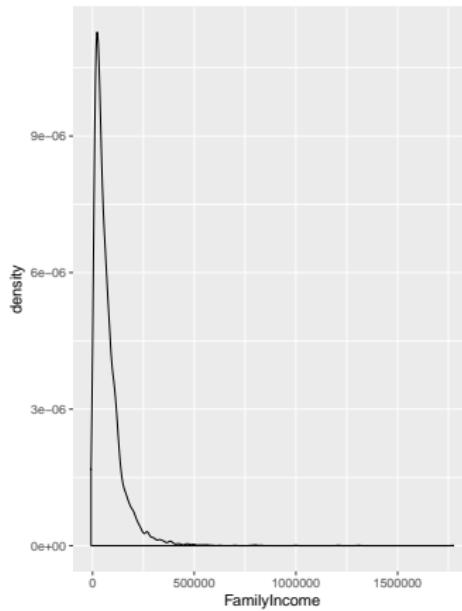


Bayesian Pseudo Posterior Synthesis for Data Privacy Protection

Based on works of M. Hu and T. D. Savitsky


Terrance D. Savitsky

Office of Survey Methods Research

CNSTAT Workshop on Data Privacy Protection
June 7, 2019

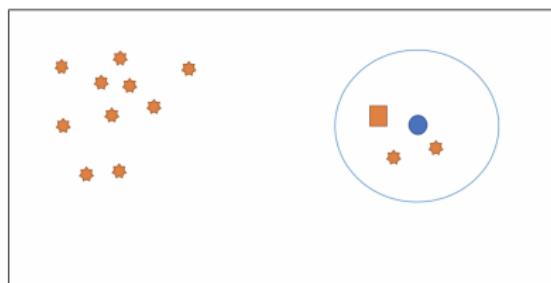
Data: CU Income for Consumer Expenditure Survey

- ▶ Heavily right-skewed. “Bill Gates” problem

Truncated Dirichlet Process

- ▶ Flexible **synthesizer** to preserve data distribution.
- ▶ Smooths response values and mixes records.

$$y_i | \mathbf{x}_i, \pi_k, \boldsymbol{\beta}_k^*, \sigma_k^* \stackrel{\text{ind}}{\sim} \sum_{k=1}^K \pi_k \mathcal{N} \left(y_i | \mathbf{x}_i' \boldsymbol{\beta}_k^*, \sigma_k^* \right)$$
$$\pi_1, \dots, \pi_K \sim \mathcal{D} \left(\frac{\gamma}{K}, \dots, \frac{\gamma}{K} \right)$$

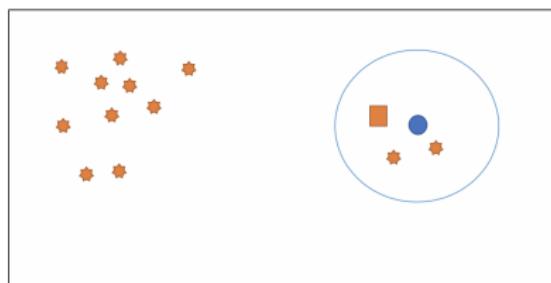

- ▶ Usual practice generate synthetic observations, (y_1^*, \dots, y_n^*)

$$y_i^* | \mathbf{y} \stackrel{\text{ind}}{\sim} \int \left[\sum_{k=1}^K \pi_k \mathcal{N} \left(y_i^* | \mathbf{x}_i' \boldsymbol{\beta}_k^*, \sigma_k^* \right) \right] \times \prod_{k=1}^K p((\pi_k, \boldsymbol{\beta}_k^*, \sigma_k^*) | \mathbf{y}) d((\pi_k, \boldsymbol{\beta}_k^*, \sigma_k^*))$$

Evaluation of identification disclosure risks

- Fewer synthetic values inside the interval/ball → the intruder has a higher probability of guessing the record of the name they seek.

● Betty's true value ■ Betty's synthetic value ⚪ Other synthetic values



Scenario 1: $IR_i = \frac{10}{13} \times 1 = \frac{10}{13}$.

