetic data (SPECKS, pMSE)
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Randomized Heuristics

These efficiently capture
distributional similarity
(randomized 3-marginal,

row pool)

Standings
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privbayes

859671.87
727951.07
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626664.73

571570.86
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Absolute Metrics
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Deep-dive Metrics for Validation:

* Snapshots are convenient, but have problematic
shortcomings: blind spots, bias... they don’t tell us
. . . . Synthetic
how the synthetic data will work in practice. 0».
e To validate synthesizers, we need absolute metrics-- Validation
deep dive tools that help identify, understand, and Is it good enough?

measure the impact of distributional discrepancies
between the ground truth and synthesizer output.
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Absolute Metrics

Deep-dive Metrics for Validation:

To validate synthesizers, we need absolute metrics-
-deep dive tools that help identify, understand, and
measure the impact of distributional discrepancies
between the ground truth and synthesizer output.
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Analytics and Use Cases Heatmap Tools

Example analytics can check Table deviation heatmaps can
challenging cases such as long identify fine grained regions and
tails, differences-of-differences patterns of problems

Table Metric - group weighted percent difference

100%

Cumulative share of income earned

100%
Cumulative share of people from lowest to highest incomes

Graphical representation of the Gini coefficient ]
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Frequent Itemset Analysis

Post-processing on distance
analysis can identify variables
most to blame for deviations
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Questions?
£US

Lightning talks rarely have much time for questions—Come talk to me afterwards or
send me an email if this was interesting, or if you have insight/ideas to share!

Contact Details

Synthetic Data Quality Metrics: Relative vs. Absolute
Knexus Research Corporation
Christine.Task@knexusresearch.com
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