Evaluation of identification disclosure risks

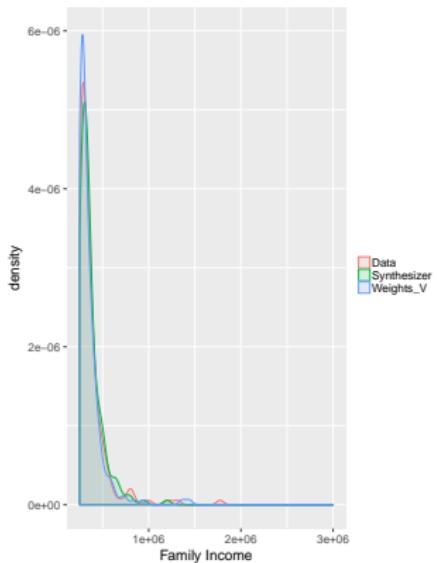
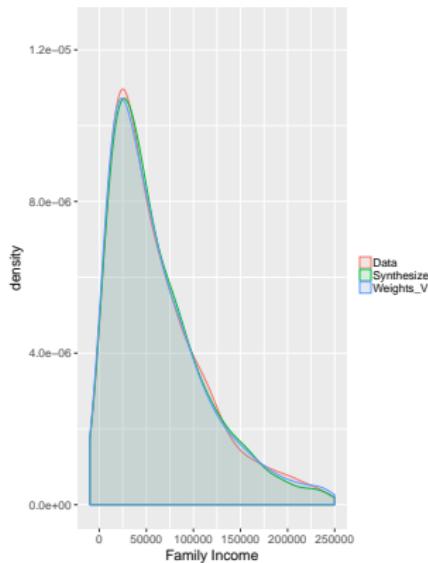
- Fewer synthetic values inside the interval/ball → the intruder has a higher probability of guessing the record of the name they seek.

● Betty's true value ■ Betty's synthetic value ⚪ Other synthetic values

Scenario 1: $IR_i = \frac{10}{13} \times 1 = \frac{10}{13}$.

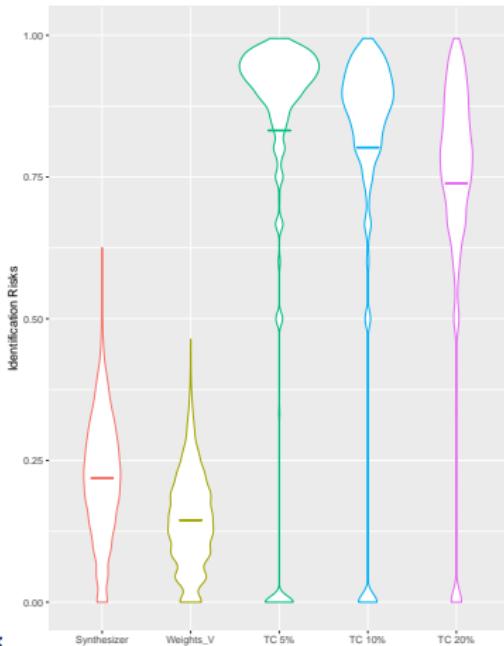
Pseudo Posterior

- Risk-based record-indexed weights, $\alpha_i \in \{0, 1\}$



$$\alpha_i = \min(0, 1 - c_i \times IR_i)$$

- For **monotone** constants, $(c_i) \in \max(0, [c_{\min} = 1.0, c_{\max} = 1.5])$.
- Used to construct risk-weighted, **pseudo posterior**:

$$\begin{aligned} p_{\alpha} ((\pi_k, \beta_k^*, \sigma_k^*)_{k=1, \dots, K} \mid \mathbf{y}, \theta) \propto & \left[\prod_{i=1}^n p(y_i \mid (\pi_k, \beta_k^*, \sigma_k^*)_{k=1}^K)^{\alpha_i} \right] \\ & \times \prod_{k=1}^K p(\pi_k, \beta_k^*, \sigma_k^* \mid \theta) \end{aligned}$$


Application to CE Income: Utility

- ▶ Mass of distribution largely unaffected
- ▶ See the **concentration** effect in the tails
- ▶ Pulls more isolated records to the modes

CE Income: Compare Risks of Vector vs. Top-coding

- ▶ Known pattern: {gender, age, education, marital status, earner}.
- ▶ Top-coding only protects CUs with extreme incomes (see bulbs).
- ▶ Ignores other risky portions of data distribution.

CONTACT INFORMATION

Savitsky.Terrance@bls.gov